Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  nnsgrp Structured version   Visualization version   GIF version

Theorem nnsgrp 44905
Description: The structure of positive integers together with the addition of complex numbers is a semigroup. (Contributed by AV, 4-Feb-2020.)
Hypothesis
Ref Expression
nnsgrp.m 𝑀 = (ℂflds ℕ)
Assertion
Ref Expression
nnsgrp 𝑀 ∈ Smgrp

Proof of Theorem nnsgrp
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nnsgrp.m . . 3 𝑀 = (ℂflds ℕ)
21nnsgrpmgm 44904 . 2 𝑀 ∈ Mgm
3 nncn 11724 . . . . . 6 (𝑥 ∈ ℕ → 𝑥 ∈ ℂ)
4 nncn 11724 . . . . . 6 (𝑦 ∈ ℕ → 𝑦 ∈ ℂ)
5 nncn 11724 . . . . . 6 (𝑧 ∈ ℕ → 𝑧 ∈ ℂ)
6 addass 10702 . . . . . 6 ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ∧ 𝑧 ∈ ℂ) → ((𝑥 + 𝑦) + 𝑧) = (𝑥 + (𝑦 + 𝑧)))
73, 4, 5, 6syl3an 1161 . . . . 5 ((𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ) → ((𝑥 + 𝑦) + 𝑧) = (𝑥 + (𝑦 + 𝑧)))
873expia 1122 . . . 4 ((𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ) → (𝑧 ∈ ℕ → ((𝑥 + 𝑦) + 𝑧) = (𝑥 + (𝑦 + 𝑧))))
98ralrimiv 3095 . . 3 ((𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ) → ∀𝑧 ∈ ℕ ((𝑥 + 𝑦) + 𝑧) = (𝑥 + (𝑦 + 𝑧)))
109rgen2 3115 . 2 𝑥 ∈ ℕ ∀𝑦 ∈ ℕ ∀𝑧 ∈ ℕ ((𝑥 + 𝑦) + 𝑧) = (𝑥 + (𝑦 + 𝑧))
11 nnsscn 11721 . . . 4 ℕ ⊆ ℂ
121cnfldsrngbas 44857 . . . 4 (ℕ ⊆ ℂ → ℕ = (Base‘𝑀))
1311, 12ax-mp 5 . . 3 ℕ = (Base‘𝑀)
14 nnex 11722 . . . 4 ℕ ∈ V
151cnfldsrngadd 44858 . . . 4 (ℕ ∈ V → + = (+g𝑀))
1614, 15ax-mp 5 . . 3 + = (+g𝑀)
1713, 16issgrp 18018 . 2 (𝑀 ∈ Smgrp ↔ (𝑀 ∈ Mgm ∧ ∀𝑥 ∈ ℕ ∀𝑦 ∈ ℕ ∀𝑧 ∈ ℕ ((𝑥 + 𝑦) + 𝑧) = (𝑥 + (𝑦 + 𝑧))))
182, 10, 17mpbir2an 711 1 𝑀 ∈ Smgrp
Colors of variables: wff setvar class
Syntax hints:  wa 399   = wceq 1542  wcel 2114  wral 3053  Vcvv 3398  wss 3843  cfv 6339  (class class class)co 7170  cc 10613   + caddc 10618  cn 11716  Basecbs 16586  s cress 16587  +gcplusg 16668  Mgmcmgm 17966  Smgrpcsgrp 18016  fldccnfld 20217
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1917  ax-6 1975  ax-7 2020  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2162  ax-12 2179  ax-ext 2710  ax-sep 5167  ax-nul 5174  ax-pow 5232  ax-pr 5296  ax-un 7479  ax-cnex 10671  ax-resscn 10672  ax-1cn 10673  ax-icn 10674  ax-addcl 10675  ax-addrcl 10676  ax-mulcl 10677  ax-mulrcl 10678  ax-mulcom 10679  ax-addass 10680  ax-mulass 10681  ax-distr 10682  ax-i2m1 10683  ax-1ne0 10684  ax-1rid 10685  ax-rnegex 10686  ax-rrecex 10687  ax-cnre 10688  ax-pre-lttri 10689  ax-pre-lttrn 10690  ax-pre-ltadd 10691  ax-pre-mulgt0 10692  ax-addf 10694
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1787  df-nf 1791  df-sb 2075  df-mo 2540  df-eu 2570  df-clab 2717  df-cleq 2730  df-clel 2811  df-nfc 2881  df-ne 2935  df-nel 3039  df-ral 3058  df-rex 3059  df-reu 3060  df-rab 3062  df-v 3400  df-sbc 3681  df-csb 3791  df-dif 3846  df-un 3848  df-in 3850  df-ss 3860  df-pss 3862  df-nul 4212  df-if 4415  df-pw 4490  df-sn 4517  df-pr 4519  df-tp 4521  df-op 4523  df-uni 4797  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5429  df-eprel 5434  df-po 5442  df-so 5443  df-fr 5483  df-we 5485  df-xp 5531  df-rel 5532  df-cnv 5533  df-co 5534  df-dm 5535  df-rn 5536  df-res 5537  df-ima 5538  df-pred 6129  df-ord 6175  df-on 6176  df-lim 6177  df-suc 6178  df-iota 6297  df-fun 6341  df-fn 6342  df-f 6343  df-f1 6344  df-fo 6345  df-f1o 6346  df-fv 6347  df-riota 7127  df-ov 7173  df-oprab 7174  df-mpo 7175  df-om 7600  df-1st 7714  df-2nd 7715  df-wrecs 7976  df-recs 8037  df-rdg 8075  df-1o 8131  df-er 8320  df-en 8556  df-dom 8557  df-sdom 8558  df-fin 8559  df-pnf 10755  df-mnf 10756  df-xr 10757  df-ltxr 10758  df-le 10759  df-sub 10950  df-neg 10951  df-nn 11717  df-2 11779  df-3 11780  df-4 11781  df-5 11782  df-6 11783  df-7 11784  df-8 11785  df-9 11786  df-n0 11977  df-z 12063  df-dec 12180  df-uz 12325  df-fz 12982  df-struct 16588  df-ndx 16589  df-slot 16590  df-base 16592  df-sets 16593  df-ress 16594  df-plusg 16681  df-mulr 16682  df-starv 16683  df-tset 16687  df-ple 16688  df-ds 16690  df-unif 16691  df-mgm 17968  df-sgrp 18017  df-cnfld 20218
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator