![]() |
Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > nnsgrp | Structured version Visualization version GIF version |
Description: The structure of positive integers together with the addition of complex numbers is a semigroup. (Contributed by AV, 4-Feb-2020.) |
Ref | Expression |
---|---|
nnsgrp.m | ⊢ 𝑀 = (ℂfld ↾s ℕ) |
Ref | Expression |
---|---|
nnsgrp | ⊢ 𝑀 ∈ Smgrp |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nnsgrp.m | . . 3 ⊢ 𝑀 = (ℂfld ↾s ℕ) | |
2 | 1 | nnsgrpmgm 46865 | . 2 ⊢ 𝑀 ∈ Mgm |
3 | nncn 12227 | . . . . . 6 ⊢ (𝑥 ∈ ℕ → 𝑥 ∈ ℂ) | |
4 | nncn 12227 | . . . . . 6 ⊢ (𝑦 ∈ ℕ → 𝑦 ∈ ℂ) | |
5 | nncn 12227 | . . . . . 6 ⊢ (𝑧 ∈ ℕ → 𝑧 ∈ ℂ) | |
6 | addass 11203 | . . . . . 6 ⊢ ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ∧ 𝑧 ∈ ℂ) → ((𝑥 + 𝑦) + 𝑧) = (𝑥 + (𝑦 + 𝑧))) | |
7 | 3, 4, 5, 6 | syl3an 1159 | . . . . 5 ⊢ ((𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ) → ((𝑥 + 𝑦) + 𝑧) = (𝑥 + (𝑦 + 𝑧))) |
8 | 7 | 3expia 1120 | . . . 4 ⊢ ((𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ) → (𝑧 ∈ ℕ → ((𝑥 + 𝑦) + 𝑧) = (𝑥 + (𝑦 + 𝑧)))) |
9 | 8 | ralrimiv 3144 | . . 3 ⊢ ((𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ) → ∀𝑧 ∈ ℕ ((𝑥 + 𝑦) + 𝑧) = (𝑥 + (𝑦 + 𝑧))) |
10 | 9 | rgen2 3196 | . 2 ⊢ ∀𝑥 ∈ ℕ ∀𝑦 ∈ ℕ ∀𝑧 ∈ ℕ ((𝑥 + 𝑦) + 𝑧) = (𝑥 + (𝑦 + 𝑧)) |
11 | nnsscn 12224 | . . . 4 ⊢ ℕ ⊆ ℂ | |
12 | 1 | cnfldsrngbas 46850 | . . . 4 ⊢ (ℕ ⊆ ℂ → ℕ = (Base‘𝑀)) |
13 | 11, 12 | ax-mp 5 | . . 3 ⊢ ℕ = (Base‘𝑀) |
14 | nnex 12225 | . . . 4 ⊢ ℕ ∈ V | |
15 | 1 | cnfldsrngadd 46851 | . . . 4 ⊢ (ℕ ∈ V → + = (+g‘𝑀)) |
16 | 14, 15 | ax-mp 5 | . . 3 ⊢ + = (+g‘𝑀) |
17 | 13, 16 | issgrp 18648 | . 2 ⊢ (𝑀 ∈ Smgrp ↔ (𝑀 ∈ Mgm ∧ ∀𝑥 ∈ ℕ ∀𝑦 ∈ ℕ ∀𝑧 ∈ ℕ ((𝑥 + 𝑦) + 𝑧) = (𝑥 + (𝑦 + 𝑧)))) |
18 | 2, 10, 17 | mpbir2an 708 | 1 ⊢ 𝑀 ∈ Smgrp |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 395 = wceq 1540 ∈ wcel 2105 ∀wral 3060 Vcvv 3473 ⊆ wss 3948 ‘cfv 6543 (class class class)co 7412 ℂcc 11114 + caddc 11119 ℕcn 12219 Basecbs 17151 ↾s cress 17180 +gcplusg 17204 Mgmcmgm 18566 Smgrpcsgrp 18646 ℂfldccnfld 21148 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2702 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7729 ax-cnex 11172 ax-resscn 11173 ax-1cn 11174 ax-icn 11175 ax-addcl 11176 ax-addrcl 11177 ax-mulcl 11178 ax-mulrcl 11179 ax-mulcom 11180 ax-addass 11181 ax-mulass 11182 ax-distr 11183 ax-i2m1 11184 ax-1ne0 11185 ax-1rid 11186 ax-rnegex 11187 ax-rrecex 11188 ax-cnre 11189 ax-pre-lttri 11190 ax-pre-lttrn 11191 ax-pre-ltadd 11192 ax-pre-mulgt0 11193 ax-addf 11195 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2533 df-eu 2562 df-clab 2709 df-cleq 2723 df-clel 2809 df-nfc 2884 df-ne 2940 df-nel 3046 df-ral 3061 df-rex 3070 df-reu 3376 df-rab 3432 df-v 3475 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-pss 3967 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-tp 4633 df-op 4635 df-uni 4909 df-iun 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5574 df-eprel 5580 df-po 5588 df-so 5589 df-fr 5631 df-we 5633 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-pred 6300 df-ord 6367 df-on 6368 df-lim 6369 df-suc 6370 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-riota 7368 df-ov 7415 df-oprab 7416 df-mpo 7417 df-om 7860 df-1st 7979 df-2nd 7980 df-frecs 8272 df-wrecs 8303 df-recs 8377 df-rdg 8416 df-1o 8472 df-er 8709 df-en 8946 df-dom 8947 df-sdom 8948 df-fin 8949 df-pnf 11257 df-mnf 11258 df-xr 11259 df-ltxr 11260 df-le 11261 df-sub 11453 df-neg 11454 df-nn 12220 df-2 12282 df-3 12283 df-4 12284 df-5 12285 df-6 12286 df-7 12287 df-8 12288 df-9 12289 df-n0 12480 df-z 12566 df-dec 12685 df-uz 12830 df-fz 13492 df-struct 17087 df-sets 17104 df-slot 17122 df-ndx 17134 df-base 17152 df-ress 17181 df-plusg 17217 df-mulr 17218 df-starv 17219 df-tset 17223 df-ple 17224 df-ds 17226 df-unif 17227 df-mgm 18568 df-sgrp 18647 df-cnfld 21149 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |