Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > nnsgrp | Structured version Visualization version GIF version |
Description: The structure of positive integers together with the addition of complex numbers is a semigroup. (Contributed by AV, 4-Feb-2020.) |
Ref | Expression |
---|---|
nnsgrp.m | ⊢ 𝑀 = (ℂfld ↾s ℕ) |
Ref | Expression |
---|---|
nnsgrp | ⊢ 𝑀 ∈ Smgrp |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nnsgrp.m | . . 3 ⊢ 𝑀 = (ℂfld ↾s ℕ) | |
2 | 1 | nnsgrpmgm 44904 | . 2 ⊢ 𝑀 ∈ Mgm |
3 | nncn 11724 | . . . . . 6 ⊢ (𝑥 ∈ ℕ → 𝑥 ∈ ℂ) | |
4 | nncn 11724 | . . . . . 6 ⊢ (𝑦 ∈ ℕ → 𝑦 ∈ ℂ) | |
5 | nncn 11724 | . . . . . 6 ⊢ (𝑧 ∈ ℕ → 𝑧 ∈ ℂ) | |
6 | addass 10702 | . . . . . 6 ⊢ ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ∧ 𝑧 ∈ ℂ) → ((𝑥 + 𝑦) + 𝑧) = (𝑥 + (𝑦 + 𝑧))) | |
7 | 3, 4, 5, 6 | syl3an 1161 | . . . . 5 ⊢ ((𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ) → ((𝑥 + 𝑦) + 𝑧) = (𝑥 + (𝑦 + 𝑧))) |
8 | 7 | 3expia 1122 | . . . 4 ⊢ ((𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ) → (𝑧 ∈ ℕ → ((𝑥 + 𝑦) + 𝑧) = (𝑥 + (𝑦 + 𝑧)))) |
9 | 8 | ralrimiv 3095 | . . 3 ⊢ ((𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ) → ∀𝑧 ∈ ℕ ((𝑥 + 𝑦) + 𝑧) = (𝑥 + (𝑦 + 𝑧))) |
10 | 9 | rgen2 3115 | . 2 ⊢ ∀𝑥 ∈ ℕ ∀𝑦 ∈ ℕ ∀𝑧 ∈ ℕ ((𝑥 + 𝑦) + 𝑧) = (𝑥 + (𝑦 + 𝑧)) |
11 | nnsscn 11721 | . . . 4 ⊢ ℕ ⊆ ℂ | |
12 | 1 | cnfldsrngbas 44857 | . . . 4 ⊢ (ℕ ⊆ ℂ → ℕ = (Base‘𝑀)) |
13 | 11, 12 | ax-mp 5 | . . 3 ⊢ ℕ = (Base‘𝑀) |
14 | nnex 11722 | . . . 4 ⊢ ℕ ∈ V | |
15 | 1 | cnfldsrngadd 44858 | . . . 4 ⊢ (ℕ ∈ V → + = (+g‘𝑀)) |
16 | 14, 15 | ax-mp 5 | . . 3 ⊢ + = (+g‘𝑀) |
17 | 13, 16 | issgrp 18018 | . 2 ⊢ (𝑀 ∈ Smgrp ↔ (𝑀 ∈ Mgm ∧ ∀𝑥 ∈ ℕ ∀𝑦 ∈ ℕ ∀𝑧 ∈ ℕ ((𝑥 + 𝑦) + 𝑧) = (𝑥 + (𝑦 + 𝑧)))) |
18 | 2, 10, 17 | mpbir2an 711 | 1 ⊢ 𝑀 ∈ Smgrp |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 399 = wceq 1542 ∈ wcel 2114 ∀wral 3053 Vcvv 3398 ⊆ wss 3843 ‘cfv 6339 (class class class)co 7170 ℂcc 10613 + caddc 10618 ℕcn 11716 Basecbs 16586 ↾s cress 16587 +gcplusg 16668 Mgmcmgm 17966 Smgrpcsgrp 18016 ℂfldccnfld 20217 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2020 ax-8 2116 ax-9 2124 ax-10 2145 ax-11 2162 ax-12 2179 ax-ext 2710 ax-sep 5167 ax-nul 5174 ax-pow 5232 ax-pr 5296 ax-un 7479 ax-cnex 10671 ax-resscn 10672 ax-1cn 10673 ax-icn 10674 ax-addcl 10675 ax-addrcl 10676 ax-mulcl 10677 ax-mulrcl 10678 ax-mulcom 10679 ax-addass 10680 ax-mulass 10681 ax-distr 10682 ax-i2m1 10683 ax-1ne0 10684 ax-1rid 10685 ax-rnegex 10686 ax-rrecex 10687 ax-cnre 10688 ax-pre-lttri 10689 ax-pre-lttrn 10690 ax-pre-ltadd 10691 ax-pre-mulgt0 10692 ax-addf 10694 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1787 df-nf 1791 df-sb 2075 df-mo 2540 df-eu 2570 df-clab 2717 df-cleq 2730 df-clel 2811 df-nfc 2881 df-ne 2935 df-nel 3039 df-ral 3058 df-rex 3059 df-reu 3060 df-rab 3062 df-v 3400 df-sbc 3681 df-csb 3791 df-dif 3846 df-un 3848 df-in 3850 df-ss 3860 df-pss 3862 df-nul 4212 df-if 4415 df-pw 4490 df-sn 4517 df-pr 4519 df-tp 4521 df-op 4523 df-uni 4797 df-iun 4883 df-br 5031 df-opab 5093 df-mpt 5111 df-tr 5137 df-id 5429 df-eprel 5434 df-po 5442 df-so 5443 df-fr 5483 df-we 5485 df-xp 5531 df-rel 5532 df-cnv 5533 df-co 5534 df-dm 5535 df-rn 5536 df-res 5537 df-ima 5538 df-pred 6129 df-ord 6175 df-on 6176 df-lim 6177 df-suc 6178 df-iota 6297 df-fun 6341 df-fn 6342 df-f 6343 df-f1 6344 df-fo 6345 df-f1o 6346 df-fv 6347 df-riota 7127 df-ov 7173 df-oprab 7174 df-mpo 7175 df-om 7600 df-1st 7714 df-2nd 7715 df-wrecs 7976 df-recs 8037 df-rdg 8075 df-1o 8131 df-er 8320 df-en 8556 df-dom 8557 df-sdom 8558 df-fin 8559 df-pnf 10755 df-mnf 10756 df-xr 10757 df-ltxr 10758 df-le 10759 df-sub 10950 df-neg 10951 df-nn 11717 df-2 11779 df-3 11780 df-4 11781 df-5 11782 df-6 11783 df-7 11784 df-8 11785 df-9 11786 df-n0 11977 df-z 12063 df-dec 12180 df-uz 12325 df-fz 12982 df-struct 16588 df-ndx 16589 df-slot 16590 df-base 16592 df-sets 16593 df-ress 16594 df-plusg 16681 df-mulr 16682 df-starv 16683 df-tset 16687 df-ple 16688 df-ds 16690 df-unif 16691 df-mgm 17968 df-sgrp 18017 df-cnfld 20218 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |