![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 0grsubgr | Structured version Visualization version GIF version |
Description: The null graph (represented by an empty set) is a subgraph of all graphs. (Contributed by AV, 17-Nov-2020.) |
Ref | Expression |
---|---|
0grsubgr | ⊢ (𝐺 ∈ 𝑊 → ∅ SubGraph 𝐺) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0ss 4396 | . . 3 ⊢ ∅ ⊆ (Vtx‘𝐺) | |
2 | dm0 5920 | . . . . 5 ⊢ dom ∅ = ∅ | |
3 | 2 | reseq2i 5978 | . . . 4 ⊢ ((iEdg‘𝐺) ↾ dom ∅) = ((iEdg‘𝐺) ↾ ∅) |
4 | res0 5985 | . . . 4 ⊢ ((iEdg‘𝐺) ↾ ∅) = ∅ | |
5 | 3, 4 | eqtr2i 2760 | . . 3 ⊢ ∅ = ((iEdg‘𝐺) ↾ dom ∅) |
6 | 0ss 4396 | . . 3 ⊢ ∅ ⊆ 𝒫 ∅ | |
7 | 1, 5, 6 | 3pm3.2i 1338 | . 2 ⊢ (∅ ⊆ (Vtx‘𝐺) ∧ ∅ = ((iEdg‘𝐺) ↾ dom ∅) ∧ ∅ ⊆ 𝒫 ∅) |
8 | 0ex 5307 | . . 3 ⊢ ∅ ∈ V | |
9 | vtxval0 28567 | . . . . 5 ⊢ (Vtx‘∅) = ∅ | |
10 | 9 | eqcomi 2740 | . . . 4 ⊢ ∅ = (Vtx‘∅) |
11 | eqid 2731 | . . . 4 ⊢ (Vtx‘𝐺) = (Vtx‘𝐺) | |
12 | iedgval0 28568 | . . . . 5 ⊢ (iEdg‘∅) = ∅ | |
13 | 12 | eqcomi 2740 | . . . 4 ⊢ ∅ = (iEdg‘∅) |
14 | eqid 2731 | . . . 4 ⊢ (iEdg‘𝐺) = (iEdg‘𝐺) | |
15 | edgval 28577 | . . . . 5 ⊢ (Edg‘∅) = ran (iEdg‘∅) | |
16 | 12 | rneqi 5936 | . . . . 5 ⊢ ran (iEdg‘∅) = ran ∅ |
17 | rn0 5925 | . . . . 5 ⊢ ran ∅ = ∅ | |
18 | 15, 16, 17 | 3eqtrri 2764 | . . . 4 ⊢ ∅ = (Edg‘∅) |
19 | 10, 11, 13, 14, 18 | issubgr 28796 | . . 3 ⊢ ((𝐺 ∈ 𝑊 ∧ ∅ ∈ V) → (∅ SubGraph 𝐺 ↔ (∅ ⊆ (Vtx‘𝐺) ∧ ∅ = ((iEdg‘𝐺) ↾ dom ∅) ∧ ∅ ⊆ 𝒫 ∅))) |
20 | 8, 19 | mpan2 688 | . 2 ⊢ (𝐺 ∈ 𝑊 → (∅ SubGraph 𝐺 ↔ (∅ ⊆ (Vtx‘𝐺) ∧ ∅ = ((iEdg‘𝐺) ↾ dom ∅) ∧ ∅ ⊆ 𝒫 ∅))) |
21 | 7, 20 | mpbiri 258 | 1 ⊢ (𝐺 ∈ 𝑊 → ∅ SubGraph 𝐺) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ w3a 1086 = wceq 1540 ∈ wcel 2105 Vcvv 3473 ⊆ wss 3948 ∅c0 4322 𝒫 cpw 4602 class class class wbr 5148 dom cdm 5676 ran crn 5677 ↾ cres 5678 ‘cfv 6543 Vtxcvtx 28524 iEdgciedg 28525 Edgcedg 28575 SubGraph csubgr 28792 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2702 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7729 ax-cnex 11170 ax-resscn 11171 ax-1cn 11172 ax-icn 11173 ax-addcl 11174 ax-addrcl 11175 ax-mulcl 11176 ax-mulrcl 11177 ax-mulcom 11178 ax-addass 11179 ax-mulass 11180 ax-distr 11181 ax-i2m1 11182 ax-1ne0 11183 ax-1rid 11184 ax-rnegex 11185 ax-rrecex 11186 ax-cnre 11187 ax-pre-lttri 11188 ax-pre-lttrn 11189 ax-pre-ltadd 11190 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2533 df-eu 2562 df-clab 2709 df-cleq 2723 df-clel 2809 df-nfc 2884 df-ne 2940 df-nel 3046 df-ral 3061 df-rex 3070 df-reu 3376 df-rab 3432 df-v 3475 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-pss 3967 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-iun 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5574 df-eprel 5580 df-po 5588 df-so 5589 df-fr 5631 df-we 5633 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-pred 6300 df-ord 6367 df-on 6368 df-lim 6369 df-suc 6370 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-ov 7415 df-om 7860 df-2nd 7980 df-frecs 8270 df-wrecs 8301 df-recs 8375 df-rdg 8414 df-er 8707 df-en 8944 df-dom 8945 df-sdom 8946 df-pnf 11255 df-mnf 11256 df-ltxr 11258 df-nn 12218 df-2 12280 df-3 12281 df-4 12282 df-5 12283 df-6 12284 df-7 12285 df-8 12286 df-9 12287 df-n0 12478 df-dec 12683 df-slot 17120 df-ndx 17132 df-base 17150 df-edgf 28515 df-vtx 28526 df-iedg 28527 df-edg 28576 df-subgr 28793 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |