MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  0grsubgr Structured version   Visualization version   GIF version

Theorem 0grsubgr 26575
Description: The null graph (represented by an empty set) is a subgraph of all graphs. (Contributed by AV, 17-Nov-2020.)
Assertion
Ref Expression
0grsubgr (𝐺𝑊 → ∅ SubGraph 𝐺)

Proof of Theorem 0grsubgr
StepHypRef Expression
1 0ss 4197 . . 3 ∅ ⊆ (Vtx‘𝐺)
2 dm0 5571 . . . . 5 dom ∅ = ∅
32reseq2i 5626 . . . 4 ((iEdg‘𝐺) ↾ dom ∅) = ((iEdg‘𝐺) ↾ ∅)
4 res0 5633 . . . 4 ((iEdg‘𝐺) ↾ ∅) = ∅
53, 4eqtr2i 2850 . . 3 ∅ = ((iEdg‘𝐺) ↾ dom ∅)
6 0ss 4197 . . 3 ∅ ⊆ 𝒫 ∅
71, 5, 63pm3.2i 1442 . 2 (∅ ⊆ (Vtx‘𝐺) ∧ ∅ = ((iEdg‘𝐺) ↾ dom ∅) ∧ ∅ ⊆ 𝒫 ∅)
8 0ex 5014 . . 3 ∅ ∈ V
9 vtxval0 26337 . . . . 5 (Vtx‘∅) = ∅
109eqcomi 2834 . . . 4 ∅ = (Vtx‘∅)
11 eqid 2825 . . . 4 (Vtx‘𝐺) = (Vtx‘𝐺)
12 iedgval0 26338 . . . . 5 (iEdg‘∅) = ∅
1312eqcomi 2834 . . . 4 ∅ = (iEdg‘∅)
14 eqid 2825 . . . 4 (iEdg‘𝐺) = (iEdg‘𝐺)
15 edgval 26347 . . . . 5 (Edg‘∅) = ran (iEdg‘∅)
1612rneqi 5584 . . . . 5 ran (iEdg‘∅) = ran ∅
17 rn0 5610 . . . . 5 ran ∅ = ∅
1815, 16, 173eqtrri 2854 . . . 4 ∅ = (Edg‘∅)
1910, 11, 13, 14, 18issubgr 26568 . . 3 ((𝐺𝑊 ∧ ∅ ∈ V) → (∅ SubGraph 𝐺 ↔ (∅ ⊆ (Vtx‘𝐺) ∧ ∅ = ((iEdg‘𝐺) ↾ dom ∅) ∧ ∅ ⊆ 𝒫 ∅)))
208, 19mpan2 682 . 2 (𝐺𝑊 → (∅ SubGraph 𝐺 ↔ (∅ ⊆ (Vtx‘𝐺) ∧ ∅ = ((iEdg‘𝐺) ↾ dom ∅) ∧ ∅ ⊆ 𝒫 ∅)))
217, 20mpbiri 250 1 (𝐺𝑊 → ∅ SubGraph 𝐺)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 198  w3a 1111   = wceq 1656  wcel 2164  Vcvv 3414  wss 3798  c0 4144  𝒫 cpw 4378   class class class wbr 4873  dom cdm 5342  ran crn 5343  cres 5344  cfv 6123  Vtxcvtx 26294  iEdgciedg 26295  Edgcedg 26345   SubGraph csubgr 26564
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1894  ax-4 1908  ax-5 2009  ax-6 2075  ax-7 2112  ax-8 2166  ax-9 2173  ax-10 2192  ax-11 2207  ax-12 2220  ax-13 2389  ax-ext 2803  ax-sep 5005  ax-nul 5013  ax-pow 5065  ax-pr 5127  ax-un 7209
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 879  df-3an 1113  df-tru 1660  df-ex 1879  df-nf 1883  df-sb 2068  df-mo 2605  df-eu 2640  df-clab 2812  df-cleq 2818  df-clel 2821  df-nfc 2958  df-ne 3000  df-ral 3122  df-rex 3123  df-rab 3126  df-v 3416  df-sbc 3663  df-csb 3758  df-dif 3801  df-un 3803  df-in 3805  df-ss 3812  df-nul 4145  df-if 4307  df-pw 4380  df-sn 4398  df-pr 4400  df-op 4404  df-uni 4659  df-br 4874  df-opab 4936  df-mpt 4953  df-id 5250  df-xp 5348  df-rel 5349  df-cnv 5350  df-co 5351  df-dm 5352  df-rn 5353  df-res 5354  df-iota 6086  df-fun 6125  df-fv 6131  df-slot 16226  df-base 16228  df-edgf 26288  df-vtx 26296  df-iedg 26297  df-edg 26346  df-subgr 26565
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator