| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 0grsubgr | Structured version Visualization version GIF version | ||
| Description: The null graph (represented by an empty set) is a subgraph of all graphs. (Contributed by AV, 17-Nov-2020.) |
| Ref | Expression |
|---|---|
| 0grsubgr | ⊢ (𝐺 ∈ 𝑊 → ∅ SubGraph 𝐺) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0ss 4350 | . . 3 ⊢ ∅ ⊆ (Vtx‘𝐺) | |
| 2 | dm0 5860 | . . . . 5 ⊢ dom ∅ = ∅ | |
| 3 | 2 | reseq2i 5925 | . . . 4 ⊢ ((iEdg‘𝐺) ↾ dom ∅) = ((iEdg‘𝐺) ↾ ∅) |
| 4 | res0 5932 | . . . 4 ⊢ ((iEdg‘𝐺) ↾ ∅) = ∅ | |
| 5 | 3, 4 | eqtr2i 2755 | . . 3 ⊢ ∅ = ((iEdg‘𝐺) ↾ dom ∅) |
| 6 | 0ss 4350 | . . 3 ⊢ ∅ ⊆ 𝒫 ∅ | |
| 7 | 1, 5, 6 | 3pm3.2i 1340 | . 2 ⊢ (∅ ⊆ (Vtx‘𝐺) ∧ ∅ = ((iEdg‘𝐺) ↾ dom ∅) ∧ ∅ ⊆ 𝒫 ∅) |
| 8 | 0ex 5245 | . . 3 ⊢ ∅ ∈ V | |
| 9 | vtxval0 29018 | . . . . 5 ⊢ (Vtx‘∅) = ∅ | |
| 10 | 9 | eqcomi 2740 | . . . 4 ⊢ ∅ = (Vtx‘∅) |
| 11 | eqid 2731 | . . . 4 ⊢ (Vtx‘𝐺) = (Vtx‘𝐺) | |
| 12 | iedgval0 29019 | . . . . 5 ⊢ (iEdg‘∅) = ∅ | |
| 13 | 12 | eqcomi 2740 | . . . 4 ⊢ ∅ = (iEdg‘∅) |
| 14 | eqid 2731 | . . . 4 ⊢ (iEdg‘𝐺) = (iEdg‘𝐺) | |
| 15 | edgval 29028 | . . . . 5 ⊢ (Edg‘∅) = ran (iEdg‘∅) | |
| 16 | 12 | rneqi 5877 | . . . . 5 ⊢ ran (iEdg‘∅) = ran ∅ |
| 17 | rn0 5866 | . . . . 5 ⊢ ran ∅ = ∅ | |
| 18 | 15, 16, 17 | 3eqtrri 2759 | . . . 4 ⊢ ∅ = (Edg‘∅) |
| 19 | 10, 11, 13, 14, 18 | issubgr 29250 | . . 3 ⊢ ((𝐺 ∈ 𝑊 ∧ ∅ ∈ V) → (∅ SubGraph 𝐺 ↔ (∅ ⊆ (Vtx‘𝐺) ∧ ∅ = ((iEdg‘𝐺) ↾ dom ∅) ∧ ∅ ⊆ 𝒫 ∅))) |
| 20 | 8, 19 | mpan2 691 | . 2 ⊢ (𝐺 ∈ 𝑊 → (∅ SubGraph 𝐺 ↔ (∅ ⊆ (Vtx‘𝐺) ∧ ∅ = ((iEdg‘𝐺) ↾ dom ∅) ∧ ∅ ⊆ 𝒫 ∅))) |
| 21 | 7, 20 | mpbiri 258 | 1 ⊢ (𝐺 ∈ 𝑊 → ∅ SubGraph 𝐺) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ w3a 1086 = wceq 1541 ∈ wcel 2111 Vcvv 3436 ⊆ wss 3902 ∅c0 4283 𝒫 cpw 4550 class class class wbr 5091 dom cdm 5616 ran crn 5617 ↾ cres 5618 ‘cfv 6481 Vtxcvtx 28975 iEdgciedg 28976 Edgcedg 29026 SubGraph csubgr 29246 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5234 ax-nul 5244 ax-pow 5303 ax-pr 5370 ax-un 7668 ax-cnex 11062 ax-resscn 11063 ax-1cn 11064 ax-icn 11065 ax-addcl 11066 ax-addrcl 11067 ax-mulcl 11068 ax-mulrcl 11069 ax-mulcom 11070 ax-addass 11071 ax-mulass 11072 ax-distr 11073 ax-i2m1 11074 ax-1ne0 11075 ax-1rid 11076 ax-rnegex 11077 ax-rrecex 11078 ax-cnre 11079 ax-pre-lttri 11080 ax-pre-lttrn 11081 ax-pre-ltadd 11082 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3742 df-csb 3851 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-pss 3922 df-nul 4284 df-if 4476 df-pw 4552 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-iun 4943 df-br 5092 df-opab 5154 df-mpt 5173 df-tr 5199 df-id 5511 df-eprel 5516 df-po 5524 df-so 5525 df-fr 5569 df-we 5571 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-rn 5627 df-res 5628 df-ima 5629 df-pred 6248 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-ov 7349 df-om 7797 df-2nd 7922 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-rdg 8329 df-er 8622 df-en 8870 df-dom 8871 df-sdom 8872 df-pnf 11148 df-mnf 11149 df-ltxr 11151 df-nn 12126 df-2 12188 df-3 12189 df-4 12190 df-5 12191 df-6 12192 df-7 12193 df-8 12194 df-9 12195 df-n0 12382 df-dec 12589 df-slot 17093 df-ndx 17105 df-base 17121 df-edgf 28968 df-vtx 28977 df-iedg 28978 df-edg 29027 df-subgr 29247 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |