![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 0grsubgr | Structured version Visualization version GIF version |
Description: The null graph (represented by an empty set) is a subgraph of all graphs. (Contributed by AV, 17-Nov-2020.) |
Ref | Expression |
---|---|
0grsubgr | ⊢ (𝐺 ∈ 𝑊 → ∅ SubGraph 𝐺) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0ss 4197 | . . 3 ⊢ ∅ ⊆ (Vtx‘𝐺) | |
2 | dm0 5571 | . . . . 5 ⊢ dom ∅ = ∅ | |
3 | 2 | reseq2i 5626 | . . . 4 ⊢ ((iEdg‘𝐺) ↾ dom ∅) = ((iEdg‘𝐺) ↾ ∅) |
4 | res0 5633 | . . . 4 ⊢ ((iEdg‘𝐺) ↾ ∅) = ∅ | |
5 | 3, 4 | eqtr2i 2850 | . . 3 ⊢ ∅ = ((iEdg‘𝐺) ↾ dom ∅) |
6 | 0ss 4197 | . . 3 ⊢ ∅ ⊆ 𝒫 ∅ | |
7 | 1, 5, 6 | 3pm3.2i 1442 | . 2 ⊢ (∅ ⊆ (Vtx‘𝐺) ∧ ∅ = ((iEdg‘𝐺) ↾ dom ∅) ∧ ∅ ⊆ 𝒫 ∅) |
8 | 0ex 5014 | . . 3 ⊢ ∅ ∈ V | |
9 | vtxval0 26337 | . . . . 5 ⊢ (Vtx‘∅) = ∅ | |
10 | 9 | eqcomi 2834 | . . . 4 ⊢ ∅ = (Vtx‘∅) |
11 | eqid 2825 | . . . 4 ⊢ (Vtx‘𝐺) = (Vtx‘𝐺) | |
12 | iedgval0 26338 | . . . . 5 ⊢ (iEdg‘∅) = ∅ | |
13 | 12 | eqcomi 2834 | . . . 4 ⊢ ∅ = (iEdg‘∅) |
14 | eqid 2825 | . . . 4 ⊢ (iEdg‘𝐺) = (iEdg‘𝐺) | |
15 | edgval 26347 | . . . . 5 ⊢ (Edg‘∅) = ran (iEdg‘∅) | |
16 | 12 | rneqi 5584 | . . . . 5 ⊢ ran (iEdg‘∅) = ran ∅ |
17 | rn0 5610 | . . . . 5 ⊢ ran ∅ = ∅ | |
18 | 15, 16, 17 | 3eqtrri 2854 | . . . 4 ⊢ ∅ = (Edg‘∅) |
19 | 10, 11, 13, 14, 18 | issubgr 26568 | . . 3 ⊢ ((𝐺 ∈ 𝑊 ∧ ∅ ∈ V) → (∅ SubGraph 𝐺 ↔ (∅ ⊆ (Vtx‘𝐺) ∧ ∅ = ((iEdg‘𝐺) ↾ dom ∅) ∧ ∅ ⊆ 𝒫 ∅))) |
20 | 8, 19 | mpan2 682 | . 2 ⊢ (𝐺 ∈ 𝑊 → (∅ SubGraph 𝐺 ↔ (∅ ⊆ (Vtx‘𝐺) ∧ ∅ = ((iEdg‘𝐺) ↾ dom ∅) ∧ ∅ ⊆ 𝒫 ∅))) |
21 | 7, 20 | mpbiri 250 | 1 ⊢ (𝐺 ∈ 𝑊 → ∅ SubGraph 𝐺) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 198 ∧ w3a 1111 = wceq 1656 ∈ wcel 2164 Vcvv 3414 ⊆ wss 3798 ∅c0 4144 𝒫 cpw 4378 class class class wbr 4873 dom cdm 5342 ran crn 5343 ↾ cres 5344 ‘cfv 6123 Vtxcvtx 26294 iEdgciedg 26295 Edgcedg 26345 SubGraph csubgr 26564 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1894 ax-4 1908 ax-5 2009 ax-6 2075 ax-7 2112 ax-8 2166 ax-9 2173 ax-10 2192 ax-11 2207 ax-12 2220 ax-13 2389 ax-ext 2803 ax-sep 5005 ax-nul 5013 ax-pow 5065 ax-pr 5127 ax-un 7209 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 879 df-3an 1113 df-tru 1660 df-ex 1879 df-nf 1883 df-sb 2068 df-mo 2605 df-eu 2640 df-clab 2812 df-cleq 2818 df-clel 2821 df-nfc 2958 df-ne 3000 df-ral 3122 df-rex 3123 df-rab 3126 df-v 3416 df-sbc 3663 df-csb 3758 df-dif 3801 df-un 3803 df-in 3805 df-ss 3812 df-nul 4145 df-if 4307 df-pw 4380 df-sn 4398 df-pr 4400 df-op 4404 df-uni 4659 df-br 4874 df-opab 4936 df-mpt 4953 df-id 5250 df-xp 5348 df-rel 5349 df-cnv 5350 df-co 5351 df-dm 5352 df-rn 5353 df-res 5354 df-iota 6086 df-fun 6125 df-fv 6131 df-slot 16226 df-base 16228 df-edgf 26288 df-vtx 26296 df-iedg 26297 df-edg 26346 df-subgr 26565 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |