| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 0grsubgr | Structured version Visualization version GIF version | ||
| Description: The null graph (represented by an empty set) is a subgraph of all graphs. (Contributed by AV, 17-Nov-2020.) |
| Ref | Expression |
|---|---|
| 0grsubgr | ⊢ (𝐺 ∈ 𝑊 → ∅ SubGraph 𝐺) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0ss 4363 | . . 3 ⊢ ∅ ⊆ (Vtx‘𝐺) | |
| 2 | dm0 5884 | . . . . 5 ⊢ dom ∅ = ∅ | |
| 3 | 2 | reseq2i 5947 | . . . 4 ⊢ ((iEdg‘𝐺) ↾ dom ∅) = ((iEdg‘𝐺) ↾ ∅) |
| 4 | res0 5954 | . . . 4 ⊢ ((iEdg‘𝐺) ↾ ∅) = ∅ | |
| 5 | 3, 4 | eqtr2i 2753 | . . 3 ⊢ ∅ = ((iEdg‘𝐺) ↾ dom ∅) |
| 6 | 0ss 4363 | . . 3 ⊢ ∅ ⊆ 𝒫 ∅ | |
| 7 | 1, 5, 6 | 3pm3.2i 1340 | . 2 ⊢ (∅ ⊆ (Vtx‘𝐺) ∧ ∅ = ((iEdg‘𝐺) ↾ dom ∅) ∧ ∅ ⊆ 𝒫 ∅) |
| 8 | 0ex 5262 | . . 3 ⊢ ∅ ∈ V | |
| 9 | vtxval0 28966 | . . . . 5 ⊢ (Vtx‘∅) = ∅ | |
| 10 | 9 | eqcomi 2738 | . . . 4 ⊢ ∅ = (Vtx‘∅) |
| 11 | eqid 2729 | . . . 4 ⊢ (Vtx‘𝐺) = (Vtx‘𝐺) | |
| 12 | iedgval0 28967 | . . . . 5 ⊢ (iEdg‘∅) = ∅ | |
| 13 | 12 | eqcomi 2738 | . . . 4 ⊢ ∅ = (iEdg‘∅) |
| 14 | eqid 2729 | . . . 4 ⊢ (iEdg‘𝐺) = (iEdg‘𝐺) | |
| 15 | edgval 28976 | . . . . 5 ⊢ (Edg‘∅) = ran (iEdg‘∅) | |
| 16 | 12 | rneqi 5901 | . . . . 5 ⊢ ran (iEdg‘∅) = ran ∅ |
| 17 | rn0 5889 | . . . . 5 ⊢ ran ∅ = ∅ | |
| 18 | 15, 16, 17 | 3eqtrri 2757 | . . . 4 ⊢ ∅ = (Edg‘∅) |
| 19 | 10, 11, 13, 14, 18 | issubgr 29198 | . . 3 ⊢ ((𝐺 ∈ 𝑊 ∧ ∅ ∈ V) → (∅ SubGraph 𝐺 ↔ (∅ ⊆ (Vtx‘𝐺) ∧ ∅ = ((iEdg‘𝐺) ↾ dom ∅) ∧ ∅ ⊆ 𝒫 ∅))) |
| 20 | 8, 19 | mpan2 691 | . 2 ⊢ (𝐺 ∈ 𝑊 → (∅ SubGraph 𝐺 ↔ (∅ ⊆ (Vtx‘𝐺) ∧ ∅ = ((iEdg‘𝐺) ↾ dom ∅) ∧ ∅ ⊆ 𝒫 ∅))) |
| 21 | 7, 20 | mpbiri 258 | 1 ⊢ (𝐺 ∈ 𝑊 → ∅ SubGraph 𝐺) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 Vcvv 3447 ⊆ wss 3914 ∅c0 4296 𝒫 cpw 4563 class class class wbr 5107 dom cdm 5638 ran crn 5639 ↾ cres 5640 ‘cfv 6511 Vtxcvtx 28923 iEdgciedg 28924 Edgcedg 28974 SubGraph csubgr 29194 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 ax-cnex 11124 ax-resscn 11125 ax-1cn 11126 ax-icn 11127 ax-addcl 11128 ax-addrcl 11129 ax-mulcl 11130 ax-mulrcl 11131 ax-mulcom 11132 ax-addass 11133 ax-mulass 11134 ax-distr 11135 ax-i2m1 11136 ax-1ne0 11137 ax-1rid 11138 ax-rnegex 11139 ax-rrecex 11140 ax-cnre 11141 ax-pre-lttri 11142 ax-pre-lttrn 11143 ax-pre-ltadd 11144 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3934 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-tr 5215 df-id 5533 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5591 df-we 5593 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-pred 6274 df-ord 6335 df-on 6336 df-lim 6337 df-suc 6338 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-ov 7390 df-om 7843 df-2nd 7969 df-frecs 8260 df-wrecs 8291 df-recs 8340 df-rdg 8378 df-er 8671 df-en 8919 df-dom 8920 df-sdom 8921 df-pnf 11210 df-mnf 11211 df-ltxr 11213 df-nn 12187 df-2 12249 df-3 12250 df-4 12251 df-5 12252 df-6 12253 df-7 12254 df-8 12255 df-9 12256 df-n0 12443 df-dec 12650 df-slot 17152 df-ndx 17164 df-base 17180 df-edgf 28916 df-vtx 28925 df-iedg 28926 df-edg 28975 df-subgr 29195 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |