MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  0grsubgr Structured version   Visualization version   GIF version

Theorem 0grsubgr 27068
Description: The null graph (represented by an empty set) is a subgraph of all graphs. (Contributed by AV, 17-Nov-2020.)
Assertion
Ref Expression
0grsubgr (𝐺𝑊 → ∅ SubGraph 𝐺)

Proof of Theorem 0grsubgr
StepHypRef Expression
1 0ss 4304 . . 3 ∅ ⊆ (Vtx‘𝐺)
2 dm0 5754 . . . . 5 dom ∅ = ∅
32reseq2i 5815 . . . 4 ((iEdg‘𝐺) ↾ dom ∅) = ((iEdg‘𝐺) ↾ ∅)
4 res0 5822 . . . 4 ((iEdg‘𝐺) ↾ ∅) = ∅
53, 4eqtr2i 2822 . . 3 ∅ = ((iEdg‘𝐺) ↾ dom ∅)
6 0ss 4304 . . 3 ∅ ⊆ 𝒫 ∅
71, 5, 63pm3.2i 1336 . 2 (∅ ⊆ (Vtx‘𝐺) ∧ ∅ = ((iEdg‘𝐺) ↾ dom ∅) ∧ ∅ ⊆ 𝒫 ∅)
8 0ex 5175 . . 3 ∅ ∈ V
9 vtxval0 26832 . . . . 5 (Vtx‘∅) = ∅
109eqcomi 2807 . . . 4 ∅ = (Vtx‘∅)
11 eqid 2798 . . . 4 (Vtx‘𝐺) = (Vtx‘𝐺)
12 iedgval0 26833 . . . . 5 (iEdg‘∅) = ∅
1312eqcomi 2807 . . . 4 ∅ = (iEdg‘∅)
14 eqid 2798 . . . 4 (iEdg‘𝐺) = (iEdg‘𝐺)
15 edgval 26842 . . . . 5 (Edg‘∅) = ran (iEdg‘∅)
1612rneqi 5771 . . . . 5 ran (iEdg‘∅) = ran ∅
17 rn0 5760 . . . . 5 ran ∅ = ∅
1815, 16, 173eqtrri 2826 . . . 4 ∅ = (Edg‘∅)
1910, 11, 13, 14, 18issubgr 27061 . . 3 ((𝐺𝑊 ∧ ∅ ∈ V) → (∅ SubGraph 𝐺 ↔ (∅ ⊆ (Vtx‘𝐺) ∧ ∅ = ((iEdg‘𝐺) ↾ dom ∅) ∧ ∅ ⊆ 𝒫 ∅)))
208, 19mpan2 690 . 2 (𝐺𝑊 → (∅ SubGraph 𝐺 ↔ (∅ ⊆ (Vtx‘𝐺) ∧ ∅ = ((iEdg‘𝐺) ↾ dom ∅) ∧ ∅ ⊆ 𝒫 ∅)))
217, 20mpbiri 261 1 (𝐺𝑊 → ∅ SubGraph 𝐺)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  w3a 1084   = wceq 1538  wcel 2111  Vcvv 3441  wss 3881  c0 4243  𝒫 cpw 4497   class class class wbr 5030  dom cdm 5519  ran crn 5520  cres 5521  cfv 6324  Vtxcvtx 26789  iEdgciedg 26790  Edgcedg 26840   SubGraph csubgr 27057
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-ral 3111  df-rex 3112  df-rab 3115  df-v 3443  df-sbc 3721  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-op 4532  df-uni 4801  df-br 5031  df-opab 5093  df-mpt 5111  df-id 5425  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-iota 6283  df-fun 6326  df-fv 6332  df-slot 16479  df-base 16481  df-edgf 26783  df-vtx 26791  df-iedg 26792  df-edg 26841  df-subgr 27058
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator