| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 0grsubgr | Structured version Visualization version GIF version | ||
| Description: The null graph (represented by an empty set) is a subgraph of all graphs. (Contributed by AV, 17-Nov-2020.) |
| Ref | Expression |
|---|---|
| 0grsubgr | ⊢ (𝐺 ∈ 𝑊 → ∅ SubGraph 𝐺) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0ss 4366 | . . 3 ⊢ ∅ ⊆ (Vtx‘𝐺) | |
| 2 | dm0 5887 | . . . . 5 ⊢ dom ∅ = ∅ | |
| 3 | 2 | reseq2i 5950 | . . . 4 ⊢ ((iEdg‘𝐺) ↾ dom ∅) = ((iEdg‘𝐺) ↾ ∅) |
| 4 | res0 5957 | . . . 4 ⊢ ((iEdg‘𝐺) ↾ ∅) = ∅ | |
| 5 | 3, 4 | eqtr2i 2754 | . . 3 ⊢ ∅ = ((iEdg‘𝐺) ↾ dom ∅) |
| 6 | 0ss 4366 | . . 3 ⊢ ∅ ⊆ 𝒫 ∅ | |
| 7 | 1, 5, 6 | 3pm3.2i 1340 | . 2 ⊢ (∅ ⊆ (Vtx‘𝐺) ∧ ∅ = ((iEdg‘𝐺) ↾ dom ∅) ∧ ∅ ⊆ 𝒫 ∅) |
| 8 | 0ex 5265 | . . 3 ⊢ ∅ ∈ V | |
| 9 | vtxval0 28973 | . . . . 5 ⊢ (Vtx‘∅) = ∅ | |
| 10 | 9 | eqcomi 2739 | . . . 4 ⊢ ∅ = (Vtx‘∅) |
| 11 | eqid 2730 | . . . 4 ⊢ (Vtx‘𝐺) = (Vtx‘𝐺) | |
| 12 | iedgval0 28974 | . . . . 5 ⊢ (iEdg‘∅) = ∅ | |
| 13 | 12 | eqcomi 2739 | . . . 4 ⊢ ∅ = (iEdg‘∅) |
| 14 | eqid 2730 | . . . 4 ⊢ (iEdg‘𝐺) = (iEdg‘𝐺) | |
| 15 | edgval 28983 | . . . . 5 ⊢ (Edg‘∅) = ran (iEdg‘∅) | |
| 16 | 12 | rneqi 5904 | . . . . 5 ⊢ ran (iEdg‘∅) = ran ∅ |
| 17 | rn0 5892 | . . . . 5 ⊢ ran ∅ = ∅ | |
| 18 | 15, 16, 17 | 3eqtrri 2758 | . . . 4 ⊢ ∅ = (Edg‘∅) |
| 19 | 10, 11, 13, 14, 18 | issubgr 29205 | . . 3 ⊢ ((𝐺 ∈ 𝑊 ∧ ∅ ∈ V) → (∅ SubGraph 𝐺 ↔ (∅ ⊆ (Vtx‘𝐺) ∧ ∅ = ((iEdg‘𝐺) ↾ dom ∅) ∧ ∅ ⊆ 𝒫 ∅))) |
| 20 | 8, 19 | mpan2 691 | . 2 ⊢ (𝐺 ∈ 𝑊 → (∅ SubGraph 𝐺 ↔ (∅ ⊆ (Vtx‘𝐺) ∧ ∅ = ((iEdg‘𝐺) ↾ dom ∅) ∧ ∅ ⊆ 𝒫 ∅))) |
| 21 | 7, 20 | mpbiri 258 | 1 ⊢ (𝐺 ∈ 𝑊 → ∅ SubGraph 𝐺) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 Vcvv 3450 ⊆ wss 3917 ∅c0 4299 𝒫 cpw 4566 class class class wbr 5110 dom cdm 5641 ran crn 5642 ↾ cres 5643 ‘cfv 6514 Vtxcvtx 28930 iEdgciedg 28931 Edgcedg 28981 SubGraph csubgr 29201 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 ax-cnex 11131 ax-resscn 11132 ax-1cn 11133 ax-icn 11134 ax-addcl 11135 ax-addrcl 11136 ax-mulcl 11137 ax-mulrcl 11138 ax-mulcom 11139 ax-addass 11140 ax-mulass 11141 ax-distr 11142 ax-i2m1 11143 ax-1ne0 11144 ax-1rid 11145 ax-rnegex 11146 ax-rrecex 11147 ax-cnre 11148 ax-pre-lttri 11149 ax-pre-lttrn 11150 ax-pre-ltadd 11151 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-pss 3937 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-iun 4960 df-br 5111 df-opab 5173 df-mpt 5192 df-tr 5218 df-id 5536 df-eprel 5541 df-po 5549 df-so 5550 df-fr 5594 df-we 5596 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-pred 6277 df-ord 6338 df-on 6339 df-lim 6340 df-suc 6341 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-ov 7393 df-om 7846 df-2nd 7972 df-frecs 8263 df-wrecs 8294 df-recs 8343 df-rdg 8381 df-er 8674 df-en 8922 df-dom 8923 df-sdom 8924 df-pnf 11217 df-mnf 11218 df-ltxr 11220 df-nn 12194 df-2 12256 df-3 12257 df-4 12258 df-5 12259 df-6 12260 df-7 12261 df-8 12262 df-9 12263 df-n0 12450 df-dec 12657 df-slot 17159 df-ndx 17171 df-base 17187 df-edgf 28923 df-vtx 28932 df-iedg 28933 df-edg 28982 df-subgr 29202 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |