MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  0grsubgr Structured version   Visualization version   GIF version

Theorem 0grsubgr 27062
Description: The null graph (represented by an empty set) is a subgraph of all graphs. (Contributed by AV, 17-Nov-2020.)
Assertion
Ref Expression
0grsubgr (𝐺𝑊 → ∅ SubGraph 𝐺)

Proof of Theorem 0grsubgr
StepHypRef Expression
1 0ss 4352 . . 3 ∅ ⊆ (Vtx‘𝐺)
2 dm0 5792 . . . . 5 dom ∅ = ∅
32reseq2i 5852 . . . 4 ((iEdg‘𝐺) ↾ dom ∅) = ((iEdg‘𝐺) ↾ ∅)
4 res0 5859 . . . 4 ((iEdg‘𝐺) ↾ ∅) = ∅
53, 4eqtr2i 2847 . . 3 ∅ = ((iEdg‘𝐺) ↾ dom ∅)
6 0ss 4352 . . 3 ∅ ⊆ 𝒫 ∅
71, 5, 63pm3.2i 1335 . 2 (∅ ⊆ (Vtx‘𝐺) ∧ ∅ = ((iEdg‘𝐺) ↾ dom ∅) ∧ ∅ ⊆ 𝒫 ∅)
8 0ex 5213 . . 3 ∅ ∈ V
9 vtxval0 26826 . . . . 5 (Vtx‘∅) = ∅
109eqcomi 2832 . . . 4 ∅ = (Vtx‘∅)
11 eqid 2823 . . . 4 (Vtx‘𝐺) = (Vtx‘𝐺)
12 iedgval0 26827 . . . . 5 (iEdg‘∅) = ∅
1312eqcomi 2832 . . . 4 ∅ = (iEdg‘∅)
14 eqid 2823 . . . 4 (iEdg‘𝐺) = (iEdg‘𝐺)
15 edgval 26836 . . . . 5 (Edg‘∅) = ran (iEdg‘∅)
1612rneqi 5809 . . . . 5 ran (iEdg‘∅) = ran ∅
17 rn0 5798 . . . . 5 ran ∅ = ∅
1815, 16, 173eqtrri 2851 . . . 4 ∅ = (Edg‘∅)
1910, 11, 13, 14, 18issubgr 27055 . . 3 ((𝐺𝑊 ∧ ∅ ∈ V) → (∅ SubGraph 𝐺 ↔ (∅ ⊆ (Vtx‘𝐺) ∧ ∅ = ((iEdg‘𝐺) ↾ dom ∅) ∧ ∅ ⊆ 𝒫 ∅)))
208, 19mpan2 689 . 2 (𝐺𝑊 → (∅ SubGraph 𝐺 ↔ (∅ ⊆ (Vtx‘𝐺) ∧ ∅ = ((iEdg‘𝐺) ↾ dom ∅) ∧ ∅ ⊆ 𝒫 ∅)))
217, 20mpbiri 260 1 (𝐺𝑊 → ∅ SubGraph 𝐺)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  w3a 1083   = wceq 1537  wcel 2114  Vcvv 3496  wss 3938  c0 4293  𝒫 cpw 4541   class class class wbr 5068  dom cdm 5557  ran crn 5558  cres 5559  cfv 6357  Vtxcvtx 26783  iEdgciedg 26784  Edgcedg 26834   SubGraph csubgr 27051
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2795  ax-sep 5205  ax-nul 5212  ax-pow 5268  ax-pr 5332  ax-un 7463
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2802  df-cleq 2816  df-clel 2895  df-nfc 2965  df-ne 3019  df-ral 3145  df-rex 3146  df-rab 3149  df-v 3498  df-sbc 3775  df-dif 3941  df-un 3943  df-in 3945  df-ss 3954  df-nul 4294  df-if 4470  df-pw 4543  df-sn 4570  df-pr 4572  df-op 4576  df-uni 4841  df-br 5069  df-opab 5131  df-mpt 5149  df-id 5462  df-xp 5563  df-rel 5564  df-cnv 5565  df-co 5566  df-dm 5567  df-rn 5568  df-res 5569  df-iota 6316  df-fun 6359  df-fv 6365  df-slot 16489  df-base 16491  df-edgf 26777  df-vtx 26785  df-iedg 26786  df-edg 26835  df-subgr 27052
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator