| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 0grsubgr | Structured version Visualization version GIF version | ||
| Description: The null graph (represented by an empty set) is a subgraph of all graphs. (Contributed by AV, 17-Nov-2020.) |
| Ref | Expression |
|---|---|
| 0grsubgr | ⊢ (𝐺 ∈ 𝑊 → ∅ SubGraph 𝐺) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0ss 4353 | . . 3 ⊢ ∅ ⊆ (Vtx‘𝐺) | |
| 2 | dm0 5867 | . . . . 5 ⊢ dom ∅ = ∅ | |
| 3 | 2 | reseq2i 5931 | . . . 4 ⊢ ((iEdg‘𝐺) ↾ dom ∅) = ((iEdg‘𝐺) ↾ ∅) |
| 4 | res0 5938 | . . . 4 ⊢ ((iEdg‘𝐺) ↾ ∅) = ∅ | |
| 5 | 3, 4 | eqtr2i 2753 | . . 3 ⊢ ∅ = ((iEdg‘𝐺) ↾ dom ∅) |
| 6 | 0ss 4353 | . . 3 ⊢ ∅ ⊆ 𝒫 ∅ | |
| 7 | 1, 5, 6 | 3pm3.2i 1340 | . 2 ⊢ (∅ ⊆ (Vtx‘𝐺) ∧ ∅ = ((iEdg‘𝐺) ↾ dom ∅) ∧ ∅ ⊆ 𝒫 ∅) |
| 8 | 0ex 5249 | . . 3 ⊢ ∅ ∈ V | |
| 9 | vtxval0 29002 | . . . . 5 ⊢ (Vtx‘∅) = ∅ | |
| 10 | 9 | eqcomi 2738 | . . . 4 ⊢ ∅ = (Vtx‘∅) |
| 11 | eqid 2729 | . . . 4 ⊢ (Vtx‘𝐺) = (Vtx‘𝐺) | |
| 12 | iedgval0 29003 | . . . . 5 ⊢ (iEdg‘∅) = ∅ | |
| 13 | 12 | eqcomi 2738 | . . . 4 ⊢ ∅ = (iEdg‘∅) |
| 14 | eqid 2729 | . . . 4 ⊢ (iEdg‘𝐺) = (iEdg‘𝐺) | |
| 15 | edgval 29012 | . . . . 5 ⊢ (Edg‘∅) = ran (iEdg‘∅) | |
| 16 | 12 | rneqi 5883 | . . . . 5 ⊢ ran (iEdg‘∅) = ran ∅ |
| 17 | rn0 5872 | . . . . 5 ⊢ ran ∅ = ∅ | |
| 18 | 15, 16, 17 | 3eqtrri 2757 | . . . 4 ⊢ ∅ = (Edg‘∅) |
| 19 | 10, 11, 13, 14, 18 | issubgr 29234 | . . 3 ⊢ ((𝐺 ∈ 𝑊 ∧ ∅ ∈ V) → (∅ SubGraph 𝐺 ↔ (∅ ⊆ (Vtx‘𝐺) ∧ ∅ = ((iEdg‘𝐺) ↾ dom ∅) ∧ ∅ ⊆ 𝒫 ∅))) |
| 20 | 8, 19 | mpan2 691 | . 2 ⊢ (𝐺 ∈ 𝑊 → (∅ SubGraph 𝐺 ↔ (∅ ⊆ (Vtx‘𝐺) ∧ ∅ = ((iEdg‘𝐺) ↾ dom ∅) ∧ ∅ ⊆ 𝒫 ∅))) |
| 21 | 7, 20 | mpbiri 258 | 1 ⊢ (𝐺 ∈ 𝑊 → ∅ SubGraph 𝐺) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 Vcvv 3438 ⊆ wss 3905 ∅c0 4286 𝒫 cpw 4553 class class class wbr 5095 dom cdm 5623 ran crn 5624 ↾ cres 5625 ‘cfv 6486 Vtxcvtx 28959 iEdgciedg 28960 Edgcedg 29010 SubGraph csubgr 29230 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7675 ax-cnex 11084 ax-resscn 11085 ax-1cn 11086 ax-icn 11087 ax-addcl 11088 ax-addrcl 11089 ax-mulcl 11090 ax-mulrcl 11091 ax-mulcom 11092 ax-addass 11093 ax-mulass 11094 ax-distr 11095 ax-i2m1 11096 ax-1ne0 11097 ax-1rid 11098 ax-rnegex 11099 ax-rrecex 11100 ax-cnre 11101 ax-pre-lttri 11102 ax-pre-lttrn 11103 ax-pre-ltadd 11104 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-reu 3346 df-rab 3397 df-v 3440 df-sbc 3745 df-csb 3854 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-pss 3925 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-iun 4946 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5518 df-eprel 5523 df-po 5531 df-so 5532 df-fr 5576 df-we 5578 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-pred 6253 df-ord 6314 df-on 6315 df-lim 6316 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-ov 7356 df-om 7807 df-2nd 7932 df-frecs 8221 df-wrecs 8252 df-recs 8301 df-rdg 8339 df-er 8632 df-en 8880 df-dom 8881 df-sdom 8882 df-pnf 11170 df-mnf 11171 df-ltxr 11173 df-nn 12147 df-2 12209 df-3 12210 df-4 12211 df-5 12212 df-6 12213 df-7 12214 df-8 12215 df-9 12216 df-n0 12403 df-dec 12610 df-slot 17111 df-ndx 17123 df-base 17139 df-edgf 28952 df-vtx 28961 df-iedg 28962 df-edg 29011 df-subgr 29231 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |