MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  egrsubgr Structured version   Visualization version   GIF version

Theorem egrsubgr 29312
Description: An empty graph consisting of a subset of vertices of a graph (and having no edges) is a subgraph of the graph. (Contributed by AV, 17-Nov-2020.) (Proof shortened by AV, 17-Dec-2020.)
Assertion
Ref Expression
egrsubgr (((𝐺𝑊𝑆𝑈) ∧ (Vtx‘𝑆) ⊆ (Vtx‘𝐺) ∧ (Fun (iEdg‘𝑆) ∧ (Edg‘𝑆) = ∅)) → 𝑆 SubGraph 𝐺)

Proof of Theorem egrsubgr
StepHypRef Expression
1 simp2 1137 . 2 (((𝐺𝑊𝑆𝑈) ∧ (Vtx‘𝑆) ⊆ (Vtx‘𝐺) ∧ (Fun (iEdg‘𝑆) ∧ (Edg‘𝑆) = ∅)) → (Vtx‘𝑆) ⊆ (Vtx‘𝐺))
2 eqid 2740 . . . . . . 7 (iEdg‘𝑆) = (iEdg‘𝑆)
3 eqid 2740 . . . . . . 7 (Edg‘𝑆) = (Edg‘𝑆)
42, 3edg0iedg0 29090 . . . . . 6 (Fun (iEdg‘𝑆) → ((Edg‘𝑆) = ∅ ↔ (iEdg‘𝑆) = ∅))
54adantl 481 . . . . 5 (((𝐺𝑊𝑆𝑈) ∧ Fun (iEdg‘𝑆)) → ((Edg‘𝑆) = ∅ ↔ (iEdg‘𝑆) = ∅))
6 res0 6013 . . . . . . 7 ((iEdg‘𝐺) ↾ ∅) = ∅
76eqcomi 2749 . . . . . 6 ∅ = ((iEdg‘𝐺) ↾ ∅)
8 id 22 . . . . . 6 ((iEdg‘𝑆) = ∅ → (iEdg‘𝑆) = ∅)
9 dmeq 5928 . . . . . . . 8 ((iEdg‘𝑆) = ∅ → dom (iEdg‘𝑆) = dom ∅)
10 dm0 5945 . . . . . . . 8 dom ∅ = ∅
119, 10eqtrdi 2796 . . . . . . 7 ((iEdg‘𝑆) = ∅ → dom (iEdg‘𝑆) = ∅)
1211reseq2d 6009 . . . . . 6 ((iEdg‘𝑆) = ∅ → ((iEdg‘𝐺) ↾ dom (iEdg‘𝑆)) = ((iEdg‘𝐺) ↾ ∅))
137, 8, 123eqtr4a 2806 . . . . 5 ((iEdg‘𝑆) = ∅ → (iEdg‘𝑆) = ((iEdg‘𝐺) ↾ dom (iEdg‘𝑆)))
145, 13biimtrdi 253 . . . 4 (((𝐺𝑊𝑆𝑈) ∧ Fun (iEdg‘𝑆)) → ((Edg‘𝑆) = ∅ → (iEdg‘𝑆) = ((iEdg‘𝐺) ↾ dom (iEdg‘𝑆))))
1514impr 454 . . 3 (((𝐺𝑊𝑆𝑈) ∧ (Fun (iEdg‘𝑆) ∧ (Edg‘𝑆) = ∅)) → (iEdg‘𝑆) = ((iEdg‘𝐺) ↾ dom (iEdg‘𝑆)))
16153adant2 1131 . 2 (((𝐺𝑊𝑆𝑈) ∧ (Vtx‘𝑆) ⊆ (Vtx‘𝐺) ∧ (Fun (iEdg‘𝑆) ∧ (Edg‘𝑆) = ∅)) → (iEdg‘𝑆) = ((iEdg‘𝐺) ↾ dom (iEdg‘𝑆)))
17 0ss 4423 . . . . 5 ∅ ⊆ 𝒫 (Vtx‘𝑆)
18 sseq1 4034 . . . . 5 ((Edg‘𝑆) = ∅ → ((Edg‘𝑆) ⊆ 𝒫 (Vtx‘𝑆) ↔ ∅ ⊆ 𝒫 (Vtx‘𝑆)))
1917, 18mpbiri 258 . . . 4 ((Edg‘𝑆) = ∅ → (Edg‘𝑆) ⊆ 𝒫 (Vtx‘𝑆))
2019adantl 481 . . 3 ((Fun (iEdg‘𝑆) ∧ (Edg‘𝑆) = ∅) → (Edg‘𝑆) ⊆ 𝒫 (Vtx‘𝑆))
21203ad2ant3 1135 . 2 (((𝐺𝑊𝑆𝑈) ∧ (Vtx‘𝑆) ⊆ (Vtx‘𝐺) ∧ (Fun (iEdg‘𝑆) ∧ (Edg‘𝑆) = ∅)) → (Edg‘𝑆) ⊆ 𝒫 (Vtx‘𝑆))
22 eqid 2740 . . . 4 (Vtx‘𝑆) = (Vtx‘𝑆)
23 eqid 2740 . . . 4 (Vtx‘𝐺) = (Vtx‘𝐺)
24 eqid 2740 . . . 4 (iEdg‘𝐺) = (iEdg‘𝐺)
2522, 23, 2, 24, 3issubgr 29306 . . 3 ((𝐺𝑊𝑆𝑈) → (𝑆 SubGraph 𝐺 ↔ ((Vtx‘𝑆) ⊆ (Vtx‘𝐺) ∧ (iEdg‘𝑆) = ((iEdg‘𝐺) ↾ dom (iEdg‘𝑆)) ∧ (Edg‘𝑆) ⊆ 𝒫 (Vtx‘𝑆))))
26253ad2ant1 1133 . 2 (((𝐺𝑊𝑆𝑈) ∧ (Vtx‘𝑆) ⊆ (Vtx‘𝐺) ∧ (Fun (iEdg‘𝑆) ∧ (Edg‘𝑆) = ∅)) → (𝑆 SubGraph 𝐺 ↔ ((Vtx‘𝑆) ⊆ (Vtx‘𝐺) ∧ (iEdg‘𝑆) = ((iEdg‘𝐺) ↾ dom (iEdg‘𝑆)) ∧ (Edg‘𝑆) ⊆ 𝒫 (Vtx‘𝑆))))
271, 16, 21, 26mpbir3and 1342 1 (((𝐺𝑊𝑆𝑈) ∧ (Vtx‘𝑆) ⊆ (Vtx‘𝐺) ∧ (Fun (iEdg‘𝑆) ∧ (Edg‘𝑆) = ∅)) → 𝑆 SubGraph 𝐺)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1087   = wceq 1537  wcel 2108  wss 3976  c0 4352  𝒫 cpw 4622   class class class wbr 5166  dom cdm 5700  cres 5702  Fun wfun 6567  cfv 6573  Vtxcvtx 29031  iEdgciedg 29032  Edgcedg 29082   SubGraph csubgr 29302
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pr 5447  ax-un 7770
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-iota 6525  df-fun 6575  df-fv 6581  df-edg 29083  df-subgr 29303
This theorem is referenced by:  0uhgrsubgr  29314
  Copyright terms: Public domain W3C validator