MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  egrsubgr Structured version   Visualization version   GIF version

Theorem egrsubgr 26777
Description: An empty graph consisting of a subset of vertices of a graph (and having no edges) is a subgraph of the graph. (Contributed by AV, 17-Nov-2020.) (Proof shortened by AV, 17-Dec-2020.)
Assertion
Ref Expression
egrsubgr (((𝐺𝑊𝑆𝑈) ∧ (Vtx‘𝑆) ⊆ (Vtx‘𝐺) ∧ (Fun (iEdg‘𝑆) ∧ (Edg‘𝑆) = ∅)) → 𝑆 SubGraph 𝐺)

Proof of Theorem egrsubgr
StepHypRef Expression
1 simp2 1118 . 2 (((𝐺𝑊𝑆𝑈) ∧ (Vtx‘𝑆) ⊆ (Vtx‘𝐺) ∧ (Fun (iEdg‘𝑆) ∧ (Edg‘𝑆) = ∅)) → (Vtx‘𝑆) ⊆ (Vtx‘𝐺))
2 eqid 2771 . . . . . . 7 (iEdg‘𝑆) = (iEdg‘𝑆)
3 eqid 2771 . . . . . . 7 (Edg‘𝑆) = (Edg‘𝑆)
42, 3edg0iedg0 26558 . . . . . 6 (Fun (iEdg‘𝑆) → ((Edg‘𝑆) = ∅ ↔ (iEdg‘𝑆) = ∅))
54adantl 474 . . . . 5 (((𝐺𝑊𝑆𝑈) ∧ Fun (iEdg‘𝑆)) → ((Edg‘𝑆) = ∅ ↔ (iEdg‘𝑆) = ∅))
6 res0 5696 . . . . . . 7 ((iEdg‘𝐺) ↾ ∅) = ∅
76eqcomi 2780 . . . . . 6 ∅ = ((iEdg‘𝐺) ↾ ∅)
8 id 22 . . . . . 6 ((iEdg‘𝑆) = ∅ → (iEdg‘𝑆) = ∅)
9 dmeq 5618 . . . . . . . 8 ((iEdg‘𝑆) = ∅ → dom (iEdg‘𝑆) = dom ∅)
10 dm0 5634 . . . . . . . 8 dom ∅ = ∅
119, 10syl6eq 2823 . . . . . . 7 ((iEdg‘𝑆) = ∅ → dom (iEdg‘𝑆) = ∅)
1211reseq2d 5692 . . . . . 6 ((iEdg‘𝑆) = ∅ → ((iEdg‘𝐺) ↾ dom (iEdg‘𝑆)) = ((iEdg‘𝐺) ↾ ∅))
137, 8, 123eqtr4a 2833 . . . . 5 ((iEdg‘𝑆) = ∅ → (iEdg‘𝑆) = ((iEdg‘𝐺) ↾ dom (iEdg‘𝑆)))
145, 13syl6bi 245 . . . 4 (((𝐺𝑊𝑆𝑈) ∧ Fun (iEdg‘𝑆)) → ((Edg‘𝑆) = ∅ → (iEdg‘𝑆) = ((iEdg‘𝐺) ↾ dom (iEdg‘𝑆))))
1514impr 447 . . 3 (((𝐺𝑊𝑆𝑈) ∧ (Fun (iEdg‘𝑆) ∧ (Edg‘𝑆) = ∅)) → (iEdg‘𝑆) = ((iEdg‘𝐺) ↾ dom (iEdg‘𝑆)))
16153adant2 1112 . 2 (((𝐺𝑊𝑆𝑈) ∧ (Vtx‘𝑆) ⊆ (Vtx‘𝐺) ∧ (Fun (iEdg‘𝑆) ∧ (Edg‘𝑆) = ∅)) → (iEdg‘𝑆) = ((iEdg‘𝐺) ↾ dom (iEdg‘𝑆)))
17 0ss 4230 . . . . 5 ∅ ⊆ 𝒫 (Vtx‘𝑆)
18 sseq1 3875 . . . . 5 ((Edg‘𝑆) = ∅ → ((Edg‘𝑆) ⊆ 𝒫 (Vtx‘𝑆) ↔ ∅ ⊆ 𝒫 (Vtx‘𝑆)))
1917, 18mpbiri 250 . . . 4 ((Edg‘𝑆) = ∅ → (Edg‘𝑆) ⊆ 𝒫 (Vtx‘𝑆))
2019adantl 474 . . 3 ((Fun (iEdg‘𝑆) ∧ (Edg‘𝑆) = ∅) → (Edg‘𝑆) ⊆ 𝒫 (Vtx‘𝑆))
21203ad2ant3 1116 . 2 (((𝐺𝑊𝑆𝑈) ∧ (Vtx‘𝑆) ⊆ (Vtx‘𝐺) ∧ (Fun (iEdg‘𝑆) ∧ (Edg‘𝑆) = ∅)) → (Edg‘𝑆) ⊆ 𝒫 (Vtx‘𝑆))
22 eqid 2771 . . . 4 (Vtx‘𝑆) = (Vtx‘𝑆)
23 eqid 2771 . . . 4 (Vtx‘𝐺) = (Vtx‘𝐺)
24 eqid 2771 . . . 4 (iEdg‘𝐺) = (iEdg‘𝐺)
2522, 23, 2, 24, 3issubgr 26771 . . 3 ((𝐺𝑊𝑆𝑈) → (𝑆 SubGraph 𝐺 ↔ ((Vtx‘𝑆) ⊆ (Vtx‘𝐺) ∧ (iEdg‘𝑆) = ((iEdg‘𝐺) ↾ dom (iEdg‘𝑆)) ∧ (Edg‘𝑆) ⊆ 𝒫 (Vtx‘𝑆))))
26253ad2ant1 1114 . 2 (((𝐺𝑊𝑆𝑈) ∧ (Vtx‘𝑆) ⊆ (Vtx‘𝐺) ∧ (Fun (iEdg‘𝑆) ∧ (Edg‘𝑆) = ∅)) → (𝑆 SubGraph 𝐺 ↔ ((Vtx‘𝑆) ⊆ (Vtx‘𝐺) ∧ (iEdg‘𝑆) = ((iEdg‘𝐺) ↾ dom (iEdg‘𝑆)) ∧ (Edg‘𝑆) ⊆ 𝒫 (Vtx‘𝑆))))
271, 16, 21, 26mpbir3and 1323 1 (((𝐺𝑊𝑆𝑈) ∧ (Vtx‘𝑆) ⊆ (Vtx‘𝐺) ∧ (Fun (iEdg‘𝑆) ∧ (Edg‘𝑆) = ∅)) → 𝑆 SubGraph 𝐺)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 198  wa 387  w3a 1069   = wceq 1508  wcel 2051  wss 3822  c0 4172  𝒫 cpw 4416   class class class wbr 4925  dom cdm 5403  cres 5405  Fun wfun 6179  cfv 6185  Vtxcvtx 26499  iEdgciedg 26500  Edgcedg 26550   SubGraph csubgr 26767
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1759  ax-4 1773  ax-5 1870  ax-6 1929  ax-7 1966  ax-8 2053  ax-9 2060  ax-10 2080  ax-11 2094  ax-12 2107  ax-13 2302  ax-ext 2743  ax-sep 5056  ax-nul 5063  ax-pow 5115  ax-pr 5182  ax-un 7277
This theorem depends on definitions:  df-bi 199  df-an 388  df-or 835  df-3an 1071  df-tru 1511  df-ex 1744  df-nf 1748  df-sb 2017  df-mo 2548  df-eu 2585  df-clab 2752  df-cleq 2764  df-clel 2839  df-nfc 2911  df-ral 3086  df-rex 3087  df-rab 3090  df-v 3410  df-sbc 3675  df-dif 3825  df-un 3827  df-in 3829  df-ss 3836  df-nul 4173  df-if 4345  df-pw 4418  df-sn 4436  df-pr 4438  df-op 4442  df-uni 4709  df-br 4926  df-opab 4988  df-mpt 5005  df-id 5308  df-xp 5409  df-rel 5410  df-cnv 5411  df-co 5412  df-dm 5413  df-rn 5414  df-res 5415  df-iota 6149  df-fun 6187  df-fv 6193  df-edg 26551  df-subgr 26768
This theorem is referenced by:  0uhgrsubgr  26779
  Copyright terms: Public domain W3C validator