Proof of Theorem egrsubgr
| Step | Hyp | Ref
| Expression |
| 1 | | simp2 1138 |
. 2
⊢ (((𝐺 ∈ 𝑊 ∧ 𝑆 ∈ 𝑈) ∧ (Vtx‘𝑆) ⊆ (Vtx‘𝐺) ∧ (Fun (iEdg‘𝑆) ∧ (Edg‘𝑆) = ∅)) → (Vtx‘𝑆) ⊆ (Vtx‘𝐺)) |
| 2 | | eqid 2737 |
. . . . . . 7
⊢
(iEdg‘𝑆) =
(iEdg‘𝑆) |
| 3 | | eqid 2737 |
. . . . . . 7
⊢
(Edg‘𝑆) =
(Edg‘𝑆) |
| 4 | 2, 3 | edg0iedg0 29072 |
. . . . . 6
⊢ (Fun
(iEdg‘𝑆) →
((Edg‘𝑆) = ∅
↔ (iEdg‘𝑆) =
∅)) |
| 5 | 4 | adantl 481 |
. . . . 5
⊢ (((𝐺 ∈ 𝑊 ∧ 𝑆 ∈ 𝑈) ∧ Fun (iEdg‘𝑆)) → ((Edg‘𝑆) = ∅ ↔ (iEdg‘𝑆) = ∅)) |
| 6 | | res0 6001 |
. . . . . . 7
⊢
((iEdg‘𝐺)
↾ ∅) = ∅ |
| 7 | 6 | eqcomi 2746 |
. . . . . 6
⊢ ∅ =
((iEdg‘𝐺) ↾
∅) |
| 8 | | id 22 |
. . . . . 6
⊢
((iEdg‘𝑆) =
∅ → (iEdg‘𝑆) = ∅) |
| 9 | | dmeq 5914 |
. . . . . . . 8
⊢
((iEdg‘𝑆) =
∅ → dom (iEdg‘𝑆) = dom ∅) |
| 10 | | dm0 5931 |
. . . . . . . 8
⊢ dom
∅ = ∅ |
| 11 | 9, 10 | eqtrdi 2793 |
. . . . . . 7
⊢
((iEdg‘𝑆) =
∅ → dom (iEdg‘𝑆) = ∅) |
| 12 | 11 | reseq2d 5997 |
. . . . . 6
⊢
((iEdg‘𝑆) =
∅ → ((iEdg‘𝐺) ↾ dom (iEdg‘𝑆)) = ((iEdg‘𝐺) ↾ ∅)) |
| 13 | 7, 8, 12 | 3eqtr4a 2803 |
. . . . 5
⊢
((iEdg‘𝑆) =
∅ → (iEdg‘𝑆) = ((iEdg‘𝐺) ↾ dom (iEdg‘𝑆))) |
| 14 | 5, 13 | biimtrdi 253 |
. . . 4
⊢ (((𝐺 ∈ 𝑊 ∧ 𝑆 ∈ 𝑈) ∧ Fun (iEdg‘𝑆)) → ((Edg‘𝑆) = ∅ → (iEdg‘𝑆) = ((iEdg‘𝐺) ↾ dom (iEdg‘𝑆)))) |
| 15 | 14 | impr 454 |
. . 3
⊢ (((𝐺 ∈ 𝑊 ∧ 𝑆 ∈ 𝑈) ∧ (Fun (iEdg‘𝑆) ∧ (Edg‘𝑆) = ∅)) → (iEdg‘𝑆) = ((iEdg‘𝐺) ↾ dom (iEdg‘𝑆))) |
| 16 | 15 | 3adant2 1132 |
. 2
⊢ (((𝐺 ∈ 𝑊 ∧ 𝑆 ∈ 𝑈) ∧ (Vtx‘𝑆) ⊆ (Vtx‘𝐺) ∧ (Fun (iEdg‘𝑆) ∧ (Edg‘𝑆) = ∅)) → (iEdg‘𝑆) = ((iEdg‘𝐺) ↾ dom (iEdg‘𝑆))) |
| 17 | | 0ss 4400 |
. . . . 5
⊢ ∅
⊆ 𝒫 (Vtx‘𝑆) |
| 18 | | sseq1 4009 |
. . . . 5
⊢
((Edg‘𝑆) =
∅ → ((Edg‘𝑆) ⊆ 𝒫 (Vtx‘𝑆) ↔ ∅ ⊆
𝒫 (Vtx‘𝑆))) |
| 19 | 17, 18 | mpbiri 258 |
. . . 4
⊢
((Edg‘𝑆) =
∅ → (Edg‘𝑆) ⊆ 𝒫 (Vtx‘𝑆)) |
| 20 | 19 | adantl 481 |
. . 3
⊢ ((Fun
(iEdg‘𝑆) ∧
(Edg‘𝑆) = ∅)
→ (Edg‘𝑆)
⊆ 𝒫 (Vtx‘𝑆)) |
| 21 | 20 | 3ad2ant3 1136 |
. 2
⊢ (((𝐺 ∈ 𝑊 ∧ 𝑆 ∈ 𝑈) ∧ (Vtx‘𝑆) ⊆ (Vtx‘𝐺) ∧ (Fun (iEdg‘𝑆) ∧ (Edg‘𝑆) = ∅)) → (Edg‘𝑆) ⊆ 𝒫
(Vtx‘𝑆)) |
| 22 | | eqid 2737 |
. . . 4
⊢
(Vtx‘𝑆) =
(Vtx‘𝑆) |
| 23 | | eqid 2737 |
. . . 4
⊢
(Vtx‘𝐺) =
(Vtx‘𝐺) |
| 24 | | eqid 2737 |
. . . 4
⊢
(iEdg‘𝐺) =
(iEdg‘𝐺) |
| 25 | 22, 23, 2, 24, 3 | issubgr 29288 |
. . 3
⊢ ((𝐺 ∈ 𝑊 ∧ 𝑆 ∈ 𝑈) → (𝑆 SubGraph 𝐺 ↔ ((Vtx‘𝑆) ⊆ (Vtx‘𝐺) ∧ (iEdg‘𝑆) = ((iEdg‘𝐺) ↾ dom (iEdg‘𝑆)) ∧ (Edg‘𝑆) ⊆ 𝒫 (Vtx‘𝑆)))) |
| 26 | 25 | 3ad2ant1 1134 |
. 2
⊢ (((𝐺 ∈ 𝑊 ∧ 𝑆 ∈ 𝑈) ∧ (Vtx‘𝑆) ⊆ (Vtx‘𝐺) ∧ (Fun (iEdg‘𝑆) ∧ (Edg‘𝑆) = ∅)) → (𝑆 SubGraph 𝐺 ↔ ((Vtx‘𝑆) ⊆ (Vtx‘𝐺) ∧ (iEdg‘𝑆) = ((iEdg‘𝐺) ↾ dom (iEdg‘𝑆)) ∧ (Edg‘𝑆) ⊆ 𝒫 (Vtx‘𝑆)))) |
| 27 | 1, 16, 21, 26 | mpbir3and 1343 |
1
⊢ (((𝐺 ∈ 𝑊 ∧ 𝑆 ∈ 𝑈) ∧ (Vtx‘𝑆) ⊆ (Vtx‘𝐺) ∧ (Fun (iEdg‘𝑆) ∧ (Edg‘𝑆) = ∅)) → 𝑆 SubGraph 𝐺) |