MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  i1fima Structured version   Visualization version   GIF version

Theorem i1fima 24278
Description: Any preimage of a simple function is measurable. (Contributed by Mario Carneiro, 26-Jun-2014.)
Assertion
Ref Expression
i1fima (𝐹 ∈ dom ∫1 → (𝐹𝐴) ∈ dom vol)

Proof of Theorem i1fima
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 i1ff 24276 . . 3 (𝐹 ∈ dom ∫1𝐹:ℝ⟶ℝ)
2 ffun 6505 . . 3 (𝐹:ℝ⟶ℝ → Fun 𝐹)
3 inpreima 6822 . . . 4 (Fun 𝐹 → (𝐹 “ (𝐴 ∩ ran 𝐹)) = ((𝐹𝐴) ∩ (𝐹 “ ran 𝐹)))
4 iunid 4970 . . . . . 6 𝑦 ∈ (𝐴 ∩ ran 𝐹){𝑦} = (𝐴 ∩ ran 𝐹)
54imaeq2i 5914 . . . . 5 (𝐹 𝑦 ∈ (𝐴 ∩ ran 𝐹){𝑦}) = (𝐹 “ (𝐴 ∩ ran 𝐹))
6 imaiun 6993 . . . . 5 (𝐹 𝑦 ∈ (𝐴 ∩ ran 𝐹){𝑦}) = 𝑦 ∈ (𝐴 ∩ ran 𝐹)(𝐹 “ {𝑦})
75, 6eqtr3i 2849 . . . 4 (𝐹 “ (𝐴 ∩ ran 𝐹)) = 𝑦 ∈ (𝐴 ∩ ran 𝐹)(𝐹 “ {𝑦})
8 cnvimass 5936 . . . . . 6 (𝐹𝐴) ⊆ dom 𝐹
9 cnvimarndm 5937 . . . . . 6 (𝐹 “ ran 𝐹) = dom 𝐹
108, 9sseqtrri 3989 . . . . 5 (𝐹𝐴) ⊆ (𝐹 “ ran 𝐹)
11 df-ss 3936 . . . . 5 ((𝐹𝐴) ⊆ (𝐹 “ ran 𝐹) ↔ ((𝐹𝐴) ∩ (𝐹 “ ran 𝐹)) = (𝐹𝐴))
1210, 11mpbi 233 . . . 4 ((𝐹𝐴) ∩ (𝐹 “ ran 𝐹)) = (𝐹𝐴)
133, 7, 123eqtr3g 2882 . . 3 (Fun 𝐹 𝑦 ∈ (𝐴 ∩ ran 𝐹)(𝐹 “ {𝑦}) = (𝐹𝐴))
141, 2, 133syl 18 . 2 (𝐹 ∈ dom ∫1 𝑦 ∈ (𝐴 ∩ ran 𝐹)(𝐹 “ {𝑦}) = (𝐹𝐴))
15 i1frn 24277 . . . 4 (𝐹 ∈ dom ∫1 → ran 𝐹 ∈ Fin)
16 inss2 4190 . . . 4 (𝐴 ∩ ran 𝐹) ⊆ ran 𝐹
17 ssfi 8729 . . . 4 ((ran 𝐹 ∈ Fin ∧ (𝐴 ∩ ran 𝐹) ⊆ ran 𝐹) → (𝐴 ∩ ran 𝐹) ∈ Fin)
1815, 16, 17sylancl 589 . . 3 (𝐹 ∈ dom ∫1 → (𝐴 ∩ ran 𝐹) ∈ Fin)
19 i1fmbf 24275 . . . . . 6 (𝐹 ∈ dom ∫1𝐹 ∈ MblFn)
2019adantr 484 . . . . 5 ((𝐹 ∈ dom ∫1𝑦 ∈ (𝐴 ∩ ran 𝐹)) → 𝐹 ∈ MblFn)
211adantr 484 . . . . 5 ((𝐹 ∈ dom ∫1𝑦 ∈ (𝐴 ∩ ran 𝐹)) → 𝐹:ℝ⟶ℝ)
221frnd 6509 . . . . . . 7 (𝐹 ∈ dom ∫1 → ran 𝐹 ⊆ ℝ)
2316, 22sstrid 3963 . . . . . 6 (𝐹 ∈ dom ∫1 → (𝐴 ∩ ran 𝐹) ⊆ ℝ)
2423sselda 3952 . . . . 5 ((𝐹 ∈ dom ∫1𝑦 ∈ (𝐴 ∩ ran 𝐹)) → 𝑦 ∈ ℝ)
25 mbfimasn 24232 . . . . 5 ((𝐹 ∈ MblFn ∧ 𝐹:ℝ⟶ℝ ∧ 𝑦 ∈ ℝ) → (𝐹 “ {𝑦}) ∈ dom vol)
2620, 21, 24, 25syl3anc 1368 . . . 4 ((𝐹 ∈ dom ∫1𝑦 ∈ (𝐴 ∩ ran 𝐹)) → (𝐹 “ {𝑦}) ∈ dom vol)
2726ralrimiva 3177 . . 3 (𝐹 ∈ dom ∫1 → ∀𝑦 ∈ (𝐴 ∩ ran 𝐹)(𝐹 “ {𝑦}) ∈ dom vol)
28 finiunmbl 24144 . . 3 (((𝐴 ∩ ran 𝐹) ∈ Fin ∧ ∀𝑦 ∈ (𝐴 ∩ ran 𝐹)(𝐹 “ {𝑦}) ∈ dom vol) → 𝑦 ∈ (𝐴 ∩ ran 𝐹)(𝐹 “ {𝑦}) ∈ dom vol)
2918, 27, 28syl2anc 587 . 2 (𝐹 ∈ dom ∫1 𝑦 ∈ (𝐴 ∩ ran 𝐹)(𝐹 “ {𝑦}) ∈ dom vol)
3014, 29eqeltrrd 2917 1 (𝐹 ∈ dom ∫1 → (𝐹𝐴) ∈ dom vol)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399   = wceq 1538  wcel 2115  wral 3133  cin 3918  wss 3919  {csn 4549   ciun 4905  ccnv 5541  dom cdm 5542  ran crn 5543  cima 5545  Fun wfun 6337  wf 6339  Fincfn 8499  cr 10528  volcvol 24063  MblFncmbf 24214  1citg1 24215
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2117  ax-9 2125  ax-10 2146  ax-11 2162  ax-12 2179  ax-ext 2796  ax-rep 5176  ax-sep 5189  ax-nul 5196  ax-pow 5253  ax-pr 5317  ax-un 7451  ax-inf2 9095  ax-cnex 10585  ax-resscn 10586  ax-1cn 10587  ax-icn 10588  ax-addcl 10589  ax-addrcl 10590  ax-mulcl 10591  ax-mulrcl 10592  ax-mulcom 10593  ax-addass 10594  ax-mulass 10595  ax-distr 10596  ax-i2m1 10597  ax-1ne0 10598  ax-1rid 10599  ax-rnegex 10600  ax-rrecex 10601  ax-cnre 10602  ax-pre-lttri 10603  ax-pre-lttrn 10604  ax-pre-ltadd 10605  ax-pre-mulgt0 10606  ax-pre-sup 10607
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2071  df-mo 2624  df-eu 2655  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2964  df-ne 3015  df-nel 3119  df-ral 3138  df-rex 3139  df-reu 3140  df-rmo 3141  df-rab 3142  df-v 3482  df-sbc 3759  df-csb 3867  df-dif 3922  df-un 3924  df-in 3926  df-ss 3936  df-pss 3938  df-nul 4276  df-if 4450  df-pw 4523  df-sn 4550  df-pr 4552  df-tp 4554  df-op 4556  df-uni 4825  df-int 4863  df-iun 4907  df-br 5053  df-opab 5115  df-mpt 5133  df-tr 5159  df-id 5447  df-eprel 5452  df-po 5461  df-so 5462  df-fr 5501  df-se 5502  df-we 5503  df-xp 5548  df-rel 5549  df-cnv 5550  df-co 5551  df-dm 5552  df-rn 5553  df-res 5554  df-ima 5555  df-pred 6135  df-ord 6181  df-on 6182  df-lim 6183  df-suc 6184  df-iota 6302  df-fun 6345  df-fn 6346  df-f 6347  df-f1 6348  df-fo 6349  df-f1o 6350  df-fv 6351  df-isom 6352  df-riota 7103  df-ov 7148  df-oprab 7149  df-mpo 7150  df-of 7399  df-om 7571  df-1st 7679  df-2nd 7680  df-wrecs 7937  df-recs 7998  df-rdg 8036  df-1o 8092  df-2o 8093  df-oadd 8096  df-er 8279  df-map 8398  df-pm 8399  df-en 8500  df-dom 8501  df-sdom 8502  df-fin 8503  df-sup 8897  df-inf 8898  df-oi 8965  df-dju 9321  df-card 9359  df-pnf 10669  df-mnf 10670  df-xr 10671  df-ltxr 10672  df-le 10673  df-sub 10864  df-neg 10865  df-div 11290  df-nn 11631  df-2 11693  df-3 11694  df-n0 11891  df-z 11975  df-uz 12237  df-q 12342  df-rp 12383  df-xadd 12501  df-ioo 12735  df-ico 12737  df-icc 12738  df-fz 12891  df-fzo 13034  df-fl 13162  df-seq 13370  df-exp 13431  df-hash 13692  df-cj 14454  df-re 14455  df-im 14456  df-sqrt 14590  df-abs 14591  df-clim 14841  df-sum 15039  df-xmet 20531  df-met 20532  df-ovol 24064  df-vol 24065  df-mbf 24219  df-itg1 24220
This theorem is referenced by:  i1fima2  24279  itg1ge0  24286  i1fadd  24295  i1fmul  24296  itg1addlem2  24297  itg1addlem4  24299  itg1addlem5  24300  i1fmulc  24303  i1fres  24305  i1fpos  24306  itg1ge0a  24311  itg1climres  24314  itg2addnclem  35018  itg2addnclem2  35019  ftc1anclem3  35042  ftc1anclem6  35045
  Copyright terms: Public domain W3C validator