MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  i1fima Structured version   Visualization version   GIF version

Theorem i1fima 23882
Description: Any preimage of a simple function is measurable. (Contributed by Mario Carneiro, 26-Jun-2014.)
Assertion
Ref Expression
i1fima (𝐹 ∈ dom ∫1 → (𝐹𝐴) ∈ dom vol)

Proof of Theorem i1fima
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 i1ff 23880 . . 3 (𝐹 ∈ dom ∫1𝐹:ℝ⟶ℝ)
2 ffun 6294 . . 3 (𝐹:ℝ⟶ℝ → Fun 𝐹)
3 inpreima 6606 . . . 4 (Fun 𝐹 → (𝐹 “ (𝐴 ∩ ran 𝐹)) = ((𝐹𝐴) ∩ (𝐹 “ ran 𝐹)))
4 iunid 4808 . . . . . 6 𝑦 ∈ (𝐴 ∩ ran 𝐹){𝑦} = (𝐴 ∩ ran 𝐹)
54imaeq2i 5718 . . . . 5 (𝐹 𝑦 ∈ (𝐴 ∩ ran 𝐹){𝑦}) = (𝐹 “ (𝐴 ∩ ran 𝐹))
6 imaiun 6775 . . . . 5 (𝐹 𝑦 ∈ (𝐴 ∩ ran 𝐹){𝑦}) = 𝑦 ∈ (𝐴 ∩ ran 𝐹)(𝐹 “ {𝑦})
75, 6eqtr3i 2804 . . . 4 (𝐹 “ (𝐴 ∩ ran 𝐹)) = 𝑦 ∈ (𝐴 ∩ ran 𝐹)(𝐹 “ {𝑦})
8 cnvimass 5739 . . . . . 6 (𝐹𝐴) ⊆ dom 𝐹
9 cnvimarndm 5740 . . . . . 6 (𝐹 “ ran 𝐹) = dom 𝐹
108, 9sseqtr4i 3857 . . . . 5 (𝐹𝐴) ⊆ (𝐹 “ ran 𝐹)
11 df-ss 3806 . . . . 5 ((𝐹𝐴) ⊆ (𝐹 “ ran 𝐹) ↔ ((𝐹𝐴) ∩ (𝐹 “ ran 𝐹)) = (𝐹𝐴))
1210, 11mpbi 222 . . . 4 ((𝐹𝐴) ∩ (𝐹 “ ran 𝐹)) = (𝐹𝐴)
133, 7, 123eqtr3g 2837 . . 3 (Fun 𝐹 𝑦 ∈ (𝐴 ∩ ran 𝐹)(𝐹 “ {𝑦}) = (𝐹𝐴))
141, 2, 133syl 18 . 2 (𝐹 ∈ dom ∫1 𝑦 ∈ (𝐴 ∩ ran 𝐹)(𝐹 “ {𝑦}) = (𝐹𝐴))
15 i1frn 23881 . . . 4 (𝐹 ∈ dom ∫1 → ran 𝐹 ∈ Fin)
16 inss2 4054 . . . 4 (𝐴 ∩ ran 𝐹) ⊆ ran 𝐹
17 ssfi 8468 . . . 4 ((ran 𝐹 ∈ Fin ∧ (𝐴 ∩ ran 𝐹) ⊆ ran 𝐹) → (𝐴 ∩ ran 𝐹) ∈ Fin)
1815, 16, 17sylancl 580 . . 3 (𝐹 ∈ dom ∫1 → (𝐴 ∩ ran 𝐹) ∈ Fin)
19 i1fmbf 23879 . . . . . 6 (𝐹 ∈ dom ∫1𝐹 ∈ MblFn)
2019adantr 474 . . . . 5 ((𝐹 ∈ dom ∫1𝑦 ∈ (𝐴 ∩ ran 𝐹)) → 𝐹 ∈ MblFn)
211adantr 474 . . . . 5 ((𝐹 ∈ dom ∫1𝑦 ∈ (𝐴 ∩ ran 𝐹)) → 𝐹:ℝ⟶ℝ)
221frnd 6298 . . . . . . 7 (𝐹 ∈ dom ∫1 → ran 𝐹 ⊆ ℝ)
2316, 22syl5ss 3832 . . . . . 6 (𝐹 ∈ dom ∫1 → (𝐴 ∩ ran 𝐹) ⊆ ℝ)
2423sselda 3821 . . . . 5 ((𝐹 ∈ dom ∫1𝑦 ∈ (𝐴 ∩ ran 𝐹)) → 𝑦 ∈ ℝ)
25 mbfimasn 23836 . . . . 5 ((𝐹 ∈ MblFn ∧ 𝐹:ℝ⟶ℝ ∧ 𝑦 ∈ ℝ) → (𝐹 “ {𝑦}) ∈ dom vol)
2620, 21, 24, 25syl3anc 1439 . . . 4 ((𝐹 ∈ dom ∫1𝑦 ∈ (𝐴 ∩ ran 𝐹)) → (𝐹 “ {𝑦}) ∈ dom vol)
2726ralrimiva 3148 . . 3 (𝐹 ∈ dom ∫1 → ∀𝑦 ∈ (𝐴 ∩ ran 𝐹)(𝐹 “ {𝑦}) ∈ dom vol)
28 finiunmbl 23748 . . 3 (((𝐴 ∩ ran 𝐹) ∈ Fin ∧ ∀𝑦 ∈ (𝐴 ∩ ran 𝐹)(𝐹 “ {𝑦}) ∈ dom vol) → 𝑦 ∈ (𝐴 ∩ ran 𝐹)(𝐹 “ {𝑦}) ∈ dom vol)
2918, 27, 28syl2anc 579 . 2 (𝐹 ∈ dom ∫1 𝑦 ∈ (𝐴 ∩ ran 𝐹)(𝐹 “ {𝑦}) ∈ dom vol)
3014, 29eqeltrrd 2860 1 (𝐹 ∈ dom ∫1 → (𝐹𝐴) ∈ dom vol)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 386   = wceq 1601  wcel 2107  wral 3090  cin 3791  wss 3792  {csn 4398   ciun 4753  ccnv 5354  dom cdm 5355  ran crn 5356  cima 5358  Fun wfun 6129  wf 6131  Fincfn 8241  cr 10271  volcvol 23667  MblFncmbf 23818  1citg1 23819
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1839  ax-4 1853  ax-5 1953  ax-6 2021  ax-7 2055  ax-8 2109  ax-9 2116  ax-10 2135  ax-11 2150  ax-12 2163  ax-13 2334  ax-ext 2754  ax-rep 5006  ax-sep 5017  ax-nul 5025  ax-pow 5077  ax-pr 5138  ax-un 7226  ax-inf2 8835  ax-cnex 10328  ax-resscn 10329  ax-1cn 10330  ax-icn 10331  ax-addcl 10332  ax-addrcl 10333  ax-mulcl 10334  ax-mulrcl 10335  ax-mulcom 10336  ax-addass 10337  ax-mulass 10338  ax-distr 10339  ax-i2m1 10340  ax-1ne0 10341  ax-1rid 10342  ax-rnegex 10343  ax-rrecex 10344  ax-cnre 10345  ax-pre-lttri 10346  ax-pre-lttrn 10347  ax-pre-ltadd 10348  ax-pre-mulgt0 10349  ax-pre-sup 10350
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 837  df-3or 1072  df-3an 1073  df-tru 1605  df-fal 1615  df-ex 1824  df-nf 1828  df-sb 2012  df-mo 2551  df-eu 2587  df-clab 2764  df-cleq 2770  df-clel 2774  df-nfc 2921  df-ne 2970  df-nel 3076  df-ral 3095  df-rex 3096  df-reu 3097  df-rmo 3098  df-rab 3099  df-v 3400  df-sbc 3653  df-csb 3752  df-dif 3795  df-un 3797  df-in 3799  df-ss 3806  df-pss 3808  df-nul 4142  df-if 4308  df-pw 4381  df-sn 4399  df-pr 4401  df-tp 4403  df-op 4405  df-uni 4672  df-int 4711  df-iun 4755  df-br 4887  df-opab 4949  df-mpt 4966  df-tr 4988  df-id 5261  df-eprel 5266  df-po 5274  df-so 5275  df-fr 5314  df-se 5315  df-we 5316  df-xp 5361  df-rel 5362  df-cnv 5363  df-co 5364  df-dm 5365  df-rn 5366  df-res 5367  df-ima 5368  df-pred 5933  df-ord 5979  df-on 5980  df-lim 5981  df-suc 5982  df-iota 6099  df-fun 6137  df-fn 6138  df-f 6139  df-f1 6140  df-fo 6141  df-f1o 6142  df-fv 6143  df-isom 6144  df-riota 6883  df-ov 6925  df-oprab 6926  df-mpt2 6927  df-of 7174  df-om 7344  df-1st 7445  df-2nd 7446  df-wrecs 7689  df-recs 7751  df-rdg 7789  df-1o 7843  df-2o 7844  df-oadd 7847  df-er 8026  df-map 8142  df-pm 8143  df-en 8242  df-dom 8243  df-sdom 8244  df-fin 8245  df-sup 8636  df-inf 8637  df-oi 8704  df-card 9098  df-cda 9325  df-pnf 10413  df-mnf 10414  df-xr 10415  df-ltxr 10416  df-le 10417  df-sub 10608  df-neg 10609  df-div 11033  df-nn 11375  df-2 11438  df-3 11439  df-n0 11643  df-z 11729  df-uz 11993  df-q 12096  df-rp 12138  df-xadd 12258  df-ioo 12491  df-ico 12493  df-icc 12494  df-fz 12644  df-fzo 12785  df-fl 12912  df-seq 13120  df-exp 13179  df-hash 13436  df-cj 14246  df-re 14247  df-im 14248  df-sqrt 14382  df-abs 14383  df-clim 14627  df-sum 14825  df-xmet 20135  df-met 20136  df-ovol 23668  df-vol 23669  df-mbf 23823  df-itg1 23824
This theorem is referenced by:  i1fima2  23883  itg1ge0  23890  i1fadd  23899  i1fmul  23900  itg1addlem2  23901  itg1addlem4  23903  itg1addlem5  23904  i1fmulc  23907  i1fres  23909  i1fpos  23910  itg1ge0a  23915  itg1climres  23918  itg2addnclem  34086  itg2addnclem2  34087  ftc1anclem3  34112  ftc1anclem6  34115
  Copyright terms: Public domain W3C validator