MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  i1fima Structured version   Visualization version   GIF version

Theorem i1fima 25606
Description: Any preimage of a simple function is measurable. (Contributed by Mario Carneiro, 26-Jun-2014.)
Assertion
Ref Expression
i1fima (𝐹 ∈ dom ∫1 → (𝐹𝐴) ∈ dom vol)

Proof of Theorem i1fima
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 i1ff 25604 . . 3 (𝐹 ∈ dom ∫1𝐹:ℝ⟶ℝ)
2 ffun 6725 . . 3 (𝐹:ℝ⟶ℝ → Fun 𝐹)
3 inpreima 7073 . . . 4 (Fun 𝐹 → (𝐹 “ (𝐴 ∩ ran 𝐹)) = ((𝐹𝐴) ∩ (𝐹 “ ran 𝐹)))
4 iunid 5063 . . . . . 6 𝑦 ∈ (𝐴 ∩ ran 𝐹){𝑦} = (𝐴 ∩ ran 𝐹)
54imaeq2i 6061 . . . . 5 (𝐹 𝑦 ∈ (𝐴 ∩ ran 𝐹){𝑦}) = (𝐹 “ (𝐴 ∩ ran 𝐹))
6 imaiun 7255 . . . . 5 (𝐹 𝑦 ∈ (𝐴 ∩ ran 𝐹){𝑦}) = 𝑦 ∈ (𝐴 ∩ ran 𝐹)(𝐹 “ {𝑦})
75, 6eqtr3i 2758 . . . 4 (𝐹 “ (𝐴 ∩ ran 𝐹)) = 𝑦 ∈ (𝐴 ∩ ran 𝐹)(𝐹 “ {𝑦})
8 cnvimass 6085 . . . . . 6 (𝐹𝐴) ⊆ dom 𝐹
9 cnvimarndm 6086 . . . . . 6 (𝐹 “ ran 𝐹) = dom 𝐹
108, 9sseqtrri 4017 . . . . 5 (𝐹𝐴) ⊆ (𝐹 “ ran 𝐹)
11 df-ss 3964 . . . . 5 ((𝐹𝐴) ⊆ (𝐹 “ ran 𝐹) ↔ ((𝐹𝐴) ∩ (𝐹 “ ran 𝐹)) = (𝐹𝐴))
1210, 11mpbi 229 . . . 4 ((𝐹𝐴) ∩ (𝐹 “ ran 𝐹)) = (𝐹𝐴)
133, 7, 123eqtr3g 2791 . . 3 (Fun 𝐹 𝑦 ∈ (𝐴 ∩ ran 𝐹)(𝐹 “ {𝑦}) = (𝐹𝐴))
141, 2, 133syl 18 . 2 (𝐹 ∈ dom ∫1 𝑦 ∈ (𝐴 ∩ ran 𝐹)(𝐹 “ {𝑦}) = (𝐹𝐴))
15 i1frn 25605 . . . 4 (𝐹 ∈ dom ∫1 → ran 𝐹 ∈ Fin)
16 inss2 4230 . . . 4 (𝐴 ∩ ran 𝐹) ⊆ ran 𝐹
17 ssfi 9197 . . . 4 ((ran 𝐹 ∈ Fin ∧ (𝐴 ∩ ran 𝐹) ⊆ ran 𝐹) → (𝐴 ∩ ran 𝐹) ∈ Fin)
1815, 16, 17sylancl 585 . . 3 (𝐹 ∈ dom ∫1 → (𝐴 ∩ ran 𝐹) ∈ Fin)
19 i1fmbf 25603 . . . . . 6 (𝐹 ∈ dom ∫1𝐹 ∈ MblFn)
2019adantr 480 . . . . 5 ((𝐹 ∈ dom ∫1𝑦 ∈ (𝐴 ∩ ran 𝐹)) → 𝐹 ∈ MblFn)
211adantr 480 . . . . 5 ((𝐹 ∈ dom ∫1𝑦 ∈ (𝐴 ∩ ran 𝐹)) → 𝐹:ℝ⟶ℝ)
221frnd 6730 . . . . . . 7 (𝐹 ∈ dom ∫1 → ran 𝐹 ⊆ ℝ)
2316, 22sstrid 3991 . . . . . 6 (𝐹 ∈ dom ∫1 → (𝐴 ∩ ran 𝐹) ⊆ ℝ)
2423sselda 3980 . . . . 5 ((𝐹 ∈ dom ∫1𝑦 ∈ (𝐴 ∩ ran 𝐹)) → 𝑦 ∈ ℝ)
25 mbfimasn 25560 . . . . 5 ((𝐹 ∈ MblFn ∧ 𝐹:ℝ⟶ℝ ∧ 𝑦 ∈ ℝ) → (𝐹 “ {𝑦}) ∈ dom vol)
2620, 21, 24, 25syl3anc 1369 . . . 4 ((𝐹 ∈ dom ∫1𝑦 ∈ (𝐴 ∩ ran 𝐹)) → (𝐹 “ {𝑦}) ∈ dom vol)
2726ralrimiva 3143 . . 3 (𝐹 ∈ dom ∫1 → ∀𝑦 ∈ (𝐴 ∩ ran 𝐹)(𝐹 “ {𝑦}) ∈ dom vol)
28 finiunmbl 25472 . . 3 (((𝐴 ∩ ran 𝐹) ∈ Fin ∧ ∀𝑦 ∈ (𝐴 ∩ ran 𝐹)(𝐹 “ {𝑦}) ∈ dom vol) → 𝑦 ∈ (𝐴 ∩ ran 𝐹)(𝐹 “ {𝑦}) ∈ dom vol)
2918, 27, 28syl2anc 583 . 2 (𝐹 ∈ dom ∫1 𝑦 ∈ (𝐴 ∩ ran 𝐹)(𝐹 “ {𝑦}) ∈ dom vol)
3014, 29eqeltrrd 2830 1 (𝐹 ∈ dom ∫1 → (𝐹𝐴) ∈ dom vol)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1534  wcel 2099  wral 3058  cin 3946  wss 3947  {csn 4629   ciun 4996  ccnv 5677  dom cdm 5678  ran crn 5679  cima 5681  Fun wfun 6542  wf 6544  Fincfn 8963  cr 11137  volcvol 25391  MblFncmbf 25542  1citg1 25543
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2699  ax-rep 5285  ax-sep 5299  ax-nul 5306  ax-pow 5365  ax-pr 5429  ax-un 7740  ax-inf2 9664  ax-cnex 11194  ax-resscn 11195  ax-1cn 11196  ax-icn 11197  ax-addcl 11198  ax-addrcl 11199  ax-mulcl 11200  ax-mulrcl 11201  ax-mulcom 11202  ax-addass 11203  ax-mulass 11204  ax-distr 11205  ax-i2m1 11206  ax-1ne0 11207  ax-1rid 11208  ax-rnegex 11209  ax-rrecex 11210  ax-cnre 11211  ax-pre-lttri 11212  ax-pre-lttrn 11213  ax-pre-ltadd 11214  ax-pre-mulgt0 11215  ax-pre-sup 11216
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-3or 1086  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2530  df-eu 2559  df-clab 2706  df-cleq 2720  df-clel 2806  df-nfc 2881  df-ne 2938  df-nel 3044  df-ral 3059  df-rex 3068  df-rmo 3373  df-reu 3374  df-rab 3430  df-v 3473  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3966  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4909  df-int 4950  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5576  df-eprel 5582  df-po 5590  df-so 5591  df-fr 5633  df-se 5634  df-we 5635  df-xp 5684  df-rel 5685  df-cnv 5686  df-co 5687  df-dm 5688  df-rn 5689  df-res 5690  df-ima 5691  df-pred 6305  df-ord 6372  df-on 6373  df-lim 6374  df-suc 6375  df-iota 6500  df-fun 6550  df-fn 6551  df-f 6552  df-f1 6553  df-fo 6554  df-f1o 6555  df-fv 6556  df-isom 6557  df-riota 7376  df-ov 7423  df-oprab 7424  df-mpo 7425  df-of 7685  df-om 7871  df-1st 7993  df-2nd 7994  df-frecs 8286  df-wrecs 8317  df-recs 8391  df-rdg 8430  df-1o 8486  df-2o 8487  df-er 8724  df-map 8846  df-pm 8847  df-en 8964  df-dom 8965  df-sdom 8966  df-fin 8967  df-sup 9465  df-inf 9466  df-oi 9533  df-dju 9924  df-card 9962  df-pnf 11280  df-mnf 11281  df-xr 11282  df-ltxr 11283  df-le 11284  df-sub 11476  df-neg 11477  df-div 11902  df-nn 12243  df-2 12305  df-3 12306  df-n0 12503  df-z 12589  df-uz 12853  df-q 12963  df-rp 13007  df-xadd 13125  df-ioo 13360  df-ico 13362  df-icc 13363  df-fz 13517  df-fzo 13660  df-fl 13789  df-seq 13999  df-exp 14059  df-hash 14322  df-cj 15078  df-re 15079  df-im 15080  df-sqrt 15214  df-abs 15215  df-clim 15464  df-sum 15665  df-xmet 21271  df-met 21272  df-ovol 25392  df-vol 25393  df-mbf 25547  df-itg1 25548
This theorem is referenced by:  i1fima2  25607  itg1ge0  25614  i1fadd  25623  i1fmul  25624  itg1addlem2  25625  itg1addlem4  25627  itg1addlem4OLD  25628  itg1addlem5  25629  i1fmulc  25632  i1fres  25634  i1fpos  25635  itg1ge0a  25640  itg1climres  25643  itg2addnclem  37144  itg2addnclem2  37145  ftc1anclem3  37168  ftc1anclem6  37171
  Copyright terms: Public domain W3C validator