![]() |
Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > salexct3 | Structured version Visualization version GIF version |
Description: An example of a sigma-algebra that's not closed under uncountable union. (Contributed by Glauco Siliprandi, 3-Jan-2021.) |
Ref | Expression |
---|---|
salexct3.a | ⊢ 𝐴 = (0[,]2) |
salexct3.s | ⊢ 𝑆 = {𝑥 ∈ 𝒫 𝐴 ∣ (𝑥 ≼ ω ∨ (𝐴 ∖ 𝑥) ≼ ω)} |
salexct3.x | ⊢ 𝑋 = ran (𝑦 ∈ (0[,]1) ↦ {𝑦}) |
Ref | Expression |
---|---|
salexct3 | ⊢ (𝑆 ∈ SAlg ∧ 𝑋 ⊆ 𝑆 ∧ ¬ ∪ 𝑋 ∈ 𝑆) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | salexct3.a | . . . . . 6 ⊢ 𝐴 = (0[,]2) | |
2 | ovex 7438 | . . . . . 6 ⊢ (0[,]2) ∈ V | |
3 | 1, 2 | eqeltri 2829 | . . . . 5 ⊢ 𝐴 ∈ V |
4 | 3 | a1i 11 | . . . 4 ⊢ (⊤ → 𝐴 ∈ V) |
5 | salexct3.s | . . . 4 ⊢ 𝑆 = {𝑥 ∈ 𝒫 𝐴 ∣ (𝑥 ≼ ω ∨ (𝐴 ∖ 𝑥) ≼ ω)} | |
6 | 4, 5 | salexct 45036 | . . 3 ⊢ (⊤ → 𝑆 ∈ SAlg) |
7 | 6 | mptru 1548 | . 2 ⊢ 𝑆 ∈ SAlg |
8 | salexct3.x | . . 3 ⊢ 𝑋 = ran (𝑦 ∈ (0[,]1) ↦ {𝑦}) | |
9 | 0re 11212 | . . . . . . . . . . . 12 ⊢ 0 ∈ ℝ | |
10 | 2re 12282 | . . . . . . . . . . . 12 ⊢ 2 ∈ ℝ | |
11 | 9, 10 | pm3.2i 471 | . . . . . . . . . . 11 ⊢ (0 ∈ ℝ ∧ 2 ∈ ℝ) |
12 | 9 | leidi 11744 | . . . . . . . . . . . 12 ⊢ 0 ≤ 0 |
13 | 1le2 12417 | . . . . . . . . . . . 12 ⊢ 1 ≤ 2 | |
14 | 12, 13 | pm3.2i 471 | . . . . . . . . . . 11 ⊢ (0 ≤ 0 ∧ 1 ≤ 2) |
15 | iccss 13388 | . . . . . . . . . . 11 ⊢ (((0 ∈ ℝ ∧ 2 ∈ ℝ) ∧ (0 ≤ 0 ∧ 1 ≤ 2)) → (0[,]1) ⊆ (0[,]2)) | |
16 | 11, 14, 15 | mp2an 690 | . . . . . . . . . 10 ⊢ (0[,]1) ⊆ (0[,]2) |
17 | id 22 | . . . . . . . . . 10 ⊢ (𝑦 ∈ (0[,]1) → 𝑦 ∈ (0[,]1)) | |
18 | 16, 17 | sselid 3979 | . . . . . . . . 9 ⊢ (𝑦 ∈ (0[,]1) → 𝑦 ∈ (0[,]2)) |
19 | 18, 1 | eleqtrrdi 2844 | . . . . . . . 8 ⊢ (𝑦 ∈ (0[,]1) → 𝑦 ∈ 𝐴) |
20 | snelpwi 5442 | . . . . . . . 8 ⊢ (𝑦 ∈ 𝐴 → {𝑦} ∈ 𝒫 𝐴) | |
21 | 19, 20 | syl 17 | . . . . . . 7 ⊢ (𝑦 ∈ (0[,]1) → {𝑦} ∈ 𝒫 𝐴) |
22 | snfi 9040 | . . . . . . . . . 10 ⊢ {𝑦} ∈ Fin | |
23 | fict 9644 | . . . . . . . . . 10 ⊢ ({𝑦} ∈ Fin → {𝑦} ≼ ω) | |
24 | 22, 23 | ax-mp 5 | . . . . . . . . 9 ⊢ {𝑦} ≼ ω |
25 | orc 865 | . . . . . . . . 9 ⊢ ({𝑦} ≼ ω → ({𝑦} ≼ ω ∨ (𝐴 ∖ {𝑦}) ≼ ω)) | |
26 | 24, 25 | ax-mp 5 | . . . . . . . 8 ⊢ ({𝑦} ≼ ω ∨ (𝐴 ∖ {𝑦}) ≼ ω) |
27 | 26 | a1i 11 | . . . . . . 7 ⊢ (𝑦 ∈ (0[,]1) → ({𝑦} ≼ ω ∨ (𝐴 ∖ {𝑦}) ≼ ω)) |
28 | 21, 27 | jca 512 | . . . . . 6 ⊢ (𝑦 ∈ (0[,]1) → ({𝑦} ∈ 𝒫 𝐴 ∧ ({𝑦} ≼ ω ∨ (𝐴 ∖ {𝑦}) ≼ ω))) |
29 | breq1 5150 | . . . . . . . 8 ⊢ (𝑥 = {𝑦} → (𝑥 ≼ ω ↔ {𝑦} ≼ ω)) | |
30 | difeq2 4115 | . . . . . . . . 9 ⊢ (𝑥 = {𝑦} → (𝐴 ∖ 𝑥) = (𝐴 ∖ {𝑦})) | |
31 | 30 | breq1d 5157 | . . . . . . . 8 ⊢ (𝑥 = {𝑦} → ((𝐴 ∖ 𝑥) ≼ ω ↔ (𝐴 ∖ {𝑦}) ≼ ω)) |
32 | 29, 31 | orbi12d 917 | . . . . . . 7 ⊢ (𝑥 = {𝑦} → ((𝑥 ≼ ω ∨ (𝐴 ∖ 𝑥) ≼ ω) ↔ ({𝑦} ≼ ω ∨ (𝐴 ∖ {𝑦}) ≼ ω))) |
33 | 32, 5 | elrab2 3685 | . . . . . 6 ⊢ ({𝑦} ∈ 𝑆 ↔ ({𝑦} ∈ 𝒫 𝐴 ∧ ({𝑦} ≼ ω ∨ (𝐴 ∖ {𝑦}) ≼ ω))) |
34 | 28, 33 | sylibr 233 | . . . . 5 ⊢ (𝑦 ∈ (0[,]1) → {𝑦} ∈ 𝑆) |
35 | 34 | rgen 3063 | . . . 4 ⊢ ∀𝑦 ∈ (0[,]1){𝑦} ∈ 𝑆 |
36 | eqid 2732 | . . . . 5 ⊢ (𝑦 ∈ (0[,]1) ↦ {𝑦}) = (𝑦 ∈ (0[,]1) ↦ {𝑦}) | |
37 | 36 | rnmptss 7118 | . . . 4 ⊢ (∀𝑦 ∈ (0[,]1){𝑦} ∈ 𝑆 → ran (𝑦 ∈ (0[,]1) ↦ {𝑦}) ⊆ 𝑆) |
38 | 35, 37 | ax-mp 5 | . . 3 ⊢ ran (𝑦 ∈ (0[,]1) ↦ {𝑦}) ⊆ 𝑆 |
39 | 8, 38 | eqsstri 4015 | . 2 ⊢ 𝑋 ⊆ 𝑆 |
40 | 8 | unieqi 4920 | . . . . 5 ⊢ ∪ 𝑋 = ∪ ran (𝑦 ∈ (0[,]1) ↦ {𝑦}) |
41 | vsnex 5428 | . . . . . . . 8 ⊢ {𝑦} ∈ V | |
42 | 41 | rgenw 3065 | . . . . . . 7 ⊢ ∀𝑦 ∈ (0[,]1){𝑦} ∈ V |
43 | dfiun3g 5961 | . . . . . . 7 ⊢ (∀𝑦 ∈ (0[,]1){𝑦} ∈ V → ∪ 𝑦 ∈ (0[,]1){𝑦} = ∪ ran (𝑦 ∈ (0[,]1) ↦ {𝑦})) | |
44 | 42, 43 | ax-mp 5 | . . . . . 6 ⊢ ∪ 𝑦 ∈ (0[,]1){𝑦} = ∪ ran (𝑦 ∈ (0[,]1) ↦ {𝑦}) |
45 | 44 | eqcomi 2741 | . . . . 5 ⊢ ∪ ran (𝑦 ∈ (0[,]1) ↦ {𝑦}) = ∪ 𝑦 ∈ (0[,]1){𝑦} |
46 | iunid 5062 | . . . . 5 ⊢ ∪ 𝑦 ∈ (0[,]1){𝑦} = (0[,]1) | |
47 | 40, 45, 46 | 3eqtrri 2765 | . . . 4 ⊢ (0[,]1) = ∪ 𝑋 |
48 | 47 | eqcomi 2741 | . . 3 ⊢ ∪ 𝑋 = (0[,]1) |
49 | 1, 5, 48 | salexct2 45041 | . 2 ⊢ ¬ ∪ 𝑋 ∈ 𝑆 |
50 | 7, 39, 49 | 3pm3.2i 1339 | 1 ⊢ (𝑆 ∈ SAlg ∧ 𝑋 ⊆ 𝑆 ∧ ¬ ∪ 𝑋 ∈ 𝑆) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ∧ wa 396 ∨ wo 845 ∧ w3a 1087 = wceq 1541 ⊤wtru 1542 ∈ wcel 2106 ∀wral 3061 {crab 3432 Vcvv 3474 ∖ cdif 3944 ⊆ wss 3947 𝒫 cpw 4601 {csn 4627 ∪ cuni 4907 ∪ ciun 4996 class class class wbr 5147 ↦ cmpt 5230 ran crn 5676 (class class class)co 7405 ωcom 7851 ≼ cdom 8933 Fincfn 8935 ℝcr 11105 0cc0 11106 1c1 11107 ≤ cle 11245 2c2 12263 [,]cicc 13323 SAlgcsalg 45010 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-rep 5284 ax-sep 5298 ax-nul 5305 ax-pow 5362 ax-pr 5426 ax-un 7721 ax-inf2 9632 ax-cc 10426 ax-cnex 11162 ax-resscn 11163 ax-1cn 11164 ax-icn 11165 ax-addcl 11166 ax-addrcl 11167 ax-mulcl 11168 ax-mulrcl 11169 ax-mulcom 11170 ax-addass 11171 ax-mulass 11172 ax-distr 11173 ax-i2m1 11174 ax-1ne0 11175 ax-1rid 11176 ax-rnegex 11177 ax-rrecex 11178 ax-cnre 11179 ax-pre-lttri 11180 ax-pre-lttrn 11181 ax-pre-ltadd 11182 ax-pre-mulgt0 11183 ax-pre-sup 11184 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rmo 3376 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-pss 3966 df-nul 4322 df-if 4528 df-pw 4603 df-sn 4628 df-pr 4630 df-op 4634 df-uni 4908 df-int 4950 df-iun 4998 df-br 5148 df-opab 5210 df-mpt 5231 df-tr 5265 df-id 5573 df-eprel 5579 df-po 5587 df-so 5588 df-fr 5630 df-se 5631 df-we 5632 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-rn 5686 df-res 5687 df-ima 5688 df-pred 6297 df-ord 6364 df-on 6365 df-lim 6366 df-suc 6367 df-iota 6492 df-fun 6542 df-fn 6543 df-f 6544 df-f1 6545 df-fo 6546 df-f1o 6547 df-fv 6548 df-isom 6549 df-riota 7361 df-ov 7408 df-oprab 7409 df-mpo 7410 df-om 7852 df-1st 7971 df-2nd 7972 df-frecs 8262 df-wrecs 8293 df-recs 8367 df-rdg 8406 df-1o 8462 df-2o 8463 df-oadd 8466 df-omul 8467 df-er 8699 df-map 8818 df-pm 8819 df-en 8936 df-dom 8937 df-sdom 8938 df-fin 8939 df-sup 9433 df-inf 9434 df-oi 9501 df-card 9930 df-acn 9933 df-pnf 11246 df-mnf 11247 df-xr 11248 df-ltxr 11249 df-le 11250 df-sub 11442 df-neg 11443 df-div 11868 df-nn 12209 df-2 12271 df-3 12272 df-n0 12469 df-z 12555 df-uz 12819 df-q 12929 df-rp 12971 df-xneg 13088 df-xadd 13089 df-xmul 13090 df-ioo 13324 df-ioc 13325 df-ico 13326 df-icc 13327 df-fz 13481 df-fzo 13624 df-fl 13753 df-seq 13963 df-exp 14024 df-hash 14287 df-cj 15042 df-re 15043 df-im 15044 df-sqrt 15178 df-abs 15179 df-limsup 15411 df-clim 15428 df-rlim 15429 df-sum 15629 df-topgen 17385 df-psmet 20928 df-xmet 20929 df-met 20930 df-bl 20931 df-mopn 20932 df-top 22387 df-topon 22404 df-bases 22440 df-ntr 22515 df-salg 45011 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |