| Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > salexct3 | Structured version Visualization version GIF version | ||
| Description: An example of a sigma-algebra that's not closed under uncountable union. (Contributed by Glauco Siliprandi, 3-Jan-2021.) |
| Ref | Expression |
|---|---|
| salexct3.a | ⊢ 𝐴 = (0[,]2) |
| salexct3.s | ⊢ 𝑆 = {𝑥 ∈ 𝒫 𝐴 ∣ (𝑥 ≼ ω ∨ (𝐴 ∖ 𝑥) ≼ ω)} |
| salexct3.x | ⊢ 𝑋 = ran (𝑦 ∈ (0[,]1) ↦ {𝑦}) |
| Ref | Expression |
|---|---|
| salexct3 | ⊢ (𝑆 ∈ SAlg ∧ 𝑋 ⊆ 𝑆 ∧ ¬ ∪ 𝑋 ∈ 𝑆) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | salexct3.a | . . . . . 6 ⊢ 𝐴 = (0[,]2) | |
| 2 | ovex 7382 | . . . . . 6 ⊢ (0[,]2) ∈ V | |
| 3 | 1, 2 | eqeltri 2824 | . . . . 5 ⊢ 𝐴 ∈ V |
| 4 | 3 | a1i 11 | . . . 4 ⊢ (⊤ → 𝐴 ∈ V) |
| 5 | salexct3.s | . . . 4 ⊢ 𝑆 = {𝑥 ∈ 𝒫 𝐴 ∣ (𝑥 ≼ ω ∨ (𝐴 ∖ 𝑥) ≼ ω)} | |
| 6 | 4, 5 | salexct 46335 | . . 3 ⊢ (⊤ → 𝑆 ∈ SAlg) |
| 7 | 6 | mptru 1547 | . 2 ⊢ 𝑆 ∈ SAlg |
| 8 | salexct3.x | . . 3 ⊢ 𝑋 = ran (𝑦 ∈ (0[,]1) ↦ {𝑦}) | |
| 9 | 0re 11117 | . . . . . . . . . . . 12 ⊢ 0 ∈ ℝ | |
| 10 | 2re 12202 | . . . . . . . . . . . 12 ⊢ 2 ∈ ℝ | |
| 11 | 9, 10 | pm3.2i 470 | . . . . . . . . . . 11 ⊢ (0 ∈ ℝ ∧ 2 ∈ ℝ) |
| 12 | 9 | leidi 11654 | . . . . . . . . . . . 12 ⊢ 0 ≤ 0 |
| 13 | 1le2 12332 | . . . . . . . . . . . 12 ⊢ 1 ≤ 2 | |
| 14 | 12, 13 | pm3.2i 470 | . . . . . . . . . . 11 ⊢ (0 ≤ 0 ∧ 1 ≤ 2) |
| 15 | iccss 13317 | . . . . . . . . . . 11 ⊢ (((0 ∈ ℝ ∧ 2 ∈ ℝ) ∧ (0 ≤ 0 ∧ 1 ≤ 2)) → (0[,]1) ⊆ (0[,]2)) | |
| 16 | 11, 14, 15 | mp2an 692 | . . . . . . . . . 10 ⊢ (0[,]1) ⊆ (0[,]2) |
| 17 | id 22 | . . . . . . . . . 10 ⊢ (𝑦 ∈ (0[,]1) → 𝑦 ∈ (0[,]1)) | |
| 18 | 16, 17 | sselid 3933 | . . . . . . . . 9 ⊢ (𝑦 ∈ (0[,]1) → 𝑦 ∈ (0[,]2)) |
| 19 | 18, 1 | eleqtrrdi 2839 | . . . . . . . 8 ⊢ (𝑦 ∈ (0[,]1) → 𝑦 ∈ 𝐴) |
| 20 | snelpwi 5386 | . . . . . . . 8 ⊢ (𝑦 ∈ 𝐴 → {𝑦} ∈ 𝒫 𝐴) | |
| 21 | 19, 20 | syl 17 | . . . . . . 7 ⊢ (𝑦 ∈ (0[,]1) → {𝑦} ∈ 𝒫 𝐴) |
| 22 | snfi 8968 | . . . . . . . . . 10 ⊢ {𝑦} ∈ Fin | |
| 23 | fict 9549 | . . . . . . . . . 10 ⊢ ({𝑦} ∈ Fin → {𝑦} ≼ ω) | |
| 24 | 22, 23 | ax-mp 5 | . . . . . . . . 9 ⊢ {𝑦} ≼ ω |
| 25 | orc 867 | . . . . . . . . 9 ⊢ ({𝑦} ≼ ω → ({𝑦} ≼ ω ∨ (𝐴 ∖ {𝑦}) ≼ ω)) | |
| 26 | 24, 25 | ax-mp 5 | . . . . . . . 8 ⊢ ({𝑦} ≼ ω ∨ (𝐴 ∖ {𝑦}) ≼ ω) |
| 27 | 26 | a1i 11 | . . . . . . 7 ⊢ (𝑦 ∈ (0[,]1) → ({𝑦} ≼ ω ∨ (𝐴 ∖ {𝑦}) ≼ ω)) |
| 28 | 21, 27 | jca 511 | . . . . . 6 ⊢ (𝑦 ∈ (0[,]1) → ({𝑦} ∈ 𝒫 𝐴 ∧ ({𝑦} ≼ ω ∨ (𝐴 ∖ {𝑦}) ≼ ω))) |
| 29 | breq1 5095 | . . . . . . . 8 ⊢ (𝑥 = {𝑦} → (𝑥 ≼ ω ↔ {𝑦} ≼ ω)) | |
| 30 | difeq2 4071 | . . . . . . . . 9 ⊢ (𝑥 = {𝑦} → (𝐴 ∖ 𝑥) = (𝐴 ∖ {𝑦})) | |
| 31 | 30 | breq1d 5102 | . . . . . . . 8 ⊢ (𝑥 = {𝑦} → ((𝐴 ∖ 𝑥) ≼ ω ↔ (𝐴 ∖ {𝑦}) ≼ ω)) |
| 32 | 29, 31 | orbi12d 918 | . . . . . . 7 ⊢ (𝑥 = {𝑦} → ((𝑥 ≼ ω ∨ (𝐴 ∖ 𝑥) ≼ ω) ↔ ({𝑦} ≼ ω ∨ (𝐴 ∖ {𝑦}) ≼ ω))) |
| 33 | 32, 5 | elrab2 3651 | . . . . . 6 ⊢ ({𝑦} ∈ 𝑆 ↔ ({𝑦} ∈ 𝒫 𝐴 ∧ ({𝑦} ≼ ω ∨ (𝐴 ∖ {𝑦}) ≼ ω))) |
| 34 | 28, 33 | sylibr 234 | . . . . 5 ⊢ (𝑦 ∈ (0[,]1) → {𝑦} ∈ 𝑆) |
| 35 | 34 | rgen 3046 | . . . 4 ⊢ ∀𝑦 ∈ (0[,]1){𝑦} ∈ 𝑆 |
| 36 | eqid 2729 | . . . . 5 ⊢ (𝑦 ∈ (0[,]1) ↦ {𝑦}) = (𝑦 ∈ (0[,]1) ↦ {𝑦}) | |
| 37 | 36 | rnmptss 7057 | . . . 4 ⊢ (∀𝑦 ∈ (0[,]1){𝑦} ∈ 𝑆 → ran (𝑦 ∈ (0[,]1) ↦ {𝑦}) ⊆ 𝑆) |
| 38 | 35, 37 | ax-mp 5 | . . 3 ⊢ ran (𝑦 ∈ (0[,]1) ↦ {𝑦}) ⊆ 𝑆 |
| 39 | 8, 38 | eqsstri 3982 | . 2 ⊢ 𝑋 ⊆ 𝑆 |
| 40 | 8 | unieqi 4870 | . . . . 5 ⊢ ∪ 𝑋 = ∪ ran (𝑦 ∈ (0[,]1) ↦ {𝑦}) |
| 41 | vsnex 5373 | . . . . . . . 8 ⊢ {𝑦} ∈ V | |
| 42 | 41 | rgenw 3048 | . . . . . . 7 ⊢ ∀𝑦 ∈ (0[,]1){𝑦} ∈ V |
| 43 | dfiun3g 5909 | . . . . . . 7 ⊢ (∀𝑦 ∈ (0[,]1){𝑦} ∈ V → ∪ 𝑦 ∈ (0[,]1){𝑦} = ∪ ran (𝑦 ∈ (0[,]1) ↦ {𝑦})) | |
| 44 | 42, 43 | ax-mp 5 | . . . . . 6 ⊢ ∪ 𝑦 ∈ (0[,]1){𝑦} = ∪ ran (𝑦 ∈ (0[,]1) ↦ {𝑦}) |
| 45 | 44 | eqcomi 2738 | . . . . 5 ⊢ ∪ ran (𝑦 ∈ (0[,]1) ↦ {𝑦}) = ∪ 𝑦 ∈ (0[,]1){𝑦} |
| 46 | iunid 5009 | . . . . 5 ⊢ ∪ 𝑦 ∈ (0[,]1){𝑦} = (0[,]1) | |
| 47 | 40, 45, 46 | 3eqtrri 2757 | . . . 4 ⊢ (0[,]1) = ∪ 𝑋 |
| 48 | 47 | eqcomi 2738 | . . 3 ⊢ ∪ 𝑋 = (0[,]1) |
| 49 | 1, 5, 48 | salexct2 46340 | . 2 ⊢ ¬ ∪ 𝑋 ∈ 𝑆 |
| 50 | 7, 39, 49 | 3pm3.2i 1340 | 1 ⊢ (𝑆 ∈ SAlg ∧ 𝑋 ⊆ 𝑆 ∧ ¬ ∪ 𝑋 ∈ 𝑆) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 ∧ wa 395 ∨ wo 847 ∧ w3a 1086 = wceq 1540 ⊤wtru 1541 ∈ wcel 2109 ∀wral 3044 {crab 3394 Vcvv 3436 ∖ cdif 3900 ⊆ wss 3903 𝒫 cpw 4551 {csn 4577 ∪ cuni 4858 ∪ ciun 4941 class class class wbr 5092 ↦ cmpt 5173 ran crn 5620 (class class class)co 7349 ωcom 7799 ≼ cdom 8870 Fincfn 8872 ℝcr 11008 0cc0 11009 1c1 11010 ≤ cle 11150 2c2 12183 [,]cicc 13251 SAlgcsalg 46309 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5218 ax-sep 5235 ax-nul 5245 ax-pow 5304 ax-pr 5371 ax-un 7671 ax-inf2 9537 ax-cc 10329 ax-cnex 11065 ax-resscn 11066 ax-1cn 11067 ax-icn 11068 ax-addcl 11069 ax-addrcl 11070 ax-mulcl 11071 ax-mulrcl 11072 ax-mulcom 11073 ax-addass 11074 ax-mulass 11075 ax-distr 11076 ax-i2m1 11077 ax-1ne0 11078 ax-1rid 11079 ax-rnegex 11080 ax-rrecex 11081 ax-cnre 11082 ax-pre-lttri 11083 ax-pre-lttrn 11084 ax-pre-ltadd 11085 ax-pre-mulgt0 11086 ax-pre-sup 11087 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3343 df-reu 3344 df-rab 3395 df-v 3438 df-sbc 3743 df-csb 3852 df-dif 3906 df-un 3908 df-in 3910 df-ss 3920 df-pss 3923 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4859 df-int 4897 df-iun 4943 df-br 5093 df-opab 5155 df-mpt 5174 df-tr 5200 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-se 5573 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-pred 6249 df-ord 6310 df-on 6311 df-lim 6312 df-suc 6313 df-iota 6438 df-fun 6484 df-fn 6485 df-f 6486 df-f1 6487 df-fo 6488 df-f1o 6489 df-fv 6490 df-isom 6491 df-riota 7306 df-ov 7352 df-oprab 7353 df-mpo 7354 df-om 7800 df-1st 7924 df-2nd 7925 df-frecs 8214 df-wrecs 8245 df-recs 8294 df-rdg 8332 df-1o 8388 df-2o 8389 df-oadd 8392 df-omul 8393 df-er 8625 df-map 8755 df-pm 8756 df-en 8873 df-dom 8874 df-sdom 8875 df-fin 8876 df-sup 9332 df-inf 9333 df-oi 9402 df-card 9835 df-acn 9838 df-pnf 11151 df-mnf 11152 df-xr 11153 df-ltxr 11154 df-le 11155 df-sub 11349 df-neg 11350 df-div 11778 df-nn 12129 df-2 12191 df-3 12192 df-n0 12385 df-z 12472 df-uz 12736 df-q 12850 df-rp 12894 df-xneg 13014 df-xadd 13015 df-xmul 13016 df-ioo 13252 df-ioc 13253 df-ico 13254 df-icc 13255 df-fz 13411 df-fzo 13558 df-fl 13696 df-seq 13909 df-exp 13969 df-hash 14238 df-cj 15006 df-re 15007 df-im 15008 df-sqrt 15142 df-abs 15143 df-limsup 15378 df-clim 15395 df-rlim 15396 df-sum 15594 df-topgen 17347 df-psmet 21253 df-xmet 21254 df-met 21255 df-bl 21256 df-mopn 21257 df-top 22779 df-topon 22796 df-bases 22831 df-ntr 22905 df-salg 46310 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |