![]() |
Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > salexct3 | Structured version Visualization version GIF version |
Description: An example of a sigma-algebra that's not closed under uncountable union. (Contributed by Glauco Siliprandi, 3-Jan-2021.) |
Ref | Expression |
---|---|
salexct3.a | ⊢ 𝐴 = (0[,]2) |
salexct3.s | ⊢ 𝑆 = {𝑥 ∈ 𝒫 𝐴 ∣ (𝑥 ≼ ω ∨ (𝐴 ∖ 𝑥) ≼ ω)} |
salexct3.x | ⊢ 𝑋 = ran (𝑦 ∈ (0[,]1) ↦ {𝑦}) |
Ref | Expression |
---|---|
salexct3 | ⊢ (𝑆 ∈ SAlg ∧ 𝑋 ⊆ 𝑆 ∧ ¬ ∪ 𝑋 ∈ 𝑆) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | salexct3.a | . . . . . 6 ⊢ 𝐴 = (0[,]2) | |
2 | ovex 7447 | . . . . . 6 ⊢ (0[,]2) ∈ V | |
3 | 1, 2 | eqeltri 2821 | . . . . 5 ⊢ 𝐴 ∈ V |
4 | 3 | a1i 11 | . . . 4 ⊢ (⊤ → 𝐴 ∈ V) |
5 | salexct3.s | . . . 4 ⊢ 𝑆 = {𝑥 ∈ 𝒫 𝐴 ∣ (𝑥 ≼ ω ∨ (𝐴 ∖ 𝑥) ≼ ω)} | |
6 | 4, 5 | salexct 45757 | . . 3 ⊢ (⊤ → 𝑆 ∈ SAlg) |
7 | 6 | mptru 1540 | . 2 ⊢ 𝑆 ∈ SAlg |
8 | salexct3.x | . . 3 ⊢ 𝑋 = ran (𝑦 ∈ (0[,]1) ↦ {𝑦}) | |
9 | 0re 11244 | . . . . . . . . . . . 12 ⊢ 0 ∈ ℝ | |
10 | 2re 12314 | . . . . . . . . . . . 12 ⊢ 2 ∈ ℝ | |
11 | 9, 10 | pm3.2i 469 | . . . . . . . . . . 11 ⊢ (0 ∈ ℝ ∧ 2 ∈ ℝ) |
12 | 9 | leidi 11776 | . . . . . . . . . . . 12 ⊢ 0 ≤ 0 |
13 | 1le2 12449 | . . . . . . . . . . . 12 ⊢ 1 ≤ 2 | |
14 | 12, 13 | pm3.2i 469 | . . . . . . . . . . 11 ⊢ (0 ≤ 0 ∧ 1 ≤ 2) |
15 | iccss 13422 | . . . . . . . . . . 11 ⊢ (((0 ∈ ℝ ∧ 2 ∈ ℝ) ∧ (0 ≤ 0 ∧ 1 ≤ 2)) → (0[,]1) ⊆ (0[,]2)) | |
16 | 11, 14, 15 | mp2an 690 | . . . . . . . . . 10 ⊢ (0[,]1) ⊆ (0[,]2) |
17 | id 22 | . . . . . . . . . 10 ⊢ (𝑦 ∈ (0[,]1) → 𝑦 ∈ (0[,]1)) | |
18 | 16, 17 | sselid 3970 | . . . . . . . . 9 ⊢ (𝑦 ∈ (0[,]1) → 𝑦 ∈ (0[,]2)) |
19 | 18, 1 | eleqtrrdi 2836 | . . . . . . . 8 ⊢ (𝑦 ∈ (0[,]1) → 𝑦 ∈ 𝐴) |
20 | snelpwi 5437 | . . . . . . . 8 ⊢ (𝑦 ∈ 𝐴 → {𝑦} ∈ 𝒫 𝐴) | |
21 | 19, 20 | syl 17 | . . . . . . 7 ⊢ (𝑦 ∈ (0[,]1) → {𝑦} ∈ 𝒫 𝐴) |
22 | snfi 9065 | . . . . . . . . . 10 ⊢ {𝑦} ∈ Fin | |
23 | fict 9674 | . . . . . . . . . 10 ⊢ ({𝑦} ∈ Fin → {𝑦} ≼ ω) | |
24 | 22, 23 | ax-mp 5 | . . . . . . . . 9 ⊢ {𝑦} ≼ ω |
25 | orc 865 | . . . . . . . . 9 ⊢ ({𝑦} ≼ ω → ({𝑦} ≼ ω ∨ (𝐴 ∖ {𝑦}) ≼ ω)) | |
26 | 24, 25 | ax-mp 5 | . . . . . . . 8 ⊢ ({𝑦} ≼ ω ∨ (𝐴 ∖ {𝑦}) ≼ ω) |
27 | 26 | a1i 11 | . . . . . . 7 ⊢ (𝑦 ∈ (0[,]1) → ({𝑦} ≼ ω ∨ (𝐴 ∖ {𝑦}) ≼ ω)) |
28 | 21, 27 | jca 510 | . . . . . 6 ⊢ (𝑦 ∈ (0[,]1) → ({𝑦} ∈ 𝒫 𝐴 ∧ ({𝑦} ≼ ω ∨ (𝐴 ∖ {𝑦}) ≼ ω))) |
29 | breq1 5144 | . . . . . . . 8 ⊢ (𝑥 = {𝑦} → (𝑥 ≼ ω ↔ {𝑦} ≼ ω)) | |
30 | difeq2 4106 | . . . . . . . . 9 ⊢ (𝑥 = {𝑦} → (𝐴 ∖ 𝑥) = (𝐴 ∖ {𝑦})) | |
31 | 30 | breq1d 5151 | . . . . . . . 8 ⊢ (𝑥 = {𝑦} → ((𝐴 ∖ 𝑥) ≼ ω ↔ (𝐴 ∖ {𝑦}) ≼ ω)) |
32 | 29, 31 | orbi12d 916 | . . . . . . 7 ⊢ (𝑥 = {𝑦} → ((𝑥 ≼ ω ∨ (𝐴 ∖ 𝑥) ≼ ω) ↔ ({𝑦} ≼ ω ∨ (𝐴 ∖ {𝑦}) ≼ ω))) |
33 | 32, 5 | elrab2 3677 | . . . . . 6 ⊢ ({𝑦} ∈ 𝑆 ↔ ({𝑦} ∈ 𝒫 𝐴 ∧ ({𝑦} ≼ ω ∨ (𝐴 ∖ {𝑦}) ≼ ω))) |
34 | 28, 33 | sylibr 233 | . . . . 5 ⊢ (𝑦 ∈ (0[,]1) → {𝑦} ∈ 𝑆) |
35 | 34 | rgen 3053 | . . . 4 ⊢ ∀𝑦 ∈ (0[,]1){𝑦} ∈ 𝑆 |
36 | eqid 2725 | . . . . 5 ⊢ (𝑦 ∈ (0[,]1) ↦ {𝑦}) = (𝑦 ∈ (0[,]1) ↦ {𝑦}) | |
37 | 36 | rnmptss 7126 | . . . 4 ⊢ (∀𝑦 ∈ (0[,]1){𝑦} ∈ 𝑆 → ran (𝑦 ∈ (0[,]1) ↦ {𝑦}) ⊆ 𝑆) |
38 | 35, 37 | ax-mp 5 | . . 3 ⊢ ran (𝑦 ∈ (0[,]1) ↦ {𝑦}) ⊆ 𝑆 |
39 | 8, 38 | eqsstri 4006 | . 2 ⊢ 𝑋 ⊆ 𝑆 |
40 | 8 | unieqi 4913 | . . . . 5 ⊢ ∪ 𝑋 = ∪ ran (𝑦 ∈ (0[,]1) ↦ {𝑦}) |
41 | vsnex 5423 | . . . . . . . 8 ⊢ {𝑦} ∈ V | |
42 | 41 | rgenw 3055 | . . . . . . 7 ⊢ ∀𝑦 ∈ (0[,]1){𝑦} ∈ V |
43 | dfiun3g 5959 | . . . . . . 7 ⊢ (∀𝑦 ∈ (0[,]1){𝑦} ∈ V → ∪ 𝑦 ∈ (0[,]1){𝑦} = ∪ ran (𝑦 ∈ (0[,]1) ↦ {𝑦})) | |
44 | 42, 43 | ax-mp 5 | . . . . . 6 ⊢ ∪ 𝑦 ∈ (0[,]1){𝑦} = ∪ ran (𝑦 ∈ (0[,]1) ↦ {𝑦}) |
45 | 44 | eqcomi 2734 | . . . . 5 ⊢ ∪ ran (𝑦 ∈ (0[,]1) ↦ {𝑦}) = ∪ 𝑦 ∈ (0[,]1){𝑦} |
46 | iunid 5056 | . . . . 5 ⊢ ∪ 𝑦 ∈ (0[,]1){𝑦} = (0[,]1) | |
47 | 40, 45, 46 | 3eqtrri 2758 | . . . 4 ⊢ (0[,]1) = ∪ 𝑋 |
48 | 47 | eqcomi 2734 | . . 3 ⊢ ∪ 𝑋 = (0[,]1) |
49 | 1, 5, 48 | salexct2 45762 | . 2 ⊢ ¬ ∪ 𝑋 ∈ 𝑆 |
50 | 7, 39, 49 | 3pm3.2i 1336 | 1 ⊢ (𝑆 ∈ SAlg ∧ 𝑋 ⊆ 𝑆 ∧ ¬ ∪ 𝑋 ∈ 𝑆) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ∧ wa 394 ∨ wo 845 ∧ w3a 1084 = wceq 1533 ⊤wtru 1534 ∈ wcel 2098 ∀wral 3051 {crab 3419 Vcvv 3463 ∖ cdif 3936 ⊆ wss 3939 𝒫 cpw 4596 {csn 4622 ∪ cuni 4901 ∪ ciun 4989 class class class wbr 5141 ↦ cmpt 5224 ran crn 5671 (class class class)co 7414 ωcom 7866 ≼ cdom 8958 Fincfn 8960 ℝcr 11135 0cc0 11136 1c1 11137 ≤ cle 11277 2c2 12295 [,]cicc 13357 SAlgcsalg 45731 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2696 ax-rep 5278 ax-sep 5292 ax-nul 5299 ax-pow 5357 ax-pr 5421 ax-un 7736 ax-inf2 9662 ax-cc 10456 ax-cnex 11192 ax-resscn 11193 ax-1cn 11194 ax-icn 11195 ax-addcl 11196 ax-addrcl 11197 ax-mulcl 11198 ax-mulrcl 11199 ax-mulcom 11200 ax-addass 11201 ax-mulass 11202 ax-distr 11203 ax-i2m1 11204 ax-1ne0 11205 ax-1rid 11206 ax-rnegex 11207 ax-rrecex 11208 ax-cnre 11209 ax-pre-lttri 11210 ax-pre-lttrn 11211 ax-pre-ltadd 11212 ax-pre-mulgt0 11213 ax-pre-sup 11214 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2703 df-cleq 2717 df-clel 2802 df-nfc 2877 df-ne 2931 df-nel 3037 df-ral 3052 df-rex 3061 df-rmo 3364 df-reu 3365 df-rab 3420 df-v 3465 df-sbc 3769 df-csb 3885 df-dif 3942 df-un 3944 df-in 3946 df-ss 3956 df-pss 3958 df-nul 4317 df-if 4523 df-pw 4598 df-sn 4623 df-pr 4625 df-op 4629 df-uni 4902 df-int 4943 df-iun 4991 df-br 5142 df-opab 5204 df-mpt 5225 df-tr 5259 df-id 5568 df-eprel 5574 df-po 5582 df-so 5583 df-fr 5625 df-se 5626 df-we 5627 df-xp 5676 df-rel 5677 df-cnv 5678 df-co 5679 df-dm 5680 df-rn 5681 df-res 5682 df-ima 5683 df-pred 6298 df-ord 6365 df-on 6366 df-lim 6367 df-suc 6368 df-iota 6493 df-fun 6543 df-fn 6544 df-f 6545 df-f1 6546 df-fo 6547 df-f1o 6548 df-fv 6549 df-isom 6550 df-riota 7370 df-ov 7417 df-oprab 7418 df-mpo 7419 df-om 7867 df-1st 7989 df-2nd 7990 df-frecs 8283 df-wrecs 8314 df-recs 8388 df-rdg 8427 df-1o 8483 df-2o 8484 df-oadd 8487 df-omul 8488 df-er 8721 df-map 8843 df-pm 8844 df-en 8961 df-dom 8962 df-sdom 8963 df-fin 8964 df-sup 9463 df-inf 9464 df-oi 9531 df-card 9960 df-acn 9963 df-pnf 11278 df-mnf 11279 df-xr 11280 df-ltxr 11281 df-le 11282 df-sub 11474 df-neg 11475 df-div 11900 df-nn 12241 df-2 12303 df-3 12304 df-n0 12501 df-z 12587 df-uz 12851 df-q 12961 df-rp 13005 df-xneg 13122 df-xadd 13123 df-xmul 13124 df-ioo 13358 df-ioc 13359 df-ico 13360 df-icc 13361 df-fz 13515 df-fzo 13658 df-fl 13787 df-seq 13997 df-exp 14057 df-hash 14320 df-cj 15076 df-re 15077 df-im 15078 df-sqrt 15212 df-abs 15213 df-limsup 15445 df-clim 15462 df-rlim 15463 df-sum 15663 df-topgen 17422 df-psmet 21273 df-xmet 21274 df-met 21275 df-bl 21276 df-mopn 21277 df-top 22812 df-topon 22829 df-bases 22865 df-ntr 22940 df-salg 45732 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |