Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  salexct3 Structured version   Visualization version   GIF version

Theorem salexct3 45630
Description: An example of a sigma-algebra that's not closed under uncountable union. (Contributed by Glauco Siliprandi, 3-Jan-2021.)
Hypotheses
Ref Expression
salexct3.a 𝐴 = (0[,]2)
salexct3.s 𝑆 = {𝑥 ∈ 𝒫 𝐴 ∣ (𝑥 ≼ ω ∨ (𝐴𝑥) ≼ ω)}
salexct3.x 𝑋 = ran (𝑦 ∈ (0[,]1) ↦ {𝑦})
Assertion
Ref Expression
salexct3 (𝑆 ∈ SAlg ∧ 𝑋𝑆 ∧ ¬ 𝑋𝑆)
Distinct variable groups:   𝑥,𝐴   𝑥,𝑆,𝑦   𝑥,𝑋
Allowed substitution hints:   𝐴(𝑦)   𝑋(𝑦)

Proof of Theorem salexct3
StepHypRef Expression
1 salexct3.a . . . . . 6 𝐴 = (0[,]2)
2 ovex 7438 . . . . . 6 (0[,]2) ∈ V
31, 2eqeltri 2823 . . . . 5 𝐴 ∈ V
43a1i 11 . . . 4 (⊤ → 𝐴 ∈ V)
5 salexct3.s . . . 4 𝑆 = {𝑥 ∈ 𝒫 𝐴 ∣ (𝑥 ≼ ω ∨ (𝐴𝑥) ≼ ω)}
64, 5salexct 45622 . . 3 (⊤ → 𝑆 ∈ SAlg)
76mptru 1540 . 2 𝑆 ∈ SAlg
8 salexct3.x . . 3 𝑋 = ran (𝑦 ∈ (0[,]1) ↦ {𝑦})
9 0re 11220 . . . . . . . . . . . 12 0 ∈ ℝ
10 2re 12290 . . . . . . . . . . . 12 2 ∈ ℝ
119, 10pm3.2i 470 . . . . . . . . . . 11 (0 ∈ ℝ ∧ 2 ∈ ℝ)
129leidi 11752 . . . . . . . . . . . 12 0 ≤ 0
13 1le2 12425 . . . . . . . . . . . 12 1 ≤ 2
1412, 13pm3.2i 470 . . . . . . . . . . 11 (0 ≤ 0 ∧ 1 ≤ 2)
15 iccss 13398 . . . . . . . . . . 11 (((0 ∈ ℝ ∧ 2 ∈ ℝ) ∧ (0 ≤ 0 ∧ 1 ≤ 2)) → (0[,]1) ⊆ (0[,]2))
1611, 14, 15mp2an 689 . . . . . . . . . 10 (0[,]1) ⊆ (0[,]2)
17 id 22 . . . . . . . . . 10 (𝑦 ∈ (0[,]1) → 𝑦 ∈ (0[,]1))
1816, 17sselid 3975 . . . . . . . . 9 (𝑦 ∈ (0[,]1) → 𝑦 ∈ (0[,]2))
1918, 1eleqtrrdi 2838 . . . . . . . 8 (𝑦 ∈ (0[,]1) → 𝑦𝐴)
20 snelpwi 5436 . . . . . . . 8 (𝑦𝐴 → {𝑦} ∈ 𝒫 𝐴)
2119, 20syl 17 . . . . . . 7 (𝑦 ∈ (0[,]1) → {𝑦} ∈ 𝒫 𝐴)
22 snfi 9046 . . . . . . . . . 10 {𝑦} ∈ Fin
23 fict 9650 . . . . . . . . . 10 ({𝑦} ∈ Fin → {𝑦} ≼ ω)
2422, 23ax-mp 5 . . . . . . . . 9 {𝑦} ≼ ω
25 orc 864 . . . . . . . . 9 ({𝑦} ≼ ω → ({𝑦} ≼ ω ∨ (𝐴 ∖ {𝑦}) ≼ ω))
2624, 25ax-mp 5 . . . . . . . 8 ({𝑦} ≼ ω ∨ (𝐴 ∖ {𝑦}) ≼ ω)
2726a1i 11 . . . . . . 7 (𝑦 ∈ (0[,]1) → ({𝑦} ≼ ω ∨ (𝐴 ∖ {𝑦}) ≼ ω))
2821, 27jca 511 . . . . . 6 (𝑦 ∈ (0[,]1) → ({𝑦} ∈ 𝒫 𝐴 ∧ ({𝑦} ≼ ω ∨ (𝐴 ∖ {𝑦}) ≼ ω)))
29 breq1 5144 . . . . . . . 8 (𝑥 = {𝑦} → (𝑥 ≼ ω ↔ {𝑦} ≼ ω))
30 difeq2 4111 . . . . . . . . 9 (𝑥 = {𝑦} → (𝐴𝑥) = (𝐴 ∖ {𝑦}))
3130breq1d 5151 . . . . . . . 8 (𝑥 = {𝑦} → ((𝐴𝑥) ≼ ω ↔ (𝐴 ∖ {𝑦}) ≼ ω))
3229, 31orbi12d 915 . . . . . . 7 (𝑥 = {𝑦} → ((𝑥 ≼ ω ∨ (𝐴𝑥) ≼ ω) ↔ ({𝑦} ≼ ω ∨ (𝐴 ∖ {𝑦}) ≼ ω)))
3332, 5elrab2 3681 . . . . . 6 ({𝑦} ∈ 𝑆 ↔ ({𝑦} ∈ 𝒫 𝐴 ∧ ({𝑦} ≼ ω ∨ (𝐴 ∖ {𝑦}) ≼ ω)))
3428, 33sylibr 233 . . . . 5 (𝑦 ∈ (0[,]1) → {𝑦} ∈ 𝑆)
3534rgen 3057 . . . 4 𝑦 ∈ (0[,]1){𝑦} ∈ 𝑆
36 eqid 2726 . . . . 5 (𝑦 ∈ (0[,]1) ↦ {𝑦}) = (𝑦 ∈ (0[,]1) ↦ {𝑦})
3736rnmptss 7118 . . . 4 (∀𝑦 ∈ (0[,]1){𝑦} ∈ 𝑆 → ran (𝑦 ∈ (0[,]1) ↦ {𝑦}) ⊆ 𝑆)
3835, 37ax-mp 5 . . 3 ran (𝑦 ∈ (0[,]1) ↦ {𝑦}) ⊆ 𝑆
398, 38eqsstri 4011 . 2 𝑋𝑆
408unieqi 4914 . . . . 5 𝑋 = ran (𝑦 ∈ (0[,]1) ↦ {𝑦})
41 vsnex 5422 . . . . . . . 8 {𝑦} ∈ V
4241rgenw 3059 . . . . . . 7 𝑦 ∈ (0[,]1){𝑦} ∈ V
43 dfiun3g 5957 . . . . . . 7 (∀𝑦 ∈ (0[,]1){𝑦} ∈ V → 𝑦 ∈ (0[,]1){𝑦} = ran (𝑦 ∈ (0[,]1) ↦ {𝑦}))
4442, 43ax-mp 5 . . . . . 6 𝑦 ∈ (0[,]1){𝑦} = ran (𝑦 ∈ (0[,]1) ↦ {𝑦})
4544eqcomi 2735 . . . . 5 ran (𝑦 ∈ (0[,]1) ↦ {𝑦}) = 𝑦 ∈ (0[,]1){𝑦}
46 iunid 5056 . . . . 5 𝑦 ∈ (0[,]1){𝑦} = (0[,]1)
4740, 45, 463eqtrri 2759 . . . 4 (0[,]1) = 𝑋
4847eqcomi 2735 . . 3 𝑋 = (0[,]1)
491, 5, 48salexct2 45627 . 2 ¬ 𝑋𝑆
507, 39, 493pm3.2i 1336 1 (𝑆 ∈ SAlg ∧ 𝑋𝑆 ∧ ¬ 𝑋𝑆)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wa 395  wo 844  w3a 1084   = wceq 1533  wtru 1534  wcel 2098  wral 3055  {crab 3426  Vcvv 3468  cdif 3940  wss 3943  𝒫 cpw 4597  {csn 4623   cuni 4902   ciun 4990   class class class wbr 5141  cmpt 5224  ran crn 5670  (class class class)co 7405  ωcom 7852  cdom 8939  Fincfn 8941  cr 11111  0cc0 11112  1c1 11113  cle 11253  2c2 12271  [,]cicc 13333  SAlgcsalg 45596
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2697  ax-rep 5278  ax-sep 5292  ax-nul 5299  ax-pow 5356  ax-pr 5420  ax-un 7722  ax-inf2 9638  ax-cc 10432  ax-cnex 11168  ax-resscn 11169  ax-1cn 11170  ax-icn 11171  ax-addcl 11172  ax-addrcl 11173  ax-mulcl 11174  ax-mulrcl 11175  ax-mulcom 11176  ax-addass 11177  ax-mulass 11178  ax-distr 11179  ax-i2m1 11180  ax-1ne0 11181  ax-1rid 11182  ax-rnegex 11183  ax-rrecex 11184  ax-cnre 11185  ax-pre-lttri 11186  ax-pre-lttrn 11187  ax-pre-ltadd 11188  ax-pre-mulgt0 11189  ax-pre-sup 11190
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2704  df-cleq 2718  df-clel 2804  df-nfc 2879  df-ne 2935  df-nel 3041  df-ral 3056  df-rex 3065  df-rmo 3370  df-reu 3371  df-rab 3427  df-v 3470  df-sbc 3773  df-csb 3889  df-dif 3946  df-un 3948  df-in 3950  df-ss 3960  df-pss 3962  df-nul 4318  df-if 4524  df-pw 4599  df-sn 4624  df-pr 4626  df-op 4630  df-uni 4903  df-int 4944  df-iun 4992  df-br 5142  df-opab 5204  df-mpt 5225  df-tr 5259  df-id 5567  df-eprel 5573  df-po 5581  df-so 5582  df-fr 5624  df-se 5625  df-we 5626  df-xp 5675  df-rel 5676  df-cnv 5677  df-co 5678  df-dm 5679  df-rn 5680  df-res 5681  df-ima 5682  df-pred 6294  df-ord 6361  df-on 6362  df-lim 6363  df-suc 6364  df-iota 6489  df-fun 6539  df-fn 6540  df-f 6541  df-f1 6542  df-fo 6543  df-f1o 6544  df-fv 6545  df-isom 6546  df-riota 7361  df-ov 7408  df-oprab 7409  df-mpo 7410  df-om 7853  df-1st 7974  df-2nd 7975  df-frecs 8267  df-wrecs 8298  df-recs 8372  df-rdg 8411  df-1o 8467  df-2o 8468  df-oadd 8471  df-omul 8472  df-er 8705  df-map 8824  df-pm 8825  df-en 8942  df-dom 8943  df-sdom 8944  df-fin 8945  df-sup 9439  df-inf 9440  df-oi 9507  df-card 9936  df-acn 9939  df-pnf 11254  df-mnf 11255  df-xr 11256  df-ltxr 11257  df-le 11258  df-sub 11450  df-neg 11451  df-div 11876  df-nn 12217  df-2 12279  df-3 12280  df-n0 12477  df-z 12563  df-uz 12827  df-q 12937  df-rp 12981  df-xneg 13098  df-xadd 13099  df-xmul 13100  df-ioo 13334  df-ioc 13335  df-ico 13336  df-icc 13337  df-fz 13491  df-fzo 13634  df-fl 13763  df-seq 13973  df-exp 14033  df-hash 14296  df-cj 15052  df-re 15053  df-im 15054  df-sqrt 15188  df-abs 15189  df-limsup 15421  df-clim 15438  df-rlim 15439  df-sum 15639  df-topgen 17398  df-psmet 21232  df-xmet 21233  df-met 21234  df-bl 21235  df-mopn 21236  df-top 22751  df-topon 22768  df-bases 22804  df-ntr 22879  df-salg 45597
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator