| Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > salexct3 | Structured version Visualization version GIF version | ||
| Description: An example of a sigma-algebra that's not closed under uncountable union. (Contributed by Glauco Siliprandi, 3-Jan-2021.) |
| Ref | Expression |
|---|---|
| salexct3.a | ⊢ 𝐴 = (0[,]2) |
| salexct3.s | ⊢ 𝑆 = {𝑥 ∈ 𝒫 𝐴 ∣ (𝑥 ≼ ω ∨ (𝐴 ∖ 𝑥) ≼ ω)} |
| salexct3.x | ⊢ 𝑋 = ran (𝑦 ∈ (0[,]1) ↦ {𝑦}) |
| Ref | Expression |
|---|---|
| salexct3 | ⊢ (𝑆 ∈ SAlg ∧ 𝑋 ⊆ 𝑆 ∧ ¬ ∪ 𝑋 ∈ 𝑆) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | salexct3.a | . . . . . 6 ⊢ 𝐴 = (0[,]2) | |
| 2 | ovex 7403 | . . . . . 6 ⊢ (0[,]2) ∈ V | |
| 3 | 1, 2 | eqeltri 2824 | . . . . 5 ⊢ 𝐴 ∈ V |
| 4 | 3 | a1i 11 | . . . 4 ⊢ (⊤ → 𝐴 ∈ V) |
| 5 | salexct3.s | . . . 4 ⊢ 𝑆 = {𝑥 ∈ 𝒫 𝐴 ∣ (𝑥 ≼ ω ∨ (𝐴 ∖ 𝑥) ≼ ω)} | |
| 6 | 4, 5 | salexct 46327 | . . 3 ⊢ (⊤ → 𝑆 ∈ SAlg) |
| 7 | 6 | mptru 1547 | . 2 ⊢ 𝑆 ∈ SAlg |
| 8 | salexct3.x | . . 3 ⊢ 𝑋 = ran (𝑦 ∈ (0[,]1) ↦ {𝑦}) | |
| 9 | 0re 11155 | . . . . . . . . . . . 12 ⊢ 0 ∈ ℝ | |
| 10 | 2re 12239 | . . . . . . . . . . . 12 ⊢ 2 ∈ ℝ | |
| 11 | 9, 10 | pm3.2i 470 | . . . . . . . . . . 11 ⊢ (0 ∈ ℝ ∧ 2 ∈ ℝ) |
| 12 | 9 | leidi 11691 | . . . . . . . . . . . 12 ⊢ 0 ≤ 0 |
| 13 | 1le2 12369 | . . . . . . . . . . . 12 ⊢ 1 ≤ 2 | |
| 14 | 12, 13 | pm3.2i 470 | . . . . . . . . . . 11 ⊢ (0 ≤ 0 ∧ 1 ≤ 2) |
| 15 | iccss 13354 | . . . . . . . . . . 11 ⊢ (((0 ∈ ℝ ∧ 2 ∈ ℝ) ∧ (0 ≤ 0 ∧ 1 ≤ 2)) → (0[,]1) ⊆ (0[,]2)) | |
| 16 | 11, 14, 15 | mp2an 692 | . . . . . . . . . 10 ⊢ (0[,]1) ⊆ (0[,]2) |
| 17 | id 22 | . . . . . . . . . 10 ⊢ (𝑦 ∈ (0[,]1) → 𝑦 ∈ (0[,]1)) | |
| 18 | 16, 17 | sselid 3941 | . . . . . . . . 9 ⊢ (𝑦 ∈ (0[,]1) → 𝑦 ∈ (0[,]2)) |
| 19 | 18, 1 | eleqtrrdi 2839 | . . . . . . . 8 ⊢ (𝑦 ∈ (0[,]1) → 𝑦 ∈ 𝐴) |
| 20 | snelpwi 5398 | . . . . . . . 8 ⊢ (𝑦 ∈ 𝐴 → {𝑦} ∈ 𝒫 𝐴) | |
| 21 | 19, 20 | syl 17 | . . . . . . 7 ⊢ (𝑦 ∈ (0[,]1) → {𝑦} ∈ 𝒫 𝐴) |
| 22 | snfi 8992 | . . . . . . . . . 10 ⊢ {𝑦} ∈ Fin | |
| 23 | fict 9585 | . . . . . . . . . 10 ⊢ ({𝑦} ∈ Fin → {𝑦} ≼ ω) | |
| 24 | 22, 23 | ax-mp 5 | . . . . . . . . 9 ⊢ {𝑦} ≼ ω |
| 25 | orc 867 | . . . . . . . . 9 ⊢ ({𝑦} ≼ ω → ({𝑦} ≼ ω ∨ (𝐴 ∖ {𝑦}) ≼ ω)) | |
| 26 | 24, 25 | ax-mp 5 | . . . . . . . 8 ⊢ ({𝑦} ≼ ω ∨ (𝐴 ∖ {𝑦}) ≼ ω) |
| 27 | 26 | a1i 11 | . . . . . . 7 ⊢ (𝑦 ∈ (0[,]1) → ({𝑦} ≼ ω ∨ (𝐴 ∖ {𝑦}) ≼ ω)) |
| 28 | 21, 27 | jca 511 | . . . . . 6 ⊢ (𝑦 ∈ (0[,]1) → ({𝑦} ∈ 𝒫 𝐴 ∧ ({𝑦} ≼ ω ∨ (𝐴 ∖ {𝑦}) ≼ ω))) |
| 29 | breq1 5105 | . . . . . . . 8 ⊢ (𝑥 = {𝑦} → (𝑥 ≼ ω ↔ {𝑦} ≼ ω)) | |
| 30 | difeq2 4079 | . . . . . . . . 9 ⊢ (𝑥 = {𝑦} → (𝐴 ∖ 𝑥) = (𝐴 ∖ {𝑦})) | |
| 31 | 30 | breq1d 5112 | . . . . . . . 8 ⊢ (𝑥 = {𝑦} → ((𝐴 ∖ 𝑥) ≼ ω ↔ (𝐴 ∖ {𝑦}) ≼ ω)) |
| 32 | 29, 31 | orbi12d 918 | . . . . . . 7 ⊢ (𝑥 = {𝑦} → ((𝑥 ≼ ω ∨ (𝐴 ∖ 𝑥) ≼ ω) ↔ ({𝑦} ≼ ω ∨ (𝐴 ∖ {𝑦}) ≼ ω))) |
| 33 | 32, 5 | elrab2 3659 | . . . . . 6 ⊢ ({𝑦} ∈ 𝑆 ↔ ({𝑦} ∈ 𝒫 𝐴 ∧ ({𝑦} ≼ ω ∨ (𝐴 ∖ {𝑦}) ≼ ω))) |
| 34 | 28, 33 | sylibr 234 | . . . . 5 ⊢ (𝑦 ∈ (0[,]1) → {𝑦} ∈ 𝑆) |
| 35 | 34 | rgen 3046 | . . . 4 ⊢ ∀𝑦 ∈ (0[,]1){𝑦} ∈ 𝑆 |
| 36 | eqid 2729 | . . . . 5 ⊢ (𝑦 ∈ (0[,]1) ↦ {𝑦}) = (𝑦 ∈ (0[,]1) ↦ {𝑦}) | |
| 37 | 36 | rnmptss 7078 | . . . 4 ⊢ (∀𝑦 ∈ (0[,]1){𝑦} ∈ 𝑆 → ran (𝑦 ∈ (0[,]1) ↦ {𝑦}) ⊆ 𝑆) |
| 38 | 35, 37 | ax-mp 5 | . . 3 ⊢ ran (𝑦 ∈ (0[,]1) ↦ {𝑦}) ⊆ 𝑆 |
| 39 | 8, 38 | eqsstri 3990 | . 2 ⊢ 𝑋 ⊆ 𝑆 |
| 40 | 8 | unieqi 4879 | . . . . 5 ⊢ ∪ 𝑋 = ∪ ran (𝑦 ∈ (0[,]1) ↦ {𝑦}) |
| 41 | vsnex 5384 | . . . . . . . 8 ⊢ {𝑦} ∈ V | |
| 42 | 41 | rgenw 3048 | . . . . . . 7 ⊢ ∀𝑦 ∈ (0[,]1){𝑦} ∈ V |
| 43 | dfiun3g 5921 | . . . . . . 7 ⊢ (∀𝑦 ∈ (0[,]1){𝑦} ∈ V → ∪ 𝑦 ∈ (0[,]1){𝑦} = ∪ ran (𝑦 ∈ (0[,]1) ↦ {𝑦})) | |
| 44 | 42, 43 | ax-mp 5 | . . . . . 6 ⊢ ∪ 𝑦 ∈ (0[,]1){𝑦} = ∪ ran (𝑦 ∈ (0[,]1) ↦ {𝑦}) |
| 45 | 44 | eqcomi 2738 | . . . . 5 ⊢ ∪ ran (𝑦 ∈ (0[,]1) ↦ {𝑦}) = ∪ 𝑦 ∈ (0[,]1){𝑦} |
| 46 | iunid 5019 | . . . . 5 ⊢ ∪ 𝑦 ∈ (0[,]1){𝑦} = (0[,]1) | |
| 47 | 40, 45, 46 | 3eqtrri 2757 | . . . 4 ⊢ (0[,]1) = ∪ 𝑋 |
| 48 | 47 | eqcomi 2738 | . . 3 ⊢ ∪ 𝑋 = (0[,]1) |
| 49 | 1, 5, 48 | salexct2 46332 | . 2 ⊢ ¬ ∪ 𝑋 ∈ 𝑆 |
| 50 | 7, 39, 49 | 3pm3.2i 1340 | 1 ⊢ (𝑆 ∈ SAlg ∧ 𝑋 ⊆ 𝑆 ∧ ¬ ∪ 𝑋 ∈ 𝑆) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 ∧ wa 395 ∨ wo 847 ∧ w3a 1086 = wceq 1540 ⊤wtru 1541 ∈ wcel 2109 ∀wral 3044 {crab 3402 Vcvv 3444 ∖ cdif 3908 ⊆ wss 3911 𝒫 cpw 4559 {csn 4585 ∪ cuni 4867 ∪ ciun 4951 class class class wbr 5102 ↦ cmpt 5183 ran crn 5632 (class class class)co 7370 ωcom 7823 ≼ cdom 8894 Fincfn 8896 ℝcr 11046 0cc0 11047 1c1 11048 ≤ cle 11188 2c2 12220 [,]cicc 13288 SAlgcsalg 46301 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5229 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7692 ax-inf2 9573 ax-cc 10367 ax-cnex 11103 ax-resscn 11104 ax-1cn 11105 ax-icn 11106 ax-addcl 11107 ax-addrcl 11108 ax-mulcl 11109 ax-mulrcl 11110 ax-mulcom 11111 ax-addass 11112 ax-mulass 11113 ax-distr 11114 ax-i2m1 11115 ax-1ne0 11116 ax-1rid 11117 ax-rnegex 11118 ax-rrecex 11119 ax-cnre 11120 ax-pre-lttri 11121 ax-pre-lttrn 11122 ax-pre-ltadd 11123 ax-pre-mulgt0 11124 ax-pre-sup 11125 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3351 df-reu 3352 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-pss 3931 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-int 4907 df-iun 4953 df-br 5103 df-opab 5165 df-mpt 5184 df-tr 5210 df-id 5526 df-eprel 5531 df-po 5539 df-so 5540 df-fr 5584 df-se 5585 df-we 5586 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-pred 6263 df-ord 6324 df-on 6325 df-lim 6326 df-suc 6327 df-iota 6453 df-fun 6502 df-fn 6503 df-f 6504 df-f1 6505 df-fo 6506 df-f1o 6507 df-fv 6508 df-isom 6509 df-riota 7327 df-ov 7373 df-oprab 7374 df-mpo 7375 df-om 7824 df-1st 7948 df-2nd 7949 df-frecs 8238 df-wrecs 8269 df-recs 8318 df-rdg 8356 df-1o 8412 df-2o 8413 df-oadd 8416 df-omul 8417 df-er 8649 df-map 8779 df-pm 8780 df-en 8897 df-dom 8898 df-sdom 8899 df-fin 8900 df-sup 9370 df-inf 9371 df-oi 9440 df-card 9871 df-acn 9874 df-pnf 11189 df-mnf 11190 df-xr 11191 df-ltxr 11192 df-le 11193 df-sub 11386 df-neg 11387 df-div 11815 df-nn 12166 df-2 12228 df-3 12229 df-n0 12422 df-z 12509 df-uz 12773 df-q 12887 df-rp 12931 df-xneg 13051 df-xadd 13052 df-xmul 13053 df-ioo 13289 df-ioc 13290 df-ico 13291 df-icc 13292 df-fz 13448 df-fzo 13595 df-fl 13733 df-seq 13946 df-exp 14006 df-hash 14275 df-cj 15043 df-re 15044 df-im 15045 df-sqrt 15179 df-abs 15180 df-limsup 15415 df-clim 15432 df-rlim 15433 df-sum 15631 df-topgen 17384 df-psmet 21290 df-xmet 21291 df-met 21292 df-bl 21293 df-mopn 21294 df-top 22816 df-topon 22833 df-bases 22868 df-ntr 22942 df-salg 46302 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |