Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > salexct3 | Structured version Visualization version GIF version |
Description: An example of a sigma-algebra that's not closed under uncountable union. (Contributed by Glauco Siliprandi, 3-Jan-2021.) |
Ref | Expression |
---|---|
salexct3.a | ⊢ 𝐴 = (0[,]2) |
salexct3.s | ⊢ 𝑆 = {𝑥 ∈ 𝒫 𝐴 ∣ (𝑥 ≼ ω ∨ (𝐴 ∖ 𝑥) ≼ ω)} |
salexct3.x | ⊢ 𝑋 = ran (𝑦 ∈ (0[,]1) ↦ {𝑦}) |
Ref | Expression |
---|---|
salexct3 | ⊢ (𝑆 ∈ SAlg ∧ 𝑋 ⊆ 𝑆 ∧ ¬ ∪ 𝑋 ∈ 𝑆) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | salexct3.a | . . . . . 6 ⊢ 𝐴 = (0[,]2) | |
2 | ovex 7308 | . . . . . 6 ⊢ (0[,]2) ∈ V | |
3 | 1, 2 | eqeltri 2835 | . . . . 5 ⊢ 𝐴 ∈ V |
4 | 3 | a1i 11 | . . . 4 ⊢ (⊤ → 𝐴 ∈ V) |
5 | salexct3.s | . . . 4 ⊢ 𝑆 = {𝑥 ∈ 𝒫 𝐴 ∣ (𝑥 ≼ ω ∨ (𝐴 ∖ 𝑥) ≼ ω)} | |
6 | 4, 5 | salexct 43873 | . . 3 ⊢ (⊤ → 𝑆 ∈ SAlg) |
7 | 6 | mptru 1546 | . 2 ⊢ 𝑆 ∈ SAlg |
8 | salexct3.x | . . 3 ⊢ 𝑋 = ran (𝑦 ∈ (0[,]1) ↦ {𝑦}) | |
9 | 0re 10977 | . . . . . . . . . . . 12 ⊢ 0 ∈ ℝ | |
10 | 2re 12047 | . . . . . . . . . . . 12 ⊢ 2 ∈ ℝ | |
11 | 9, 10 | pm3.2i 471 | . . . . . . . . . . 11 ⊢ (0 ∈ ℝ ∧ 2 ∈ ℝ) |
12 | 9 | leidi 11509 | . . . . . . . . . . . 12 ⊢ 0 ≤ 0 |
13 | 1le2 12182 | . . . . . . . . . . . 12 ⊢ 1 ≤ 2 | |
14 | 12, 13 | pm3.2i 471 | . . . . . . . . . . 11 ⊢ (0 ≤ 0 ∧ 1 ≤ 2) |
15 | iccss 13147 | . . . . . . . . . . 11 ⊢ (((0 ∈ ℝ ∧ 2 ∈ ℝ) ∧ (0 ≤ 0 ∧ 1 ≤ 2)) → (0[,]1) ⊆ (0[,]2)) | |
16 | 11, 14, 15 | mp2an 689 | . . . . . . . . . 10 ⊢ (0[,]1) ⊆ (0[,]2) |
17 | id 22 | . . . . . . . . . 10 ⊢ (𝑦 ∈ (0[,]1) → 𝑦 ∈ (0[,]1)) | |
18 | 16, 17 | sselid 3919 | . . . . . . . . 9 ⊢ (𝑦 ∈ (0[,]1) → 𝑦 ∈ (0[,]2)) |
19 | 18, 1 | eleqtrrdi 2850 | . . . . . . . 8 ⊢ (𝑦 ∈ (0[,]1) → 𝑦 ∈ 𝐴) |
20 | snelpwi 5360 | . . . . . . . 8 ⊢ (𝑦 ∈ 𝐴 → {𝑦} ∈ 𝒫 𝐴) | |
21 | 19, 20 | syl 17 | . . . . . . 7 ⊢ (𝑦 ∈ (0[,]1) → {𝑦} ∈ 𝒫 𝐴) |
22 | snfi 8834 | . . . . . . . . . 10 ⊢ {𝑦} ∈ Fin | |
23 | fict 9411 | . . . . . . . . . 10 ⊢ ({𝑦} ∈ Fin → {𝑦} ≼ ω) | |
24 | 22, 23 | ax-mp 5 | . . . . . . . . 9 ⊢ {𝑦} ≼ ω |
25 | orc 864 | . . . . . . . . 9 ⊢ ({𝑦} ≼ ω → ({𝑦} ≼ ω ∨ (𝐴 ∖ {𝑦}) ≼ ω)) | |
26 | 24, 25 | ax-mp 5 | . . . . . . . 8 ⊢ ({𝑦} ≼ ω ∨ (𝐴 ∖ {𝑦}) ≼ ω) |
27 | 26 | a1i 11 | . . . . . . 7 ⊢ (𝑦 ∈ (0[,]1) → ({𝑦} ≼ ω ∨ (𝐴 ∖ {𝑦}) ≼ ω)) |
28 | 21, 27 | jca 512 | . . . . . 6 ⊢ (𝑦 ∈ (0[,]1) → ({𝑦} ∈ 𝒫 𝐴 ∧ ({𝑦} ≼ ω ∨ (𝐴 ∖ {𝑦}) ≼ ω))) |
29 | breq1 5077 | . . . . . . . 8 ⊢ (𝑥 = {𝑦} → (𝑥 ≼ ω ↔ {𝑦} ≼ ω)) | |
30 | difeq2 4051 | . . . . . . . . 9 ⊢ (𝑥 = {𝑦} → (𝐴 ∖ 𝑥) = (𝐴 ∖ {𝑦})) | |
31 | 30 | breq1d 5084 | . . . . . . . 8 ⊢ (𝑥 = {𝑦} → ((𝐴 ∖ 𝑥) ≼ ω ↔ (𝐴 ∖ {𝑦}) ≼ ω)) |
32 | 29, 31 | orbi12d 916 | . . . . . . 7 ⊢ (𝑥 = {𝑦} → ((𝑥 ≼ ω ∨ (𝐴 ∖ 𝑥) ≼ ω) ↔ ({𝑦} ≼ ω ∨ (𝐴 ∖ {𝑦}) ≼ ω))) |
33 | 32, 5 | elrab2 3627 | . . . . . 6 ⊢ ({𝑦} ∈ 𝑆 ↔ ({𝑦} ∈ 𝒫 𝐴 ∧ ({𝑦} ≼ ω ∨ (𝐴 ∖ {𝑦}) ≼ ω))) |
34 | 28, 33 | sylibr 233 | . . . . 5 ⊢ (𝑦 ∈ (0[,]1) → {𝑦} ∈ 𝑆) |
35 | 34 | rgen 3074 | . . . 4 ⊢ ∀𝑦 ∈ (0[,]1){𝑦} ∈ 𝑆 |
36 | eqid 2738 | . . . . 5 ⊢ (𝑦 ∈ (0[,]1) ↦ {𝑦}) = (𝑦 ∈ (0[,]1) ↦ {𝑦}) | |
37 | 36 | rnmptss 6996 | . . . 4 ⊢ (∀𝑦 ∈ (0[,]1){𝑦} ∈ 𝑆 → ran (𝑦 ∈ (0[,]1) ↦ {𝑦}) ⊆ 𝑆) |
38 | 35, 37 | ax-mp 5 | . . 3 ⊢ ran (𝑦 ∈ (0[,]1) ↦ {𝑦}) ⊆ 𝑆 |
39 | 8, 38 | eqsstri 3955 | . 2 ⊢ 𝑋 ⊆ 𝑆 |
40 | 8 | unieqi 4852 | . . . . 5 ⊢ ∪ 𝑋 = ∪ ran (𝑦 ∈ (0[,]1) ↦ {𝑦}) |
41 | snex 5354 | . . . . . . . 8 ⊢ {𝑦} ∈ V | |
42 | 41 | rgenw 3076 | . . . . . . 7 ⊢ ∀𝑦 ∈ (0[,]1){𝑦} ∈ V |
43 | dfiun3g 5873 | . . . . . . 7 ⊢ (∀𝑦 ∈ (0[,]1){𝑦} ∈ V → ∪ 𝑦 ∈ (0[,]1){𝑦} = ∪ ran (𝑦 ∈ (0[,]1) ↦ {𝑦})) | |
44 | 42, 43 | ax-mp 5 | . . . . . 6 ⊢ ∪ 𝑦 ∈ (0[,]1){𝑦} = ∪ ran (𝑦 ∈ (0[,]1) ↦ {𝑦}) |
45 | 44 | eqcomi 2747 | . . . . 5 ⊢ ∪ ran (𝑦 ∈ (0[,]1) ↦ {𝑦}) = ∪ 𝑦 ∈ (0[,]1){𝑦} |
46 | iunid 4990 | . . . . 5 ⊢ ∪ 𝑦 ∈ (0[,]1){𝑦} = (0[,]1) | |
47 | 40, 45, 46 | 3eqtrri 2771 | . . . 4 ⊢ (0[,]1) = ∪ 𝑋 |
48 | 47 | eqcomi 2747 | . . 3 ⊢ ∪ 𝑋 = (0[,]1) |
49 | 1, 5, 48 | salexct2 43878 | . 2 ⊢ ¬ ∪ 𝑋 ∈ 𝑆 |
50 | 7, 39, 49 | 3pm3.2i 1338 | 1 ⊢ (𝑆 ∈ SAlg ∧ 𝑋 ⊆ 𝑆 ∧ ¬ ∪ 𝑋 ∈ 𝑆) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ∧ wa 396 ∨ wo 844 ∧ w3a 1086 = wceq 1539 ⊤wtru 1540 ∈ wcel 2106 ∀wral 3064 {crab 3068 Vcvv 3432 ∖ cdif 3884 ⊆ wss 3887 𝒫 cpw 4533 {csn 4561 ∪ cuni 4839 ∪ ciun 4924 class class class wbr 5074 ↦ cmpt 5157 ran crn 5590 (class class class)co 7275 ωcom 7712 ≼ cdom 8731 Fincfn 8733 ℝcr 10870 0cc0 10871 1c1 10872 ≤ cle 11010 2c2 12028 [,]cicc 13082 SAlgcsalg 43849 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-rep 5209 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 ax-inf2 9399 ax-cc 10191 ax-cnex 10927 ax-resscn 10928 ax-1cn 10929 ax-icn 10930 ax-addcl 10931 ax-addrcl 10932 ax-mulcl 10933 ax-mulrcl 10934 ax-mulcom 10935 ax-addass 10936 ax-mulass 10937 ax-distr 10938 ax-i2m1 10939 ax-1ne0 10940 ax-1rid 10941 ax-rnegex 10942 ax-rrecex 10943 ax-cnre 10944 ax-pre-lttri 10945 ax-pre-lttrn 10946 ax-pre-ltadd 10947 ax-pre-mulgt0 10948 ax-pre-sup 10949 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-nel 3050 df-ral 3069 df-rex 3070 df-rmo 3071 df-reu 3072 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-pss 3906 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-int 4880 df-iun 4926 df-br 5075 df-opab 5137 df-mpt 5158 df-tr 5192 df-id 5489 df-eprel 5495 df-po 5503 df-so 5504 df-fr 5544 df-se 5545 df-we 5546 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-pred 6202 df-ord 6269 df-on 6270 df-lim 6271 df-suc 6272 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-isom 6442 df-riota 7232 df-ov 7278 df-oprab 7279 df-mpo 7280 df-om 7713 df-1st 7831 df-2nd 7832 df-frecs 8097 df-wrecs 8128 df-recs 8202 df-rdg 8241 df-1o 8297 df-2o 8298 df-oadd 8301 df-omul 8302 df-er 8498 df-map 8617 df-pm 8618 df-en 8734 df-dom 8735 df-sdom 8736 df-fin 8737 df-sup 9201 df-inf 9202 df-oi 9269 df-card 9697 df-acn 9700 df-pnf 11011 df-mnf 11012 df-xr 11013 df-ltxr 11014 df-le 11015 df-sub 11207 df-neg 11208 df-div 11633 df-nn 11974 df-2 12036 df-3 12037 df-n0 12234 df-z 12320 df-uz 12583 df-q 12689 df-rp 12731 df-xneg 12848 df-xadd 12849 df-xmul 12850 df-ioo 13083 df-ioc 13084 df-ico 13085 df-icc 13086 df-fz 13240 df-fzo 13383 df-fl 13512 df-seq 13722 df-exp 13783 df-hash 14045 df-cj 14810 df-re 14811 df-im 14812 df-sqrt 14946 df-abs 14947 df-limsup 15180 df-clim 15197 df-rlim 15198 df-sum 15398 df-topgen 17154 df-psmet 20589 df-xmet 20590 df-met 20591 df-bl 20592 df-mopn 20593 df-top 22043 df-topon 22060 df-bases 22096 df-ntr 22171 df-salg 43850 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |