Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  salexct3 Structured version   Visualization version   GIF version

Theorem salexct3 41072
Description: An example of a sigma-algebra that's not closed under uncountable union. (Contributed by Glauco Siliprandi, 3-Jan-2021.)
Hypotheses
Ref Expression
salexct3.a 𝐴 = (0[,]2)
salexct3.s 𝑆 = {𝑥 ∈ 𝒫 𝐴 ∣ (𝑥 ≼ ω ∨ (𝐴𝑥) ≼ ω)}
salexct3.x 𝑋 = ran (𝑦 ∈ (0[,]1) ↦ {𝑦})
Assertion
Ref Expression
salexct3 (𝑆 ∈ SAlg ∧ 𝑋𝑆 ∧ ¬ 𝑋𝑆)
Distinct variable groups:   𝑥,𝐴   𝑥,𝑆,𝑦   𝑥,𝑋
Allowed substitution hints:   𝐴(𝑦)   𝑋(𝑦)

Proof of Theorem salexct3
StepHypRef Expression
1 salexct3.a . . . . . 6 𝐴 = (0[,]2)
2 ovex 6827 . . . . . 6 (0[,]2) ∈ V
31, 2eqeltri 2846 . . . . 5 𝐴 ∈ V
43a1i 11 . . . 4 (⊤ → 𝐴 ∈ V)
5 salexct3.s . . . 4 𝑆 = {𝑥 ∈ 𝒫 𝐴 ∣ (𝑥 ≼ ω ∨ (𝐴𝑥) ≼ ω)}
64, 5salexct 41064 . . 3 (⊤ → 𝑆 ∈ SAlg)
76trud 1641 . 2 𝑆 ∈ SAlg
8 salexct3.x . . 3 𝑋 = ran (𝑦 ∈ (0[,]1) ↦ {𝑦})
9 0re 10246 . . . . . . . . . . . 12 0 ∈ ℝ
10 2re 11296 . . . . . . . . . . . 12 2 ∈ ℝ
119, 10pm3.2i 456 . . . . . . . . . . 11 (0 ∈ ℝ ∧ 2 ∈ ℝ)
129leidi 10768 . . . . . . . . . . . 12 0 ≤ 0
13 1le2 11448 . . . . . . . . . . . 12 1 ≤ 2
1412, 13pm3.2i 456 . . . . . . . . . . 11 (0 ≤ 0 ∧ 1 ≤ 2)
15 iccss 12446 . . . . . . . . . . 11 (((0 ∈ ℝ ∧ 2 ∈ ℝ) ∧ (0 ≤ 0 ∧ 1 ≤ 2)) → (0[,]1) ⊆ (0[,]2))
1611, 14, 15mp2an 672 . . . . . . . . . 10 (0[,]1) ⊆ (0[,]2)
17 id 22 . . . . . . . . . 10 (𝑦 ∈ (0[,]1) → 𝑦 ∈ (0[,]1))
1816, 17sseldi 3750 . . . . . . . . 9 (𝑦 ∈ (0[,]1) → 𝑦 ∈ (0[,]2))
1918, 1syl6eleqr 2861 . . . . . . . 8 (𝑦 ∈ (0[,]1) → 𝑦𝐴)
20 snelpwi 5041 . . . . . . . 8 (𝑦𝐴 → {𝑦} ∈ 𝒫 𝐴)
2119, 20syl 17 . . . . . . 7 (𝑦 ∈ (0[,]1) → {𝑦} ∈ 𝒫 𝐴)
22 snfi 8198 . . . . . . . . . 10 {𝑦} ∈ Fin
23 fict 8718 . . . . . . . . . 10 ({𝑦} ∈ Fin → {𝑦} ≼ ω)
2422, 23ax-mp 5 . . . . . . . . 9 {𝑦} ≼ ω
25 orc 856 . . . . . . . . 9 ({𝑦} ≼ ω → ({𝑦} ≼ ω ∨ (𝐴 ∖ {𝑦}) ≼ ω))
2624, 25ax-mp 5 . . . . . . . 8 ({𝑦} ≼ ω ∨ (𝐴 ∖ {𝑦}) ≼ ω)
2726a1i 11 . . . . . . 7 (𝑦 ∈ (0[,]1) → ({𝑦} ≼ ω ∨ (𝐴 ∖ {𝑦}) ≼ ω))
2821, 27jca 501 . . . . . 6 (𝑦 ∈ (0[,]1) → ({𝑦} ∈ 𝒫 𝐴 ∧ ({𝑦} ≼ ω ∨ (𝐴 ∖ {𝑦}) ≼ ω)))
29 breq1 4790 . . . . . . . 8 (𝑥 = {𝑦} → (𝑥 ≼ ω ↔ {𝑦} ≼ ω))
30 difeq2 3873 . . . . . . . . 9 (𝑥 = {𝑦} → (𝐴𝑥) = (𝐴 ∖ {𝑦}))
3130breq1d 4797 . . . . . . . 8 (𝑥 = {𝑦} → ((𝐴𝑥) ≼ ω ↔ (𝐴 ∖ {𝑦}) ≼ ω))
3229, 31orbi12d 904 . . . . . . 7 (𝑥 = {𝑦} → ((𝑥 ≼ ω ∨ (𝐴𝑥) ≼ ω) ↔ ({𝑦} ≼ ω ∨ (𝐴 ∖ {𝑦}) ≼ ω)))
3332, 5elrab2 3518 . . . . . 6 ({𝑦} ∈ 𝑆 ↔ ({𝑦} ∈ 𝒫 𝐴 ∧ ({𝑦} ≼ ω ∨ (𝐴 ∖ {𝑦}) ≼ ω)))
3428, 33sylibr 224 . . . . 5 (𝑦 ∈ (0[,]1) → {𝑦} ∈ 𝑆)
3534rgen 3071 . . . 4 𝑦 ∈ (0[,]1){𝑦} ∈ 𝑆
36 eqid 2771 . . . . 5 (𝑦 ∈ (0[,]1) ↦ {𝑦}) = (𝑦 ∈ (0[,]1) ↦ {𝑦})
3736rnmptss 6537 . . . 4 (∀𝑦 ∈ (0[,]1){𝑦} ∈ 𝑆 → ran (𝑦 ∈ (0[,]1) ↦ {𝑦}) ⊆ 𝑆)
3835, 37ax-mp 5 . . 3 ran (𝑦 ∈ (0[,]1) ↦ {𝑦}) ⊆ 𝑆
398, 38eqsstri 3784 . 2 𝑋𝑆
408unieqi 4584 . . . . 5 𝑋 = ran (𝑦 ∈ (0[,]1) ↦ {𝑦})
41 snex 5037 . . . . . . . 8 {𝑦} ∈ V
4241rgenw 3073 . . . . . . 7 𝑦 ∈ (0[,]1){𝑦} ∈ V
43 dfiun3g 5515 . . . . . . 7 (∀𝑦 ∈ (0[,]1){𝑦} ∈ V → 𝑦 ∈ (0[,]1){𝑦} = ran (𝑦 ∈ (0[,]1) ↦ {𝑦}))
4442, 43ax-mp 5 . . . . . 6 𝑦 ∈ (0[,]1){𝑦} = ran (𝑦 ∈ (0[,]1) ↦ {𝑦})
4544eqcomi 2780 . . . . 5 ran (𝑦 ∈ (0[,]1) ↦ {𝑦}) = 𝑦 ∈ (0[,]1){𝑦}
46 iunid 4710 . . . . 5 𝑦 ∈ (0[,]1){𝑦} = (0[,]1)
4740, 45, 463eqtrri 2798 . . . 4 (0[,]1) = 𝑋
4847eqcomi 2780 . . 3 𝑋 = (0[,]1)
491, 5, 48salexct2 41069 . 2 ¬ 𝑋𝑆
507, 39, 493pm3.2i 1423 1 (𝑆 ∈ SAlg ∧ 𝑋𝑆 ∧ ¬ 𝑋𝑆)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wa 382  wo 836  w3a 1071   = wceq 1631  wtru 1632  wcel 2145  wral 3061  {crab 3065  Vcvv 3351  cdif 3720  wss 3723  𝒫 cpw 4298  {csn 4317   cuni 4575   ciun 4655   class class class wbr 4787  cmpt 4864  ran crn 5251  (class class class)co 6796  ωcom 7216  cdom 8111  Fincfn 8113  cr 10141  0cc0 10142  1c1 10143  cle 10281  2c2 11276  [,]cicc 12383  SAlgcsalg 41040
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1870  ax-4 1885  ax-5 1991  ax-6 2057  ax-7 2093  ax-8 2147  ax-9 2154  ax-10 2174  ax-11 2190  ax-12 2203  ax-13 2408  ax-ext 2751  ax-rep 4905  ax-sep 4916  ax-nul 4924  ax-pow 4975  ax-pr 5035  ax-un 7100  ax-inf2 8706  ax-cc 9463  ax-cnex 10198  ax-resscn 10199  ax-1cn 10200  ax-icn 10201  ax-addcl 10202  ax-addrcl 10203  ax-mulcl 10204  ax-mulrcl 10205  ax-mulcom 10206  ax-addass 10207  ax-mulass 10208  ax-distr 10209  ax-i2m1 10210  ax-1ne0 10211  ax-1rid 10212  ax-rnegex 10213  ax-rrecex 10214  ax-cnre 10215  ax-pre-lttri 10216  ax-pre-lttrn 10217  ax-pre-ltadd 10218  ax-pre-mulgt0 10219  ax-pre-sup 10220
This theorem depends on definitions:  df-bi 197  df-an 383  df-or 837  df-3or 1072  df-3an 1073  df-tru 1634  df-fal 1637  df-ex 1853  df-nf 1858  df-sb 2050  df-eu 2622  df-mo 2623  df-clab 2758  df-cleq 2764  df-clel 2767  df-nfc 2902  df-ne 2944  df-nel 3047  df-ral 3066  df-rex 3067  df-reu 3068  df-rmo 3069  df-rab 3070  df-v 3353  df-sbc 3588  df-csb 3683  df-dif 3726  df-un 3728  df-in 3730  df-ss 3737  df-pss 3739  df-nul 4064  df-if 4227  df-pw 4300  df-sn 4318  df-pr 4320  df-tp 4322  df-op 4324  df-uni 4576  df-int 4613  df-iun 4657  df-br 4788  df-opab 4848  df-mpt 4865  df-tr 4888  df-id 5158  df-eprel 5163  df-po 5171  df-so 5172  df-fr 5209  df-se 5210  df-we 5211  df-xp 5256  df-rel 5257  df-cnv 5258  df-co 5259  df-dm 5260  df-rn 5261  df-res 5262  df-ima 5263  df-pred 5822  df-ord 5868  df-on 5869  df-lim 5870  df-suc 5871  df-iota 5993  df-fun 6032  df-fn 6033  df-f 6034  df-f1 6035  df-fo 6036  df-f1o 6037  df-fv 6038  df-isom 6039  df-riota 6757  df-ov 6799  df-oprab 6800  df-mpt2 6801  df-om 7217  df-1st 7319  df-2nd 7320  df-wrecs 7563  df-recs 7625  df-rdg 7663  df-1o 7717  df-2o 7718  df-oadd 7721  df-omul 7722  df-er 7900  df-map 8015  df-pm 8016  df-en 8114  df-dom 8115  df-sdom 8116  df-fin 8117  df-sup 8508  df-inf 8509  df-oi 8575  df-card 8969  df-acn 8972  df-pnf 10282  df-mnf 10283  df-xr 10284  df-ltxr 10285  df-le 10286  df-sub 10474  df-neg 10475  df-div 10891  df-nn 11227  df-2 11285  df-3 11286  df-n0 11500  df-z 11585  df-uz 11894  df-q 11997  df-rp 12036  df-xneg 12151  df-xadd 12152  df-xmul 12153  df-ioo 12384  df-ioc 12385  df-ico 12386  df-icc 12387  df-fz 12534  df-fzo 12674  df-fl 12801  df-seq 13009  df-exp 13068  df-hash 13322  df-cj 14047  df-re 14048  df-im 14049  df-sqrt 14183  df-abs 14184  df-limsup 14410  df-clim 14427  df-rlim 14428  df-sum 14625  df-topgen 16312  df-psmet 19953  df-xmet 19954  df-met 19955  df-bl 19956  df-mopn 19957  df-top 20919  df-topon 20936  df-bases 20971  df-ntr 21045  df-salg 41041
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator