![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > iswatN | Structured version Visualization version GIF version |
Description: The predicate "is a W atom" (corresponding to fiducial atom π·). (Contributed by NM, 26-Jan-2012.) (New usage is discouraged.) |
Ref | Expression |
---|---|
watomfval.a | β’ π΄ = (AtomsβπΎ) |
watomfval.p | β’ π = (β₯πβπΎ) |
watomfval.w | β’ π = (WAtomsβπΎ) |
Ref | Expression |
---|---|
iswatN | β’ ((πΎ β π΅ β§ π· β π΄) β (π β (πβπ·) β (π β π΄ β§ Β¬ π β ((β₯πβπΎ)β{π·})))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | watomfval.a | . . . 4 β’ π΄ = (AtomsβπΎ) | |
2 | watomfval.p | . . . 4 β’ π = (β₯πβπΎ) | |
3 | watomfval.w | . . . 4 β’ π = (WAtomsβπΎ) | |
4 | 1, 2, 3 | watvalN 39375 | . . 3 β’ ((πΎ β π΅ β§ π· β π΄) β (πβπ·) = (π΄ β ((β₯πβπΎ)β{π·}))) |
5 | 4 | eleq2d 2813 | . 2 β’ ((πΎ β π΅ β§ π· β π΄) β (π β (πβπ·) β π β (π΄ β ((β₯πβπΎ)β{π·})))) |
6 | eldif 3953 | . 2 β’ (π β (π΄ β ((β₯πβπΎ)β{π·})) β (π β π΄ β§ Β¬ π β ((β₯πβπΎ)β{π·}))) | |
7 | 5, 6 | bitrdi 287 | 1 β’ ((πΎ β π΅ β§ π· β π΄) β (π β (πβπ·) β (π β π΄ β§ Β¬ π β ((β₯πβπΎ)β{π·})))) |
Colors of variables: wff setvar class |
Syntax hints: Β¬ wn 3 β wi 4 β wb 205 β§ wa 395 = wceq 1533 β wcel 2098 β cdif 3940 {csn 4623 βcfv 6536 Atomscatm 38644 β₯πcpolN 39284 WAtomscwpointsN 39368 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2697 ax-rep 5278 ax-sep 5292 ax-nul 5299 ax-pr 5420 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2704 df-cleq 2718 df-clel 2804 df-nfc 2879 df-ne 2935 df-ral 3056 df-rex 3065 df-reu 3371 df-rab 3427 df-v 3470 df-sbc 3773 df-csb 3889 df-dif 3946 df-un 3948 df-in 3950 df-ss 3960 df-nul 4318 df-if 4524 df-sn 4624 df-pr 4626 df-op 4630 df-uni 4903 df-iun 4992 df-br 5142 df-opab 5204 df-mpt 5225 df-id 5567 df-xp 5675 df-rel 5676 df-cnv 5677 df-co 5678 df-dm 5679 df-rn 5680 df-res 5681 df-ima 5682 df-iota 6488 df-fun 6538 df-fn 6539 df-f 6540 df-f1 6541 df-fo 6542 df-f1o 6543 df-fv 6544 df-watsN 39372 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |