| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > iswatN | Structured version Visualization version GIF version | ||
| Description: The predicate "is a W atom" (corresponding to fiducial atom 𝐷). (Contributed by NM, 26-Jan-2012.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| watomfval.a | ⊢ 𝐴 = (Atoms‘𝐾) |
| watomfval.p | ⊢ 𝑃 = (⊥𝑃‘𝐾) |
| watomfval.w | ⊢ 𝑊 = (WAtoms‘𝐾) |
| Ref | Expression |
|---|---|
| iswatN | ⊢ ((𝐾 ∈ 𝐵 ∧ 𝐷 ∈ 𝐴) → (𝑃 ∈ (𝑊‘𝐷) ↔ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ∈ ((⊥𝑃‘𝐾)‘{𝐷})))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | watomfval.a | . . . 4 ⊢ 𝐴 = (Atoms‘𝐾) | |
| 2 | watomfval.p | . . . 4 ⊢ 𝑃 = (⊥𝑃‘𝐾) | |
| 3 | watomfval.w | . . . 4 ⊢ 𝑊 = (WAtoms‘𝐾) | |
| 4 | 1, 2, 3 | watvalN 40032 | . . 3 ⊢ ((𝐾 ∈ 𝐵 ∧ 𝐷 ∈ 𝐴) → (𝑊‘𝐷) = (𝐴 ∖ ((⊥𝑃‘𝐾)‘{𝐷}))) |
| 5 | 4 | eleq2d 2817 | . 2 ⊢ ((𝐾 ∈ 𝐵 ∧ 𝐷 ∈ 𝐴) → (𝑃 ∈ (𝑊‘𝐷) ↔ 𝑃 ∈ (𝐴 ∖ ((⊥𝑃‘𝐾)‘{𝐷})))) |
| 6 | eldif 3907 | . 2 ⊢ (𝑃 ∈ (𝐴 ∖ ((⊥𝑃‘𝐾)‘{𝐷})) ↔ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ∈ ((⊥𝑃‘𝐾)‘{𝐷}))) | |
| 7 | 5, 6 | bitrdi 287 | 1 ⊢ ((𝐾 ∈ 𝐵 ∧ 𝐷 ∈ 𝐴) → (𝑃 ∈ (𝑊‘𝐷) ↔ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ∈ ((⊥𝑃‘𝐾)‘{𝐷})))) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1541 ∈ wcel 2111 ∖ cdif 3894 {csn 4571 ‘cfv 6476 Atomscatm 39302 ⊥𝑃cpolN 39941 WAtomscwpointsN 40025 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5212 ax-sep 5229 ax-nul 5239 ax-pr 5365 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4279 df-if 4471 df-sn 4572 df-pr 4574 df-op 4578 df-uni 4855 df-iun 4938 df-br 5087 df-opab 5149 df-mpt 5168 df-id 5506 df-xp 5617 df-rel 5618 df-cnv 5619 df-co 5620 df-dm 5621 df-rn 5622 df-res 5623 df-ima 5624 df-iota 6432 df-fun 6478 df-fn 6479 df-f 6480 df-f1 6481 df-fo 6482 df-f1o 6483 df-fv 6484 df-watsN 40029 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |