| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > iswatN | Structured version Visualization version GIF version | ||
| Description: The predicate "is a W atom" (corresponding to fiducial atom 𝐷). (Contributed by NM, 26-Jan-2012.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| watomfval.a | ⊢ 𝐴 = (Atoms‘𝐾) |
| watomfval.p | ⊢ 𝑃 = (⊥𝑃‘𝐾) |
| watomfval.w | ⊢ 𝑊 = (WAtoms‘𝐾) |
| Ref | Expression |
|---|---|
| iswatN | ⊢ ((𝐾 ∈ 𝐵 ∧ 𝐷 ∈ 𝐴) → (𝑃 ∈ (𝑊‘𝐷) ↔ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ∈ ((⊥𝑃‘𝐾)‘{𝐷})))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | watomfval.a | . . . 4 ⊢ 𝐴 = (Atoms‘𝐾) | |
| 2 | watomfval.p | . . . 4 ⊢ 𝑃 = (⊥𝑃‘𝐾) | |
| 3 | watomfval.w | . . . 4 ⊢ 𝑊 = (WAtoms‘𝐾) | |
| 4 | 1, 2, 3 | watvalN 39979 | . . 3 ⊢ ((𝐾 ∈ 𝐵 ∧ 𝐷 ∈ 𝐴) → (𝑊‘𝐷) = (𝐴 ∖ ((⊥𝑃‘𝐾)‘{𝐷}))) |
| 5 | 4 | eleq2d 2815 | . 2 ⊢ ((𝐾 ∈ 𝐵 ∧ 𝐷 ∈ 𝐴) → (𝑃 ∈ (𝑊‘𝐷) ↔ 𝑃 ∈ (𝐴 ∖ ((⊥𝑃‘𝐾)‘{𝐷})))) |
| 6 | eldif 3932 | . 2 ⊢ (𝑃 ∈ (𝐴 ∖ ((⊥𝑃‘𝐾)‘{𝐷})) ↔ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ∈ ((⊥𝑃‘𝐾)‘{𝐷}))) | |
| 7 | 5, 6 | bitrdi 287 | 1 ⊢ ((𝐾 ∈ 𝐵 ∧ 𝐷 ∈ 𝐴) → (𝑃 ∈ (𝑊‘𝐷) ↔ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ∈ ((⊥𝑃‘𝐾)‘{𝐷})))) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∖ cdif 3919 {csn 4597 ‘cfv 6519 Atomscatm 39248 ⊥𝑃cpolN 39888 WAtomscwpointsN 39972 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5242 ax-sep 5259 ax-nul 5269 ax-pr 5395 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2880 df-ne 2928 df-ral 3047 df-rex 3056 df-reu 3358 df-rab 3412 df-v 3457 df-sbc 3762 df-csb 3871 df-dif 3925 df-un 3927 df-in 3929 df-ss 3939 df-nul 4305 df-if 4497 df-sn 4598 df-pr 4600 df-op 4604 df-uni 4880 df-iun 4965 df-br 5116 df-opab 5178 df-mpt 5197 df-id 5541 df-xp 5652 df-rel 5653 df-cnv 5654 df-co 5655 df-dm 5656 df-rn 5657 df-res 5658 df-ima 5659 df-iota 6472 df-fun 6521 df-fn 6522 df-f 6523 df-f1 6524 df-fo 6525 df-f1o 6526 df-fv 6527 df-watsN 39976 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |