![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > iswatN | Structured version Visualization version GIF version |
Description: The predicate "is a W atom" (corresponding to fiducial atom 𝐷). (Contributed by NM, 26-Jan-2012.) (New usage is discouraged.) |
Ref | Expression |
---|---|
watomfval.a | ⊢ 𝐴 = (Atoms‘𝐾) |
watomfval.p | ⊢ 𝑃 = (⊥𝑃‘𝐾) |
watomfval.w | ⊢ 𝑊 = (WAtoms‘𝐾) |
Ref | Expression |
---|---|
iswatN | ⊢ ((𝐾 ∈ 𝐵 ∧ 𝐷 ∈ 𝐴) → (𝑃 ∈ (𝑊‘𝐷) ↔ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ∈ ((⊥𝑃‘𝐾)‘{𝐷})))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | watomfval.a | . . . 4 ⊢ 𝐴 = (Atoms‘𝐾) | |
2 | watomfval.p | . . . 4 ⊢ 𝑃 = (⊥𝑃‘𝐾) | |
3 | watomfval.w | . . . 4 ⊢ 𝑊 = (WAtoms‘𝐾) | |
4 | 1, 2, 3 | watvalN 39596 | . . 3 ⊢ ((𝐾 ∈ 𝐵 ∧ 𝐷 ∈ 𝐴) → (𝑊‘𝐷) = (𝐴 ∖ ((⊥𝑃‘𝐾)‘{𝐷}))) |
5 | 4 | eleq2d 2811 | . 2 ⊢ ((𝐾 ∈ 𝐵 ∧ 𝐷 ∈ 𝐴) → (𝑃 ∈ (𝑊‘𝐷) ↔ 𝑃 ∈ (𝐴 ∖ ((⊥𝑃‘𝐾)‘{𝐷})))) |
6 | eldif 3954 | . 2 ⊢ (𝑃 ∈ (𝐴 ∖ ((⊥𝑃‘𝐾)‘{𝐷})) ↔ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ∈ ((⊥𝑃‘𝐾)‘{𝐷}))) | |
7 | 5, 6 | bitrdi 286 | 1 ⊢ ((𝐾 ∈ 𝐵 ∧ 𝐷 ∈ 𝐴) → (𝑃 ∈ (𝑊‘𝐷) ↔ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ∈ ((⊥𝑃‘𝐾)‘{𝐷})))) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 ∧ wa 394 = wceq 1533 ∈ wcel 2098 ∖ cdif 3941 {csn 4630 ‘cfv 6549 Atomscatm 38865 ⊥𝑃cpolN 39505 WAtomscwpointsN 39589 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2696 ax-rep 5286 ax-sep 5300 ax-nul 5307 ax-pr 5429 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2703 df-cleq 2717 df-clel 2802 df-nfc 2877 df-ne 2930 df-ral 3051 df-rex 3060 df-reu 3364 df-rab 3419 df-v 3463 df-sbc 3774 df-csb 3890 df-dif 3947 df-un 3949 df-in 3951 df-ss 3961 df-nul 4323 df-if 4531 df-sn 4631 df-pr 4633 df-op 4637 df-uni 4910 df-iun 4999 df-br 5150 df-opab 5212 df-mpt 5233 df-id 5576 df-xp 5684 df-rel 5685 df-cnv 5686 df-co 5687 df-dm 5688 df-rn 5689 df-res 5690 df-ima 5691 df-iota 6501 df-fun 6551 df-fn 6552 df-f 6553 df-f1 6554 df-fo 6555 df-f1o 6556 df-fv 6557 df-watsN 39593 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |