Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  iswatN Structured version   Visualization version   GIF version

Theorem iswatN 39993
Description: The predicate "is a W atom" (corresponding to fiducial atom 𝐷). (Contributed by NM, 26-Jan-2012.) (New usage is discouraged.)
Hypotheses
Ref Expression
watomfval.a 𝐴 = (Atoms‘𝐾)
watomfval.p 𝑃 = (⊥𝑃𝐾)
watomfval.w 𝑊 = (WAtoms‘𝐾)
Assertion
Ref Expression
iswatN ((𝐾𝐵𝐷𝐴) → (𝑃 ∈ (𝑊𝐷) ↔ (𝑃𝐴 ∧ ¬ 𝑃 ∈ ((⊥𝑃𝐾)‘{𝐷}))))

Proof of Theorem iswatN
StepHypRef Expression
1 watomfval.a . . . 4 𝐴 = (Atoms‘𝐾)
2 watomfval.p . . . 4 𝑃 = (⊥𝑃𝐾)
3 watomfval.w . . . 4 𝑊 = (WAtoms‘𝐾)
41, 2, 3watvalN 39992 . . 3 ((𝐾𝐵𝐷𝐴) → (𝑊𝐷) = (𝐴 ∖ ((⊥𝑃𝐾)‘{𝐷})))
54eleq2d 2814 . 2 ((𝐾𝐵𝐷𝐴) → (𝑃 ∈ (𝑊𝐷) ↔ 𝑃 ∈ (𝐴 ∖ ((⊥𝑃𝐾)‘{𝐷}))))
6 eldif 3915 . 2 (𝑃 ∈ (𝐴 ∖ ((⊥𝑃𝐾)‘{𝐷})) ↔ (𝑃𝐴 ∧ ¬ 𝑃 ∈ ((⊥𝑃𝐾)‘{𝐷})))
75, 6bitrdi 287 1 ((𝐾𝐵𝐷𝐴) → (𝑃 ∈ (𝑊𝐷) ↔ (𝑃𝐴 ∧ ¬ 𝑃 ∈ ((⊥𝑃𝐾)‘{𝐷}))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  cdif 3902  {csn 4579  cfv 6486  Atomscatm 39261  𝑃cpolN 39901  WAtomscwpointsN 39985
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pr 5374
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-nul 4287  df-if 4479  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-iun 4946  df-br 5096  df-opab 5158  df-mpt 5177  df-id 5518  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-watsN 39989
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator