Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lmhmghmd Structured version   Visualization version   GIF version

Theorem lmhmghmd 33010
Description: A module homomorphism is a group homomorphism. (Contributed by Thierry Arnoux, 2-Apr-2025.)
Hypothesis
Ref Expression
lmhmghmd.1 (𝜑𝐹 ∈ (𝑆 LMHom 𝑇))
Assertion
Ref Expression
lmhmghmd (𝜑𝐹 ∈ (𝑆 GrpHom 𝑇))

Proof of Theorem lmhmghmd
StepHypRef Expression
1 lmhmghmd.1 . 2 (𝜑𝐹 ∈ (𝑆 LMHom 𝑇))
2 lmghm 20960 . 2 (𝐹 ∈ (𝑆 LMHom 𝑇) → 𝐹 ∈ (𝑆 GrpHom 𝑇))
31, 2syl 17 1 (𝜑𝐹 ∈ (𝑆 GrpHom 𝑇))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2111  (class class class)co 7341   GrpHom cghm 19119   LMHom clmhm 20948
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5229  ax-nul 5239  ax-pr 5365
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-sbc 3737  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4279  df-if 4471  df-pw 4547  df-sn 4572  df-pr 4574  df-op 4578  df-uni 4855  df-br 5087  df-opab 5149  df-id 5506  df-xp 5617  df-rel 5618  df-cnv 5619  df-co 5620  df-dm 5621  df-iota 6432  df-fun 6478  df-fv 6484  df-ov 7344  df-oprab 7345  df-mpo 7346  df-lmhm 20951
This theorem is referenced by:  r1pquslmic  33563  lvecendof1f1o  33638  algextdeglem8  33729
  Copyright terms: Public domain W3C validator