![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > lmhmghmd | Structured version Visualization version GIF version |
Description: A module homomorphism is a group homomorphism. (Contributed by Thierry Arnoux, 2-Apr-2025.) |
Ref | Expression |
---|---|
lmhmghmd.1 | ⊢ (𝜑 → 𝐹 ∈ (𝑆 LMHom 𝑇)) |
Ref | Expression |
---|---|
lmhmghmd | ⊢ (𝜑 → 𝐹 ∈ (𝑆 GrpHom 𝑇)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lmhmghmd.1 | . 2 ⊢ (𝜑 → 𝐹 ∈ (𝑆 LMHom 𝑇)) | |
2 | lmghm 21022 | . 2 ⊢ (𝐹 ∈ (𝑆 LMHom 𝑇) → 𝐹 ∈ (𝑆 GrpHom 𝑇)) | |
3 | 1, 2 | syl 17 | 1 ⊢ (𝜑 → 𝐹 ∈ (𝑆 GrpHom 𝑇)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2108 (class class class)co 7429 GrpHom cghm 19226 LMHom clmhm 21010 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-sep 5294 ax-nul 5304 ax-pr 5430 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3an 1089 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2728 df-clel 2815 df-nfc 2891 df-ne 2940 df-ral 3061 df-rex 3070 df-rab 3436 df-v 3481 df-sbc 3788 df-dif 3953 df-un 3955 df-in 3957 df-ss 3967 df-nul 4333 df-if 4525 df-pw 4600 df-sn 4625 df-pr 4627 df-op 4631 df-uni 4906 df-br 5142 df-opab 5204 df-id 5576 df-xp 5689 df-rel 5690 df-cnv 5691 df-co 5692 df-dm 5693 df-iota 6512 df-fun 6561 df-fv 6567 df-ov 7432 df-oprab 7433 df-mpo 7434 df-lmhm 21013 |
This theorem is referenced by: r1pquslmic 33618 lvecendof1f1o 33671 algextdeglem8 33746 |
Copyright terms: Public domain | W3C validator |