| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > mhmimasplusg | Structured version Visualization version GIF version | ||
| Description: Value of the operation of the surjective image. (Contributed by Thierry Arnoux, 2-Apr-2025.) |
| Ref | Expression |
|---|---|
| mhmimasplusg.w | ⊢ 𝑊 = (𝐹 “s 𝑉) |
| mhmimasplusg.b | ⊢ 𝐵 = (Base‘𝑉) |
| mhmimasplusg.c | ⊢ 𝐶 = (Base‘𝑊) |
| mhmimasplusg.x | ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
| mhmimasplusg.y | ⊢ (𝜑 → 𝑌 ∈ 𝐵) |
| mhmimasplusg.1 | ⊢ (𝜑 → 𝐹:𝐵–onto→𝐶) |
| mhmimasplusg.f | ⊢ (𝜑 → 𝐹 ∈ (𝑉 MndHom 𝑊)) |
| mhmimasplusg.2 | ⊢ + = (+g‘𝑉) |
| mhmimasplusg.3 | ⊢ ⨣ = (+g‘𝑊) |
| Ref | Expression |
|---|---|
| mhmimasplusg | ⊢ (𝜑 → ((𝐹‘𝑋) ⨣ (𝐹‘𝑌)) = (𝐹‘(𝑋 + 𝑌))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mhmimasplusg.x | . 2 ⊢ (𝜑 → 𝑋 ∈ 𝐵) | |
| 2 | mhmimasplusg.y | . 2 ⊢ (𝜑 → 𝑌 ∈ 𝐵) | |
| 3 | mhmimasplusg.1 | . . 3 ⊢ (𝜑 → 𝐹:𝐵–onto→𝐶) | |
| 4 | simprl 770 | . . . . . 6 ⊢ (((𝜑 ∧ (𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵) ∧ (𝑝 ∈ 𝐵 ∧ 𝑞 ∈ 𝐵)) ∧ ((𝐹‘𝑎) = (𝐹‘𝑝) ∧ (𝐹‘𝑏) = (𝐹‘𝑞))) → (𝐹‘𝑎) = (𝐹‘𝑝)) | |
| 5 | simprr 772 | . . . . . 6 ⊢ (((𝜑 ∧ (𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵) ∧ (𝑝 ∈ 𝐵 ∧ 𝑞 ∈ 𝐵)) ∧ ((𝐹‘𝑎) = (𝐹‘𝑝) ∧ (𝐹‘𝑏) = (𝐹‘𝑞))) → (𝐹‘𝑏) = (𝐹‘𝑞)) | |
| 6 | 4, 5 | oveq12d 7430 | . . . . 5 ⊢ (((𝜑 ∧ (𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵) ∧ (𝑝 ∈ 𝐵 ∧ 𝑞 ∈ 𝐵)) ∧ ((𝐹‘𝑎) = (𝐹‘𝑝) ∧ (𝐹‘𝑏) = (𝐹‘𝑞))) → ((𝐹‘𝑎) ⨣ (𝐹‘𝑏)) = ((𝐹‘𝑝) ⨣ (𝐹‘𝑞))) |
| 7 | mhmimasplusg.f | . . . . . . . 8 ⊢ (𝜑 → 𝐹 ∈ (𝑉 MndHom 𝑊)) | |
| 8 | 7 | 3ad2ant1 1133 | . . . . . . 7 ⊢ ((𝜑 ∧ (𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵) ∧ (𝑝 ∈ 𝐵 ∧ 𝑞 ∈ 𝐵)) → 𝐹 ∈ (𝑉 MndHom 𝑊)) |
| 9 | 8 | adantr 480 | . . . . . 6 ⊢ (((𝜑 ∧ (𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵) ∧ (𝑝 ∈ 𝐵 ∧ 𝑞 ∈ 𝐵)) ∧ ((𝐹‘𝑎) = (𝐹‘𝑝) ∧ (𝐹‘𝑏) = (𝐹‘𝑞))) → 𝐹 ∈ (𝑉 MndHom 𝑊)) |
| 10 | simpl2l 1226 | . . . . . 6 ⊢ (((𝜑 ∧ (𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵) ∧ (𝑝 ∈ 𝐵 ∧ 𝑞 ∈ 𝐵)) ∧ ((𝐹‘𝑎) = (𝐹‘𝑝) ∧ (𝐹‘𝑏) = (𝐹‘𝑞))) → 𝑎 ∈ 𝐵) | |
| 11 | simpl2r 1227 | . . . . . 6 ⊢ (((𝜑 ∧ (𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵) ∧ (𝑝 ∈ 𝐵 ∧ 𝑞 ∈ 𝐵)) ∧ ((𝐹‘𝑎) = (𝐹‘𝑝) ∧ (𝐹‘𝑏) = (𝐹‘𝑞))) → 𝑏 ∈ 𝐵) | |
| 12 | mhmimasplusg.b | . . . . . . 7 ⊢ 𝐵 = (Base‘𝑉) | |
| 13 | mhmimasplusg.2 | . . . . . . 7 ⊢ + = (+g‘𝑉) | |
| 14 | mhmimasplusg.3 | . . . . . . 7 ⊢ ⨣ = (+g‘𝑊) | |
| 15 | 12, 13, 14 | mhmlin 18774 | . . . . . 6 ⊢ ((𝐹 ∈ (𝑉 MndHom 𝑊) ∧ 𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵) → (𝐹‘(𝑎 + 𝑏)) = ((𝐹‘𝑎) ⨣ (𝐹‘𝑏))) |
| 16 | 9, 10, 11, 15 | syl3anc 1372 | . . . . 5 ⊢ (((𝜑 ∧ (𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵) ∧ (𝑝 ∈ 𝐵 ∧ 𝑞 ∈ 𝐵)) ∧ ((𝐹‘𝑎) = (𝐹‘𝑝) ∧ (𝐹‘𝑏) = (𝐹‘𝑞))) → (𝐹‘(𝑎 + 𝑏)) = ((𝐹‘𝑎) ⨣ (𝐹‘𝑏))) |
| 17 | simpl3l 1228 | . . . . . 6 ⊢ (((𝜑 ∧ (𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵) ∧ (𝑝 ∈ 𝐵 ∧ 𝑞 ∈ 𝐵)) ∧ ((𝐹‘𝑎) = (𝐹‘𝑝) ∧ (𝐹‘𝑏) = (𝐹‘𝑞))) → 𝑝 ∈ 𝐵) | |
| 18 | simpl3r 1229 | . . . . . 6 ⊢ (((𝜑 ∧ (𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵) ∧ (𝑝 ∈ 𝐵 ∧ 𝑞 ∈ 𝐵)) ∧ ((𝐹‘𝑎) = (𝐹‘𝑝) ∧ (𝐹‘𝑏) = (𝐹‘𝑞))) → 𝑞 ∈ 𝐵) | |
| 19 | 12, 13, 14 | mhmlin 18774 | . . . . . 6 ⊢ ((𝐹 ∈ (𝑉 MndHom 𝑊) ∧ 𝑝 ∈ 𝐵 ∧ 𝑞 ∈ 𝐵) → (𝐹‘(𝑝 + 𝑞)) = ((𝐹‘𝑝) ⨣ (𝐹‘𝑞))) |
| 20 | 9, 17, 18, 19 | syl3anc 1372 | . . . . 5 ⊢ (((𝜑 ∧ (𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵) ∧ (𝑝 ∈ 𝐵 ∧ 𝑞 ∈ 𝐵)) ∧ ((𝐹‘𝑎) = (𝐹‘𝑝) ∧ (𝐹‘𝑏) = (𝐹‘𝑞))) → (𝐹‘(𝑝 + 𝑞)) = ((𝐹‘𝑝) ⨣ (𝐹‘𝑞))) |
| 21 | 6, 16, 20 | 3eqtr4d 2779 | . . . 4 ⊢ (((𝜑 ∧ (𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵) ∧ (𝑝 ∈ 𝐵 ∧ 𝑞 ∈ 𝐵)) ∧ ((𝐹‘𝑎) = (𝐹‘𝑝) ∧ (𝐹‘𝑏) = (𝐹‘𝑞))) → (𝐹‘(𝑎 + 𝑏)) = (𝐹‘(𝑝 + 𝑞))) |
| 22 | 21 | ex 412 | . . 3 ⊢ ((𝜑 ∧ (𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵) ∧ (𝑝 ∈ 𝐵 ∧ 𝑞 ∈ 𝐵)) → (((𝐹‘𝑎) = (𝐹‘𝑝) ∧ (𝐹‘𝑏) = (𝐹‘𝑞)) → (𝐹‘(𝑎 + 𝑏)) = (𝐹‘(𝑝 + 𝑞)))) |
| 23 | mhmimasplusg.w | . . . 4 ⊢ 𝑊 = (𝐹 “s 𝑉) | |
| 24 | 23 | a1i 11 | . . 3 ⊢ (𝜑 → 𝑊 = (𝐹 “s 𝑉)) |
| 25 | 12 | a1i 11 | . . 3 ⊢ (𝜑 → 𝐵 = (Base‘𝑉)) |
| 26 | mhmrcl1 18768 | . . . 4 ⊢ (𝐹 ∈ (𝑉 MndHom 𝑊) → 𝑉 ∈ Mnd) | |
| 27 | 7, 26 | syl 17 | . . 3 ⊢ (𝜑 → 𝑉 ∈ Mnd) |
| 28 | 3, 22, 24, 25, 27, 13, 14 | imasaddval 17547 | . 2 ⊢ ((𝜑 ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → ((𝐹‘𝑋) ⨣ (𝐹‘𝑌)) = (𝐹‘(𝑋 + 𝑌))) |
| 29 | 1, 2, 28 | mpd3an23 1464 | 1 ⊢ (𝜑 → ((𝐹‘𝑋) ⨣ (𝐹‘𝑌)) = (𝐹‘(𝑋 + 𝑌))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1539 ∈ wcel 2107 –onto→wfo 6538 ‘cfv 6540 (class class class)co 7412 Basecbs 17228 +gcplusg 17272 “s cimas 17519 Mndcmnd 18715 MndHom cmhm 18762 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-rep 5259 ax-sep 5276 ax-nul 5286 ax-pow 5345 ax-pr 5412 ax-un 7736 ax-cnex 11192 ax-resscn 11193 ax-1cn 11194 ax-icn 11195 ax-addcl 11196 ax-addrcl 11197 ax-mulcl 11198 ax-mulrcl 11199 ax-mulcom 11200 ax-addass 11201 ax-mulass 11202 ax-distr 11203 ax-i2m1 11204 ax-1ne0 11205 ax-1rid 11206 ax-rnegex 11207 ax-rrecex 11208 ax-cnre 11209 ax-pre-lttri 11210 ax-pre-lttrn 11211 ax-pre-ltadd 11212 ax-pre-mulgt0 11213 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-nel 3036 df-ral 3051 df-rex 3060 df-reu 3364 df-rab 3420 df-v 3465 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-pss 3951 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-tp 4611 df-op 4613 df-uni 4888 df-iun 4973 df-br 5124 df-opab 5186 df-mpt 5206 df-tr 5240 df-id 5558 df-eprel 5564 df-po 5572 df-so 5573 df-fr 5617 df-we 5619 df-xp 5671 df-rel 5672 df-cnv 5673 df-co 5674 df-dm 5675 df-rn 5676 df-res 5677 df-ima 5678 df-pred 6301 df-ord 6366 df-on 6367 df-lim 6368 df-suc 6369 df-iota 6493 df-fun 6542 df-fn 6543 df-f 6544 df-f1 6545 df-fo 6546 df-f1o 6547 df-fv 6548 df-riota 7369 df-ov 7415 df-oprab 7416 df-mpo 7417 df-om 7869 df-1st 7995 df-2nd 7996 df-frecs 8287 df-wrecs 8318 df-recs 8392 df-rdg 8431 df-1o 8487 df-er 8726 df-map 8849 df-en 8967 df-dom 8968 df-sdom 8969 df-fin 8970 df-sup 9463 df-inf 9464 df-pnf 11278 df-mnf 11279 df-xr 11280 df-ltxr 11281 df-le 11282 df-sub 11475 df-neg 11476 df-nn 12248 df-2 12310 df-3 12311 df-4 12312 df-5 12313 df-6 12314 df-7 12315 df-8 12316 df-9 12317 df-n0 12509 df-z 12596 df-dec 12716 df-uz 12860 df-fz 13529 df-struct 17165 df-slot 17200 df-ndx 17212 df-base 17229 df-plusg 17285 df-mulr 17286 df-sca 17288 df-vsca 17289 df-ip 17290 df-tset 17291 df-ple 17292 df-ds 17294 df-imas 17523 df-mhm 18764 |
| This theorem is referenced by: algextdeglem8 33695 |
| Copyright terms: Public domain | W3C validator |