| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > mhmimasplusg | Structured version Visualization version GIF version | ||
| Description: Value of the operation of the surjective image. (Contributed by Thierry Arnoux, 2-Apr-2025.) |
| Ref | Expression |
|---|---|
| mhmimasplusg.w | ⊢ 𝑊 = (𝐹 “s 𝑉) |
| mhmimasplusg.b | ⊢ 𝐵 = (Base‘𝑉) |
| mhmimasplusg.c | ⊢ 𝐶 = (Base‘𝑊) |
| mhmimasplusg.x | ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
| mhmimasplusg.y | ⊢ (𝜑 → 𝑌 ∈ 𝐵) |
| mhmimasplusg.1 | ⊢ (𝜑 → 𝐹:𝐵–onto→𝐶) |
| mhmimasplusg.f | ⊢ (𝜑 → 𝐹 ∈ (𝑉 MndHom 𝑊)) |
| mhmimasplusg.2 | ⊢ + = (+g‘𝑉) |
| mhmimasplusg.3 | ⊢ ⨣ = (+g‘𝑊) |
| Ref | Expression |
|---|---|
| mhmimasplusg | ⊢ (𝜑 → ((𝐹‘𝑋) ⨣ (𝐹‘𝑌)) = (𝐹‘(𝑋 + 𝑌))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mhmimasplusg.x | . 2 ⊢ (𝜑 → 𝑋 ∈ 𝐵) | |
| 2 | mhmimasplusg.y | . 2 ⊢ (𝜑 → 𝑌 ∈ 𝐵) | |
| 3 | mhmimasplusg.1 | . . 3 ⊢ (𝜑 → 𝐹:𝐵–onto→𝐶) | |
| 4 | simprl 770 | . . . . . 6 ⊢ (((𝜑 ∧ (𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵) ∧ (𝑝 ∈ 𝐵 ∧ 𝑞 ∈ 𝐵)) ∧ ((𝐹‘𝑎) = (𝐹‘𝑝) ∧ (𝐹‘𝑏) = (𝐹‘𝑞))) → (𝐹‘𝑎) = (𝐹‘𝑝)) | |
| 5 | simprr 772 | . . . . . 6 ⊢ (((𝜑 ∧ (𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵) ∧ (𝑝 ∈ 𝐵 ∧ 𝑞 ∈ 𝐵)) ∧ ((𝐹‘𝑎) = (𝐹‘𝑝) ∧ (𝐹‘𝑏) = (𝐹‘𝑞))) → (𝐹‘𝑏) = (𝐹‘𝑞)) | |
| 6 | 4, 5 | oveq12d 7371 | . . . . 5 ⊢ (((𝜑 ∧ (𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵) ∧ (𝑝 ∈ 𝐵 ∧ 𝑞 ∈ 𝐵)) ∧ ((𝐹‘𝑎) = (𝐹‘𝑝) ∧ (𝐹‘𝑏) = (𝐹‘𝑞))) → ((𝐹‘𝑎) ⨣ (𝐹‘𝑏)) = ((𝐹‘𝑝) ⨣ (𝐹‘𝑞))) |
| 7 | mhmimasplusg.f | . . . . . . . 8 ⊢ (𝜑 → 𝐹 ∈ (𝑉 MndHom 𝑊)) | |
| 8 | 7 | 3ad2ant1 1133 | . . . . . . 7 ⊢ ((𝜑 ∧ (𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵) ∧ (𝑝 ∈ 𝐵 ∧ 𝑞 ∈ 𝐵)) → 𝐹 ∈ (𝑉 MndHom 𝑊)) |
| 9 | 8 | adantr 480 | . . . . . 6 ⊢ (((𝜑 ∧ (𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵) ∧ (𝑝 ∈ 𝐵 ∧ 𝑞 ∈ 𝐵)) ∧ ((𝐹‘𝑎) = (𝐹‘𝑝) ∧ (𝐹‘𝑏) = (𝐹‘𝑞))) → 𝐹 ∈ (𝑉 MndHom 𝑊)) |
| 10 | simpl2l 1227 | . . . . . 6 ⊢ (((𝜑 ∧ (𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵) ∧ (𝑝 ∈ 𝐵 ∧ 𝑞 ∈ 𝐵)) ∧ ((𝐹‘𝑎) = (𝐹‘𝑝) ∧ (𝐹‘𝑏) = (𝐹‘𝑞))) → 𝑎 ∈ 𝐵) | |
| 11 | simpl2r 1228 | . . . . . 6 ⊢ (((𝜑 ∧ (𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵) ∧ (𝑝 ∈ 𝐵 ∧ 𝑞 ∈ 𝐵)) ∧ ((𝐹‘𝑎) = (𝐹‘𝑝) ∧ (𝐹‘𝑏) = (𝐹‘𝑞))) → 𝑏 ∈ 𝐵) | |
| 12 | mhmimasplusg.b | . . . . . . 7 ⊢ 𝐵 = (Base‘𝑉) | |
| 13 | mhmimasplusg.2 | . . . . . . 7 ⊢ + = (+g‘𝑉) | |
| 14 | mhmimasplusg.3 | . . . . . . 7 ⊢ ⨣ = (+g‘𝑊) | |
| 15 | 12, 13, 14 | mhmlin 18685 | . . . . . 6 ⊢ ((𝐹 ∈ (𝑉 MndHom 𝑊) ∧ 𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵) → (𝐹‘(𝑎 + 𝑏)) = ((𝐹‘𝑎) ⨣ (𝐹‘𝑏))) |
| 16 | 9, 10, 11, 15 | syl3anc 1373 | . . . . 5 ⊢ (((𝜑 ∧ (𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵) ∧ (𝑝 ∈ 𝐵 ∧ 𝑞 ∈ 𝐵)) ∧ ((𝐹‘𝑎) = (𝐹‘𝑝) ∧ (𝐹‘𝑏) = (𝐹‘𝑞))) → (𝐹‘(𝑎 + 𝑏)) = ((𝐹‘𝑎) ⨣ (𝐹‘𝑏))) |
| 17 | simpl3l 1229 | . . . . . 6 ⊢ (((𝜑 ∧ (𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵) ∧ (𝑝 ∈ 𝐵 ∧ 𝑞 ∈ 𝐵)) ∧ ((𝐹‘𝑎) = (𝐹‘𝑝) ∧ (𝐹‘𝑏) = (𝐹‘𝑞))) → 𝑝 ∈ 𝐵) | |
| 18 | simpl3r 1230 | . . . . . 6 ⊢ (((𝜑 ∧ (𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵) ∧ (𝑝 ∈ 𝐵 ∧ 𝑞 ∈ 𝐵)) ∧ ((𝐹‘𝑎) = (𝐹‘𝑝) ∧ (𝐹‘𝑏) = (𝐹‘𝑞))) → 𝑞 ∈ 𝐵) | |
| 19 | 12, 13, 14 | mhmlin 18685 | . . . . . 6 ⊢ ((𝐹 ∈ (𝑉 MndHom 𝑊) ∧ 𝑝 ∈ 𝐵 ∧ 𝑞 ∈ 𝐵) → (𝐹‘(𝑝 + 𝑞)) = ((𝐹‘𝑝) ⨣ (𝐹‘𝑞))) |
| 20 | 9, 17, 18, 19 | syl3anc 1373 | . . . . 5 ⊢ (((𝜑 ∧ (𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵) ∧ (𝑝 ∈ 𝐵 ∧ 𝑞 ∈ 𝐵)) ∧ ((𝐹‘𝑎) = (𝐹‘𝑝) ∧ (𝐹‘𝑏) = (𝐹‘𝑞))) → (𝐹‘(𝑝 + 𝑞)) = ((𝐹‘𝑝) ⨣ (𝐹‘𝑞))) |
| 21 | 6, 16, 20 | 3eqtr4d 2774 | . . . 4 ⊢ (((𝜑 ∧ (𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵) ∧ (𝑝 ∈ 𝐵 ∧ 𝑞 ∈ 𝐵)) ∧ ((𝐹‘𝑎) = (𝐹‘𝑝) ∧ (𝐹‘𝑏) = (𝐹‘𝑞))) → (𝐹‘(𝑎 + 𝑏)) = (𝐹‘(𝑝 + 𝑞))) |
| 22 | 21 | ex 412 | . . 3 ⊢ ((𝜑 ∧ (𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵) ∧ (𝑝 ∈ 𝐵 ∧ 𝑞 ∈ 𝐵)) → (((𝐹‘𝑎) = (𝐹‘𝑝) ∧ (𝐹‘𝑏) = (𝐹‘𝑞)) → (𝐹‘(𝑎 + 𝑏)) = (𝐹‘(𝑝 + 𝑞)))) |
| 23 | mhmimasplusg.w | . . . 4 ⊢ 𝑊 = (𝐹 “s 𝑉) | |
| 24 | 23 | a1i 11 | . . 3 ⊢ (𝜑 → 𝑊 = (𝐹 “s 𝑉)) |
| 25 | 12 | a1i 11 | . . 3 ⊢ (𝜑 → 𝐵 = (Base‘𝑉)) |
| 26 | mhmrcl1 18679 | . . . 4 ⊢ (𝐹 ∈ (𝑉 MndHom 𝑊) → 𝑉 ∈ Mnd) | |
| 27 | 7, 26 | syl 17 | . . 3 ⊢ (𝜑 → 𝑉 ∈ Mnd) |
| 28 | 3, 22, 24, 25, 27, 13, 14 | imasaddval 17454 | . 2 ⊢ ((𝜑 ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → ((𝐹‘𝑋) ⨣ (𝐹‘𝑌)) = (𝐹‘(𝑋 + 𝑌))) |
| 29 | 1, 2, 28 | mpd3an23 1465 | 1 ⊢ (𝜑 → ((𝐹‘𝑋) ⨣ (𝐹‘𝑌)) = (𝐹‘(𝑋 + 𝑌))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 –onto→wfo 6484 ‘cfv 6486 (class class class)co 7353 Basecbs 17138 +gcplusg 17179 “s cimas 17426 Mndcmnd 18626 MndHom cmhm 18673 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7675 ax-cnex 11084 ax-resscn 11085 ax-1cn 11086 ax-icn 11087 ax-addcl 11088 ax-addrcl 11089 ax-mulcl 11090 ax-mulrcl 11091 ax-mulcom 11092 ax-addass 11093 ax-mulass 11094 ax-distr 11095 ax-i2m1 11096 ax-1ne0 11097 ax-1rid 11098 ax-rnegex 11099 ax-rrecex 11100 ax-cnre 11101 ax-pre-lttri 11102 ax-pre-lttrn 11103 ax-pre-ltadd 11104 ax-pre-mulgt0 11105 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-reu 3346 df-rab 3397 df-v 3440 df-sbc 3745 df-csb 3854 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-pss 3925 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-tp 4584 df-op 4586 df-uni 4862 df-iun 4946 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5518 df-eprel 5523 df-po 5531 df-so 5532 df-fr 5576 df-we 5578 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-pred 6253 df-ord 6314 df-on 6315 df-lim 6316 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-riota 7310 df-ov 7356 df-oprab 7357 df-mpo 7358 df-om 7807 df-1st 7931 df-2nd 7932 df-frecs 8221 df-wrecs 8252 df-recs 8301 df-rdg 8339 df-1o 8395 df-er 8632 df-map 8762 df-en 8880 df-dom 8881 df-sdom 8882 df-fin 8883 df-sup 9351 df-inf 9352 df-pnf 11170 df-mnf 11171 df-xr 11172 df-ltxr 11173 df-le 11174 df-sub 11367 df-neg 11368 df-nn 12147 df-2 12209 df-3 12210 df-4 12211 df-5 12212 df-6 12213 df-7 12214 df-8 12215 df-9 12216 df-n0 12403 df-z 12490 df-dec 12610 df-uz 12754 df-fz 13429 df-struct 17076 df-slot 17111 df-ndx 17123 df-base 17139 df-plusg 17192 df-mulr 17193 df-sca 17195 df-vsca 17196 df-ip 17197 df-tset 17198 df-ple 17199 df-ds 17201 df-imas 17430 df-mhm 18675 |
| This theorem is referenced by: algextdeglem8 33693 |
| Copyright terms: Public domain | W3C validator |