Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mhmimasplusg Structured version   Visualization version   GIF version

Theorem mhmimasplusg 33058
Description: Value of the operation of the surjective image. (Contributed by Thierry Arnoux, 2-Apr-2025.)
Hypotheses
Ref Expression
mhmimasplusg.w 𝑊 = (𝐹s 𝑉)
mhmimasplusg.b 𝐵 = (Base‘𝑉)
mhmimasplusg.c 𝐶 = (Base‘𝑊)
mhmimasplusg.x (𝜑𝑋𝐵)
mhmimasplusg.y (𝜑𝑌𝐵)
mhmimasplusg.1 (𝜑𝐹:𝐵onto𝐶)
mhmimasplusg.f (𝜑𝐹 ∈ (𝑉 MndHom 𝑊))
mhmimasplusg.2 + = (+g𝑉)
mhmimasplusg.3 = (+g𝑊)
Assertion
Ref Expression
mhmimasplusg (𝜑 → ((𝐹𝑋) (𝐹𝑌)) = (𝐹‘(𝑋 + 𝑌)))

Proof of Theorem mhmimasplusg
Dummy variables 𝑝 𝑞 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 mhmimasplusg.x . 2 (𝜑𝑋𝐵)
2 mhmimasplusg.y . 2 (𝜑𝑌𝐵)
3 mhmimasplusg.1 . . 3 (𝜑𝐹:𝐵onto𝐶)
4 simprl 771 . . . . . 6 (((𝜑 ∧ (𝑎𝐵𝑏𝐵) ∧ (𝑝𝐵𝑞𝐵)) ∧ ((𝐹𝑎) = (𝐹𝑝) ∧ (𝐹𝑏) = (𝐹𝑞))) → (𝐹𝑎) = (𝐹𝑝))
5 simprr 773 . . . . . 6 (((𝜑 ∧ (𝑎𝐵𝑏𝐵) ∧ (𝑝𝐵𝑞𝐵)) ∧ ((𝐹𝑎) = (𝐹𝑝) ∧ (𝐹𝑏) = (𝐹𝑞))) → (𝐹𝑏) = (𝐹𝑞))
64, 5oveq12d 7456 . . . . 5 (((𝜑 ∧ (𝑎𝐵𝑏𝐵) ∧ (𝑝𝐵𝑞𝐵)) ∧ ((𝐹𝑎) = (𝐹𝑝) ∧ (𝐹𝑏) = (𝐹𝑞))) → ((𝐹𝑎) (𝐹𝑏)) = ((𝐹𝑝) (𝐹𝑞)))
7 mhmimasplusg.f . . . . . . . 8 (𝜑𝐹 ∈ (𝑉 MndHom 𝑊))
873ad2ant1 1134 . . . . . . 7 ((𝜑 ∧ (𝑎𝐵𝑏𝐵) ∧ (𝑝𝐵𝑞𝐵)) → 𝐹 ∈ (𝑉 MndHom 𝑊))
98adantr 480 . . . . . 6 (((𝜑 ∧ (𝑎𝐵𝑏𝐵) ∧ (𝑝𝐵𝑞𝐵)) ∧ ((𝐹𝑎) = (𝐹𝑝) ∧ (𝐹𝑏) = (𝐹𝑞))) → 𝐹 ∈ (𝑉 MndHom 𝑊))
10 simpl2l 1227 . . . . . 6 (((𝜑 ∧ (𝑎𝐵𝑏𝐵) ∧ (𝑝𝐵𝑞𝐵)) ∧ ((𝐹𝑎) = (𝐹𝑝) ∧ (𝐹𝑏) = (𝐹𝑞))) → 𝑎𝐵)
11 simpl2r 1228 . . . . . 6 (((𝜑 ∧ (𝑎𝐵𝑏𝐵) ∧ (𝑝𝐵𝑞𝐵)) ∧ ((𝐹𝑎) = (𝐹𝑝) ∧ (𝐹𝑏) = (𝐹𝑞))) → 𝑏𝐵)
12 mhmimasplusg.b . . . . . . 7 𝐵 = (Base‘𝑉)
13 mhmimasplusg.2 . . . . . . 7 + = (+g𝑉)
14 mhmimasplusg.3 . . . . . . 7 = (+g𝑊)
1512, 13, 14mhmlin 18828 . . . . . 6 ((𝐹 ∈ (𝑉 MndHom 𝑊) ∧ 𝑎𝐵𝑏𝐵) → (𝐹‘(𝑎 + 𝑏)) = ((𝐹𝑎) (𝐹𝑏)))
169, 10, 11, 15syl3anc 1372 . . . . 5 (((𝜑 ∧ (𝑎𝐵𝑏𝐵) ∧ (𝑝𝐵𝑞𝐵)) ∧ ((𝐹𝑎) = (𝐹𝑝) ∧ (𝐹𝑏) = (𝐹𝑞))) → (𝐹‘(𝑎 + 𝑏)) = ((𝐹𝑎) (𝐹𝑏)))
17 simpl3l 1229 . . . . . 6 (((𝜑 ∧ (𝑎𝐵𝑏𝐵) ∧ (𝑝𝐵𝑞𝐵)) ∧ ((𝐹𝑎) = (𝐹𝑝) ∧ (𝐹𝑏) = (𝐹𝑞))) → 𝑝𝐵)
18 simpl3r 1230 . . . . . 6 (((𝜑 ∧ (𝑎𝐵𝑏𝐵) ∧ (𝑝𝐵𝑞𝐵)) ∧ ((𝐹𝑎) = (𝐹𝑝) ∧ (𝐹𝑏) = (𝐹𝑞))) → 𝑞𝐵)
1912, 13, 14mhmlin 18828 . . . . . 6 ((𝐹 ∈ (𝑉 MndHom 𝑊) ∧ 𝑝𝐵𝑞𝐵) → (𝐹‘(𝑝 + 𝑞)) = ((𝐹𝑝) (𝐹𝑞)))
209, 17, 18, 19syl3anc 1372 . . . . 5 (((𝜑 ∧ (𝑎𝐵𝑏𝐵) ∧ (𝑝𝐵𝑞𝐵)) ∧ ((𝐹𝑎) = (𝐹𝑝) ∧ (𝐹𝑏) = (𝐹𝑞))) → (𝐹‘(𝑝 + 𝑞)) = ((𝐹𝑝) (𝐹𝑞)))
216, 16, 203eqtr4d 2787 . . . 4 (((𝜑 ∧ (𝑎𝐵𝑏𝐵) ∧ (𝑝𝐵𝑞𝐵)) ∧ ((𝐹𝑎) = (𝐹𝑝) ∧ (𝐹𝑏) = (𝐹𝑞))) → (𝐹‘(𝑎 + 𝑏)) = (𝐹‘(𝑝 + 𝑞)))
2221ex 412 . . 3 ((𝜑 ∧ (𝑎𝐵𝑏𝐵) ∧ (𝑝𝐵𝑞𝐵)) → (((𝐹𝑎) = (𝐹𝑝) ∧ (𝐹𝑏) = (𝐹𝑞)) → (𝐹‘(𝑎 + 𝑏)) = (𝐹‘(𝑝 + 𝑞))))
23 mhmimasplusg.w . . . 4 𝑊 = (𝐹s 𝑉)
2423a1i 11 . . 3 (𝜑𝑊 = (𝐹s 𝑉))
2512a1i 11 . . 3 (𝜑𝐵 = (Base‘𝑉))
26 mhmrcl1 18822 . . . 4 (𝐹 ∈ (𝑉 MndHom 𝑊) → 𝑉 ∈ Mnd)
277, 26syl 17 . . 3 (𝜑𝑉 ∈ Mnd)
283, 22, 24, 25, 27, 13, 14imasaddval 17588 . 2 ((𝜑𝑋𝐵𝑌𝐵) → ((𝐹𝑋) (𝐹𝑌)) = (𝐹‘(𝑋 + 𝑌)))
291, 2, 28mpd3an23 1464 1 (𝜑 → ((𝐹𝑋) (𝐹𝑌)) = (𝐹‘(𝑋 + 𝑌)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1087   = wceq 1539  wcel 2108  ontowfo 6567  cfv 6569  (class class class)co 7438  Basecbs 17254  +gcplusg 17307  s cimas 17560  Mndcmnd 18769   MndHom cmhm 18816
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-rep 5288  ax-sep 5305  ax-nul 5315  ax-pow 5374  ax-pr 5441  ax-un 7761  ax-cnex 11218  ax-resscn 11219  ax-1cn 11220  ax-icn 11221  ax-addcl 11222  ax-addrcl 11223  ax-mulcl 11224  ax-mulrcl 11225  ax-mulcom 11226  ax-addass 11227  ax-mulass 11228  ax-distr 11229  ax-i2m1 11230  ax-1ne0 11231  ax-1rid 11232  ax-rnegex 11233  ax-rrecex 11234  ax-cnre 11235  ax-pre-lttri 11236  ax-pre-lttrn 11237  ax-pre-ltadd 11238  ax-pre-mulgt0 11239
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-reu 3381  df-rab 3437  df-v 3483  df-sbc 3795  df-csb 3912  df-dif 3969  df-un 3971  df-in 3973  df-ss 3983  df-pss 3986  df-nul 4343  df-if 4535  df-pw 4610  df-sn 4635  df-pr 4637  df-tp 4639  df-op 4641  df-uni 4916  df-iun 5001  df-br 5152  df-opab 5214  df-mpt 5235  df-tr 5269  df-id 5587  df-eprel 5593  df-po 5601  df-so 5602  df-fr 5645  df-we 5647  df-xp 5699  df-rel 5700  df-cnv 5701  df-co 5702  df-dm 5703  df-rn 5704  df-res 5705  df-ima 5706  df-pred 6329  df-ord 6395  df-on 6396  df-lim 6397  df-suc 6398  df-iota 6522  df-fun 6571  df-fn 6572  df-f 6573  df-f1 6574  df-fo 6575  df-f1o 6576  df-fv 6577  df-riota 7395  df-ov 7441  df-oprab 7442  df-mpo 7443  df-om 7895  df-1st 8022  df-2nd 8023  df-frecs 8314  df-wrecs 8345  df-recs 8419  df-rdg 8458  df-1o 8514  df-er 8753  df-map 8876  df-en 8994  df-dom 8995  df-sdom 8996  df-fin 8997  df-sup 9489  df-inf 9490  df-pnf 11304  df-mnf 11305  df-xr 11306  df-ltxr 11307  df-le 11308  df-sub 11501  df-neg 11502  df-nn 12274  df-2 12336  df-3 12337  df-4 12338  df-5 12339  df-6 12340  df-7 12341  df-8 12342  df-9 12343  df-n0 12534  df-z 12621  df-dec 12741  df-uz 12886  df-fz 13554  df-struct 17190  df-slot 17225  df-ndx 17237  df-base 17255  df-plusg 17320  df-mulr 17321  df-sca 17323  df-vsca 17324  df-ip 17325  df-tset 17326  df-ple 17327  df-ds 17329  df-imas 17564  df-mhm 18818
This theorem is referenced by:  algextdeglem8  33762
  Copyright terms: Public domain W3C validator