![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > mhmimasplusg | Structured version Visualization version GIF version |
Description: Value of the operation of the surjective image. (Contributed by Thierry Arnoux, 2-Apr-2025.) |
Ref | Expression |
---|---|
mhmimasplusg.w | ⊢ 𝑊 = (𝐹 “s 𝑉) |
mhmimasplusg.b | ⊢ 𝐵 = (Base‘𝑉) |
mhmimasplusg.c | ⊢ 𝐶 = (Base‘𝑊) |
mhmimasplusg.x | ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
mhmimasplusg.y | ⊢ (𝜑 → 𝑌 ∈ 𝐵) |
mhmimasplusg.1 | ⊢ (𝜑 → 𝐹:𝐵–onto→𝐶) |
mhmimasplusg.f | ⊢ (𝜑 → 𝐹 ∈ (𝑉 MndHom 𝑊)) |
mhmimasplusg.2 | ⊢ + = (+g‘𝑉) |
mhmimasplusg.3 | ⊢ ⨣ = (+g‘𝑊) |
Ref | Expression |
---|---|
mhmimasplusg | ⊢ (𝜑 → ((𝐹‘𝑋) ⨣ (𝐹‘𝑌)) = (𝐹‘(𝑋 + 𝑌))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mhmimasplusg.x | . 2 ⊢ (𝜑 → 𝑋 ∈ 𝐵) | |
2 | mhmimasplusg.y | . 2 ⊢ (𝜑 → 𝑌 ∈ 𝐵) | |
3 | mhmimasplusg.1 | . . 3 ⊢ (𝜑 → 𝐹:𝐵–onto→𝐶) | |
4 | simprl 767 | . . . . . 6 ⊢ (((𝜑 ∧ (𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵) ∧ (𝑝 ∈ 𝐵 ∧ 𝑞 ∈ 𝐵)) ∧ ((𝐹‘𝑎) = (𝐹‘𝑝) ∧ (𝐹‘𝑏) = (𝐹‘𝑞))) → (𝐹‘𝑎) = (𝐹‘𝑝)) | |
5 | simprr 769 | . . . . . 6 ⊢ (((𝜑 ∧ (𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵) ∧ (𝑝 ∈ 𝐵 ∧ 𝑞 ∈ 𝐵)) ∧ ((𝐹‘𝑎) = (𝐹‘𝑝) ∧ (𝐹‘𝑏) = (𝐹‘𝑞))) → (𝐹‘𝑏) = (𝐹‘𝑞)) | |
6 | 4, 5 | oveq12d 7429 | . . . . 5 ⊢ (((𝜑 ∧ (𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵) ∧ (𝑝 ∈ 𝐵 ∧ 𝑞 ∈ 𝐵)) ∧ ((𝐹‘𝑎) = (𝐹‘𝑝) ∧ (𝐹‘𝑏) = (𝐹‘𝑞))) → ((𝐹‘𝑎) ⨣ (𝐹‘𝑏)) = ((𝐹‘𝑝) ⨣ (𝐹‘𝑞))) |
7 | mhmimasplusg.f | . . . . . . . 8 ⊢ (𝜑 → 𝐹 ∈ (𝑉 MndHom 𝑊)) | |
8 | 7 | 3ad2ant1 1131 | . . . . . . 7 ⊢ ((𝜑 ∧ (𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵) ∧ (𝑝 ∈ 𝐵 ∧ 𝑞 ∈ 𝐵)) → 𝐹 ∈ (𝑉 MndHom 𝑊)) |
9 | 8 | adantr 479 | . . . . . 6 ⊢ (((𝜑 ∧ (𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵) ∧ (𝑝 ∈ 𝐵 ∧ 𝑞 ∈ 𝐵)) ∧ ((𝐹‘𝑎) = (𝐹‘𝑝) ∧ (𝐹‘𝑏) = (𝐹‘𝑞))) → 𝐹 ∈ (𝑉 MndHom 𝑊)) |
10 | simpl2l 1224 | . . . . . 6 ⊢ (((𝜑 ∧ (𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵) ∧ (𝑝 ∈ 𝐵 ∧ 𝑞 ∈ 𝐵)) ∧ ((𝐹‘𝑎) = (𝐹‘𝑝) ∧ (𝐹‘𝑏) = (𝐹‘𝑞))) → 𝑎 ∈ 𝐵) | |
11 | simpl2r 1225 | . . . . . 6 ⊢ (((𝜑 ∧ (𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵) ∧ (𝑝 ∈ 𝐵 ∧ 𝑞 ∈ 𝐵)) ∧ ((𝐹‘𝑎) = (𝐹‘𝑝) ∧ (𝐹‘𝑏) = (𝐹‘𝑞))) → 𝑏 ∈ 𝐵) | |
12 | mhmimasplusg.b | . . . . . . 7 ⊢ 𝐵 = (Base‘𝑉) | |
13 | mhmimasplusg.2 | . . . . . . 7 ⊢ + = (+g‘𝑉) | |
14 | mhmimasplusg.3 | . . . . . . 7 ⊢ ⨣ = (+g‘𝑊) | |
15 | 12, 13, 14 | mhmlin 18715 | . . . . . 6 ⊢ ((𝐹 ∈ (𝑉 MndHom 𝑊) ∧ 𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵) → (𝐹‘(𝑎 + 𝑏)) = ((𝐹‘𝑎) ⨣ (𝐹‘𝑏))) |
16 | 9, 10, 11, 15 | syl3anc 1369 | . . . . 5 ⊢ (((𝜑 ∧ (𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵) ∧ (𝑝 ∈ 𝐵 ∧ 𝑞 ∈ 𝐵)) ∧ ((𝐹‘𝑎) = (𝐹‘𝑝) ∧ (𝐹‘𝑏) = (𝐹‘𝑞))) → (𝐹‘(𝑎 + 𝑏)) = ((𝐹‘𝑎) ⨣ (𝐹‘𝑏))) |
17 | simpl3l 1226 | . . . . . 6 ⊢ (((𝜑 ∧ (𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵) ∧ (𝑝 ∈ 𝐵 ∧ 𝑞 ∈ 𝐵)) ∧ ((𝐹‘𝑎) = (𝐹‘𝑝) ∧ (𝐹‘𝑏) = (𝐹‘𝑞))) → 𝑝 ∈ 𝐵) | |
18 | simpl3r 1227 | . . . . . 6 ⊢ (((𝜑 ∧ (𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵) ∧ (𝑝 ∈ 𝐵 ∧ 𝑞 ∈ 𝐵)) ∧ ((𝐹‘𝑎) = (𝐹‘𝑝) ∧ (𝐹‘𝑏) = (𝐹‘𝑞))) → 𝑞 ∈ 𝐵) | |
19 | 12, 13, 14 | mhmlin 18715 | . . . . . 6 ⊢ ((𝐹 ∈ (𝑉 MndHom 𝑊) ∧ 𝑝 ∈ 𝐵 ∧ 𝑞 ∈ 𝐵) → (𝐹‘(𝑝 + 𝑞)) = ((𝐹‘𝑝) ⨣ (𝐹‘𝑞))) |
20 | 9, 17, 18, 19 | syl3anc 1369 | . . . . 5 ⊢ (((𝜑 ∧ (𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵) ∧ (𝑝 ∈ 𝐵 ∧ 𝑞 ∈ 𝐵)) ∧ ((𝐹‘𝑎) = (𝐹‘𝑝) ∧ (𝐹‘𝑏) = (𝐹‘𝑞))) → (𝐹‘(𝑝 + 𝑞)) = ((𝐹‘𝑝) ⨣ (𝐹‘𝑞))) |
21 | 6, 16, 20 | 3eqtr4d 2780 | . . . 4 ⊢ (((𝜑 ∧ (𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵) ∧ (𝑝 ∈ 𝐵 ∧ 𝑞 ∈ 𝐵)) ∧ ((𝐹‘𝑎) = (𝐹‘𝑝) ∧ (𝐹‘𝑏) = (𝐹‘𝑞))) → (𝐹‘(𝑎 + 𝑏)) = (𝐹‘(𝑝 + 𝑞))) |
22 | 21 | ex 411 | . . 3 ⊢ ((𝜑 ∧ (𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵) ∧ (𝑝 ∈ 𝐵 ∧ 𝑞 ∈ 𝐵)) → (((𝐹‘𝑎) = (𝐹‘𝑝) ∧ (𝐹‘𝑏) = (𝐹‘𝑞)) → (𝐹‘(𝑎 + 𝑏)) = (𝐹‘(𝑝 + 𝑞)))) |
23 | mhmimasplusg.w | . . . 4 ⊢ 𝑊 = (𝐹 “s 𝑉) | |
24 | 23 | a1i 11 | . . 3 ⊢ (𝜑 → 𝑊 = (𝐹 “s 𝑉)) |
25 | 12 | a1i 11 | . . 3 ⊢ (𝜑 → 𝐵 = (Base‘𝑉)) |
26 | mhmrcl1 18709 | . . . 4 ⊢ (𝐹 ∈ (𝑉 MndHom 𝑊) → 𝑉 ∈ Mnd) | |
27 | 7, 26 | syl 17 | . . 3 ⊢ (𝜑 → 𝑉 ∈ Mnd) |
28 | 3, 22, 24, 25, 27, 13, 14 | imasaddval 17482 | . 2 ⊢ ((𝜑 ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → ((𝐹‘𝑋) ⨣ (𝐹‘𝑌)) = (𝐹‘(𝑋 + 𝑌))) |
29 | 1, 2, 28 | mpd3an23 1461 | 1 ⊢ (𝜑 → ((𝐹‘𝑋) ⨣ (𝐹‘𝑌)) = (𝐹‘(𝑋 + 𝑌))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 394 ∧ w3a 1085 = wceq 1539 ∈ wcel 2104 –onto→wfo 6540 ‘cfv 6542 (class class class)co 7411 Basecbs 17148 +gcplusg 17201 “s cimas 17454 Mndcmnd 18659 MndHom cmhm 18703 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-10 2135 ax-11 2152 ax-12 2169 ax-ext 2701 ax-rep 5284 ax-sep 5298 ax-nul 5305 ax-pow 5362 ax-pr 5426 ax-un 7727 ax-cnex 11168 ax-resscn 11169 ax-1cn 11170 ax-icn 11171 ax-addcl 11172 ax-addrcl 11173 ax-mulcl 11174 ax-mulrcl 11175 ax-mulcom 11176 ax-addass 11177 ax-mulass 11178 ax-distr 11179 ax-i2m1 11180 ax-1ne0 11181 ax-1rid 11182 ax-rnegex 11183 ax-rrecex 11184 ax-cnre 11185 ax-pre-lttri 11186 ax-pre-lttrn 11187 ax-pre-ltadd 11188 ax-pre-mulgt0 11189 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2532 df-eu 2561 df-clab 2708 df-cleq 2722 df-clel 2808 df-nfc 2883 df-ne 2939 df-nel 3045 df-ral 3060 df-rex 3069 df-reu 3375 df-rab 3431 df-v 3474 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-pss 3966 df-nul 4322 df-if 4528 df-pw 4603 df-sn 4628 df-pr 4630 df-tp 4632 df-op 4634 df-uni 4908 df-iun 4998 df-br 5148 df-opab 5210 df-mpt 5231 df-tr 5265 df-id 5573 df-eprel 5579 df-po 5587 df-so 5588 df-fr 5630 df-we 5632 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-rn 5686 df-res 5687 df-ima 5688 df-pred 6299 df-ord 6366 df-on 6367 df-lim 6368 df-suc 6369 df-iota 6494 df-fun 6544 df-fn 6545 df-f 6546 df-f1 6547 df-fo 6548 df-f1o 6549 df-fv 6550 df-riota 7367 df-ov 7414 df-oprab 7415 df-mpo 7416 df-om 7858 df-1st 7977 df-2nd 7978 df-frecs 8268 df-wrecs 8299 df-recs 8373 df-rdg 8412 df-1o 8468 df-er 8705 df-map 8824 df-en 8942 df-dom 8943 df-sdom 8944 df-fin 8945 df-sup 9439 df-inf 9440 df-pnf 11254 df-mnf 11255 df-xr 11256 df-ltxr 11257 df-le 11258 df-sub 11450 df-neg 11451 df-nn 12217 df-2 12279 df-3 12280 df-4 12281 df-5 12282 df-6 12283 df-7 12284 df-8 12285 df-9 12286 df-n0 12477 df-z 12563 df-dec 12682 df-uz 12827 df-fz 13489 df-struct 17084 df-slot 17119 df-ndx 17131 df-base 17149 df-plusg 17214 df-mulr 17215 df-sca 17217 df-vsca 17218 df-ip 17219 df-tset 17220 df-ple 17221 df-ds 17223 df-imas 17458 df-mhm 18705 |
This theorem is referenced by: algextdeglem8 33069 |
Copyright terms: Public domain | W3C validator |