![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > mhmimasplusg | Structured version Visualization version GIF version |
Description: Value of the operation of the surjective image. (Contributed by Thierry Arnoux, 2-Apr-2025.) |
Ref | Expression |
---|---|
mhmimasplusg.w | ⊢ 𝑊 = (𝐹 “s 𝑉) |
mhmimasplusg.b | ⊢ 𝐵 = (Base‘𝑉) |
mhmimasplusg.c | ⊢ 𝐶 = (Base‘𝑊) |
mhmimasplusg.x | ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
mhmimasplusg.y | ⊢ (𝜑 → 𝑌 ∈ 𝐵) |
mhmimasplusg.1 | ⊢ (𝜑 → 𝐹:𝐵–onto→𝐶) |
mhmimasplusg.f | ⊢ (𝜑 → 𝐹 ∈ (𝑉 MndHom 𝑊)) |
mhmimasplusg.2 | ⊢ + = (+g‘𝑉) |
mhmimasplusg.3 | ⊢ ⨣ = (+g‘𝑊) |
Ref | Expression |
---|---|
mhmimasplusg | ⊢ (𝜑 → ((𝐹‘𝑋) ⨣ (𝐹‘𝑌)) = (𝐹‘(𝑋 + 𝑌))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mhmimasplusg.x | . 2 ⊢ (𝜑 → 𝑋 ∈ 𝐵) | |
2 | mhmimasplusg.y | . 2 ⊢ (𝜑 → 𝑌 ∈ 𝐵) | |
3 | mhmimasplusg.1 | . . 3 ⊢ (𝜑 → 𝐹:𝐵–onto→𝐶) | |
4 | simprl 768 | . . . . . 6 ⊢ (((𝜑 ∧ (𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵) ∧ (𝑝 ∈ 𝐵 ∧ 𝑞 ∈ 𝐵)) ∧ ((𝐹‘𝑎) = (𝐹‘𝑝) ∧ (𝐹‘𝑏) = (𝐹‘𝑞))) → (𝐹‘𝑎) = (𝐹‘𝑝)) | |
5 | simprr 770 | . . . . . 6 ⊢ (((𝜑 ∧ (𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵) ∧ (𝑝 ∈ 𝐵 ∧ 𝑞 ∈ 𝐵)) ∧ ((𝐹‘𝑎) = (𝐹‘𝑝) ∧ (𝐹‘𝑏) = (𝐹‘𝑞))) → (𝐹‘𝑏) = (𝐹‘𝑞)) | |
6 | 4, 5 | oveq12d 7430 | . . . . 5 ⊢ (((𝜑 ∧ (𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵) ∧ (𝑝 ∈ 𝐵 ∧ 𝑞 ∈ 𝐵)) ∧ ((𝐹‘𝑎) = (𝐹‘𝑝) ∧ (𝐹‘𝑏) = (𝐹‘𝑞))) → ((𝐹‘𝑎) ⨣ (𝐹‘𝑏)) = ((𝐹‘𝑝) ⨣ (𝐹‘𝑞))) |
7 | mhmimasplusg.f | . . . . . . . 8 ⊢ (𝜑 → 𝐹 ∈ (𝑉 MndHom 𝑊)) | |
8 | 7 | 3ad2ant1 1132 | . . . . . . 7 ⊢ ((𝜑 ∧ (𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵) ∧ (𝑝 ∈ 𝐵 ∧ 𝑞 ∈ 𝐵)) → 𝐹 ∈ (𝑉 MndHom 𝑊)) |
9 | 8 | adantr 480 | . . . . . 6 ⊢ (((𝜑 ∧ (𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵) ∧ (𝑝 ∈ 𝐵 ∧ 𝑞 ∈ 𝐵)) ∧ ((𝐹‘𝑎) = (𝐹‘𝑝) ∧ (𝐹‘𝑏) = (𝐹‘𝑞))) → 𝐹 ∈ (𝑉 MndHom 𝑊)) |
10 | simpl2l 1225 | . . . . . 6 ⊢ (((𝜑 ∧ (𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵) ∧ (𝑝 ∈ 𝐵 ∧ 𝑞 ∈ 𝐵)) ∧ ((𝐹‘𝑎) = (𝐹‘𝑝) ∧ (𝐹‘𝑏) = (𝐹‘𝑞))) → 𝑎 ∈ 𝐵) | |
11 | simpl2r 1226 | . . . . . 6 ⊢ (((𝜑 ∧ (𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵) ∧ (𝑝 ∈ 𝐵 ∧ 𝑞 ∈ 𝐵)) ∧ ((𝐹‘𝑎) = (𝐹‘𝑝) ∧ (𝐹‘𝑏) = (𝐹‘𝑞))) → 𝑏 ∈ 𝐵) | |
12 | mhmimasplusg.b | . . . . . . 7 ⊢ 𝐵 = (Base‘𝑉) | |
13 | mhmimasplusg.2 | . . . . . . 7 ⊢ + = (+g‘𝑉) | |
14 | mhmimasplusg.3 | . . . . . . 7 ⊢ ⨣ = (+g‘𝑊) | |
15 | 12, 13, 14 | mhmlin 18718 | . . . . . 6 ⊢ ((𝐹 ∈ (𝑉 MndHom 𝑊) ∧ 𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵) → (𝐹‘(𝑎 + 𝑏)) = ((𝐹‘𝑎) ⨣ (𝐹‘𝑏))) |
16 | 9, 10, 11, 15 | syl3anc 1370 | . . . . 5 ⊢ (((𝜑 ∧ (𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵) ∧ (𝑝 ∈ 𝐵 ∧ 𝑞 ∈ 𝐵)) ∧ ((𝐹‘𝑎) = (𝐹‘𝑝) ∧ (𝐹‘𝑏) = (𝐹‘𝑞))) → (𝐹‘(𝑎 + 𝑏)) = ((𝐹‘𝑎) ⨣ (𝐹‘𝑏))) |
17 | simpl3l 1227 | . . . . . 6 ⊢ (((𝜑 ∧ (𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵) ∧ (𝑝 ∈ 𝐵 ∧ 𝑞 ∈ 𝐵)) ∧ ((𝐹‘𝑎) = (𝐹‘𝑝) ∧ (𝐹‘𝑏) = (𝐹‘𝑞))) → 𝑝 ∈ 𝐵) | |
18 | simpl3r 1228 | . . . . . 6 ⊢ (((𝜑 ∧ (𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵) ∧ (𝑝 ∈ 𝐵 ∧ 𝑞 ∈ 𝐵)) ∧ ((𝐹‘𝑎) = (𝐹‘𝑝) ∧ (𝐹‘𝑏) = (𝐹‘𝑞))) → 𝑞 ∈ 𝐵) | |
19 | 12, 13, 14 | mhmlin 18718 | . . . . . 6 ⊢ ((𝐹 ∈ (𝑉 MndHom 𝑊) ∧ 𝑝 ∈ 𝐵 ∧ 𝑞 ∈ 𝐵) → (𝐹‘(𝑝 + 𝑞)) = ((𝐹‘𝑝) ⨣ (𝐹‘𝑞))) |
20 | 9, 17, 18, 19 | syl3anc 1370 | . . . . 5 ⊢ (((𝜑 ∧ (𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵) ∧ (𝑝 ∈ 𝐵 ∧ 𝑞 ∈ 𝐵)) ∧ ((𝐹‘𝑎) = (𝐹‘𝑝) ∧ (𝐹‘𝑏) = (𝐹‘𝑞))) → (𝐹‘(𝑝 + 𝑞)) = ((𝐹‘𝑝) ⨣ (𝐹‘𝑞))) |
21 | 6, 16, 20 | 3eqtr4d 2781 | . . . 4 ⊢ (((𝜑 ∧ (𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵) ∧ (𝑝 ∈ 𝐵 ∧ 𝑞 ∈ 𝐵)) ∧ ((𝐹‘𝑎) = (𝐹‘𝑝) ∧ (𝐹‘𝑏) = (𝐹‘𝑞))) → (𝐹‘(𝑎 + 𝑏)) = (𝐹‘(𝑝 + 𝑞))) |
22 | 21 | ex 412 | . . 3 ⊢ ((𝜑 ∧ (𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵) ∧ (𝑝 ∈ 𝐵 ∧ 𝑞 ∈ 𝐵)) → (((𝐹‘𝑎) = (𝐹‘𝑝) ∧ (𝐹‘𝑏) = (𝐹‘𝑞)) → (𝐹‘(𝑎 + 𝑏)) = (𝐹‘(𝑝 + 𝑞)))) |
23 | mhmimasplusg.w | . . . 4 ⊢ 𝑊 = (𝐹 “s 𝑉) | |
24 | 23 | a1i 11 | . . 3 ⊢ (𝜑 → 𝑊 = (𝐹 “s 𝑉)) |
25 | 12 | a1i 11 | . . 3 ⊢ (𝜑 → 𝐵 = (Base‘𝑉)) |
26 | mhmrcl1 18712 | . . . 4 ⊢ (𝐹 ∈ (𝑉 MndHom 𝑊) → 𝑉 ∈ Mnd) | |
27 | 7, 26 | syl 17 | . . 3 ⊢ (𝜑 → 𝑉 ∈ Mnd) |
28 | 3, 22, 24, 25, 27, 13, 14 | imasaddval 17485 | . 2 ⊢ ((𝜑 ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → ((𝐹‘𝑋) ⨣ (𝐹‘𝑌)) = (𝐹‘(𝑋 + 𝑌))) |
29 | 1, 2, 28 | mpd3an23 1462 | 1 ⊢ (𝜑 → ((𝐹‘𝑋) ⨣ (𝐹‘𝑌)) = (𝐹‘(𝑋 + 𝑌))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2105 –onto→wfo 6541 ‘cfv 6543 (class class class)co 7412 Basecbs 17151 +gcplusg 17204 “s cimas 17457 Mndcmnd 18662 MndHom cmhm 18706 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2702 ax-rep 5285 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7729 ax-cnex 11172 ax-resscn 11173 ax-1cn 11174 ax-icn 11175 ax-addcl 11176 ax-addrcl 11177 ax-mulcl 11178 ax-mulrcl 11179 ax-mulcom 11180 ax-addass 11181 ax-mulass 11182 ax-distr 11183 ax-i2m1 11184 ax-1ne0 11185 ax-1rid 11186 ax-rnegex 11187 ax-rrecex 11188 ax-cnre 11189 ax-pre-lttri 11190 ax-pre-lttrn 11191 ax-pre-ltadd 11192 ax-pre-mulgt0 11193 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2533 df-eu 2562 df-clab 2709 df-cleq 2723 df-clel 2809 df-nfc 2884 df-ne 2940 df-nel 3046 df-ral 3061 df-rex 3070 df-reu 3376 df-rab 3432 df-v 3475 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-pss 3967 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-tp 4633 df-op 4635 df-uni 4909 df-iun 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5574 df-eprel 5580 df-po 5588 df-so 5589 df-fr 5631 df-we 5633 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-pred 6300 df-ord 6367 df-on 6368 df-lim 6369 df-suc 6370 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-riota 7368 df-ov 7415 df-oprab 7416 df-mpo 7417 df-om 7860 df-1st 7979 df-2nd 7980 df-frecs 8272 df-wrecs 8303 df-recs 8377 df-rdg 8416 df-1o 8472 df-er 8709 df-map 8828 df-en 8946 df-dom 8947 df-sdom 8948 df-fin 8949 df-sup 9443 df-inf 9444 df-pnf 11257 df-mnf 11258 df-xr 11259 df-ltxr 11260 df-le 11261 df-sub 11453 df-neg 11454 df-nn 12220 df-2 12282 df-3 12283 df-4 12284 df-5 12285 df-6 12286 df-7 12287 df-8 12288 df-9 12289 df-n0 12480 df-z 12566 df-dec 12685 df-uz 12830 df-fz 13492 df-struct 17087 df-slot 17122 df-ndx 17134 df-base 17152 df-plusg 17217 df-mulr 17218 df-sca 17220 df-vsca 17221 df-ip 17222 df-tset 17223 df-ple 17224 df-ds 17226 df-imas 17461 df-mhm 18708 |
This theorem is referenced by: algextdeglem8 33084 |
Copyright terms: Public domain | W3C validator |