Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lvecendof1f1o Structured version   Visualization version   GIF version

Theorem lvecendof1f1o 33636
Description: If an endomorphism 𝑈 of a vector space 𝐸 of finite dimension is injective, then it is bijective. Item (b) of Corollary of Proposition 9 in [BourbakiAlg1] p. 298 . (Contributed by Thierry Arnoux, 3-Aug-2025.)
Hypotheses
Ref Expression
lvecendof1f1o.b 𝐵 = (Base‘𝐸)
lvecendof1f1o.e (𝜑𝐸 ∈ LVec)
lvecendof1f1o.d (𝜑 → (dim‘𝐸) ∈ ℕ0)
lvecendof1f1o.u (𝜑𝑈 ∈ (𝐸 LMHom 𝐸))
lvecendof1f1o.1 (𝜑𝑈:𝐵1-1𝐵)
Assertion
Ref Expression
lvecendof1f1o (𝜑𝑈:𝐵1-1-onto𝐵)

Proof of Theorem lvecendof1f1o
StepHypRef Expression
1 lvecendof1f1o.1 . 2 (𝜑𝑈:𝐵1-1𝐵)
2 lvecendof1f1o.u . . . . 5 (𝜑𝑈 ∈ (𝐸 LMHom 𝐸))
3 lvecendof1f1o.b . . . . . 6 𝐵 = (Base‘𝐸)
43, 3lmhmf 20961 . . . . 5 (𝑈 ∈ (𝐸 LMHom 𝐸) → 𝑈:𝐵𝐵)
52, 4syl 17 . . . 4 (𝜑𝑈:𝐵𝐵)
65ffnd 6648 . . 3 (𝜑𝑈 Fn 𝐵)
7 lvecendof1f1o.e . . . 4 (𝜑𝐸 ∈ LVec)
8 lvecendof1f1o.d . . . 4 (𝜑 → (dim‘𝐸) ∈ ℕ0)
9 lmhmrnlss 20977 . . . . 5 (𝑈 ∈ (𝐸 LMHom 𝐸) → ran 𝑈 ∈ (LSubSp‘𝐸))
102, 9syl 17 . . . 4 (𝜑 → ran 𝑈 ∈ (LSubSp‘𝐸))
11 eqid 2730 . . . . . . 7 (0g𝐸) = (0g𝐸)
12 eqid 2730 . . . . . . 7 (𝐸s (𝑈 “ {(0g𝐸)})) = (𝐸s (𝑈 “ {(0g𝐸)}))
13 eqid 2730 . . . . . . 7 (𝐸s ran 𝑈) = (𝐸s ran 𝑈)
1411, 12, 13dimkerim 33630 . . . . . 6 ((𝐸 ∈ LVec ∧ 𝑈 ∈ (𝐸 LMHom 𝐸)) → (dim‘𝐸) = ((dim‘(𝐸s (𝑈 “ {(0g𝐸)}))) +𝑒 (dim‘(𝐸s ran 𝑈))))
157, 2, 14syl2anc 584 . . . . 5 (𝜑 → (dim‘𝐸) = ((dim‘(𝐸s (𝑈 “ {(0g𝐸)}))) +𝑒 (dim‘(𝐸s ran 𝑈))))
16 eqid 2730 . . . . . . . . . 10 (𝑈 “ {(0g𝐸)}) = (𝑈 “ {(0g𝐸)})
17 eqid 2730 . . . . . . . . . 10 (LSubSp‘𝐸) = (LSubSp‘𝐸)
1816, 11, 17lmhmkerlss 20978 . . . . . . . . 9 (𝑈 ∈ (𝐸 LMHom 𝐸) → (𝑈 “ {(0g𝐸)}) ∈ (LSubSp‘𝐸))
192, 18syl 17 . . . . . . . 8 (𝜑 → (𝑈 “ {(0g𝐸)}) ∈ (LSubSp‘𝐸))
2012, 17lsslvec 21036 . . . . . . . 8 ((𝐸 ∈ LVec ∧ (𝑈 “ {(0g𝐸)}) ∈ (LSubSp‘𝐸)) → (𝐸s (𝑈 “ {(0g𝐸)})) ∈ LVec)
217, 19, 20syl2anc 584 . . . . . . 7 (𝜑 → (𝐸s (𝑈 “ {(0g𝐸)})) ∈ LVec)
222lmhmghmd 33008 . . . . . . . . 9 (𝜑𝑈 ∈ (𝐸 GrpHom 𝐸))
233, 3, 11, 11kerf1ghm 19152 . . . . . . . . . 10 (𝑈 ∈ (𝐸 GrpHom 𝐸) → (𝑈:𝐵1-1𝐵 ↔ (𝑈 “ {(0g𝐸)}) = {(0g𝐸)}))
2423biimpa 476 . . . . . . . . 9 ((𝑈 ∈ (𝐸 GrpHom 𝐸) ∧ 𝑈:𝐵1-1𝐵) → (𝑈 “ {(0g𝐸)}) = {(0g𝐸)})
2522, 1, 24syl2anc 584 . . . . . . . 8 (𝜑 → (𝑈 “ {(0g𝐸)}) = {(0g𝐸)})
26 cnvimass 6028 . . . . . . . . . 10 (𝑈 “ {(0g𝐸)}) ⊆ dom 𝑈
2726, 5fssdm 6666 . . . . . . . . 9 (𝜑 → (𝑈 “ {(0g𝐸)}) ⊆ 𝐵)
2812, 3ressbas2 17141 . . . . . . . . 9 ((𝑈 “ {(0g𝐸)}) ⊆ 𝐵 → (𝑈 “ {(0g𝐸)}) = (Base‘(𝐸s (𝑈 “ {(0g𝐸)}))))
2927, 28syl 17 . . . . . . . 8 (𝜑 → (𝑈 “ {(0g𝐸)}) = (Base‘(𝐸s (𝑈 “ {(0g𝐸)}))))
307lvecgrpd 21035 . . . . . . . . . . 11 (𝜑𝐸 ∈ Grp)
3130grpmndd 18851 . . . . . . . . . 10 (𝜑𝐸 ∈ Mnd)
323, 11mndidcl 18649 . . . . . . . . . . . 12 (𝐸 ∈ Mnd → (0g𝐸) ∈ 𝐵)
3331, 32syl 17 . . . . . . . . . . 11 (𝜑 → (0g𝐸) ∈ 𝐵)
3411, 11ghmid 19127 . . . . . . . . . . . . 13 (𝑈 ∈ (𝐸 GrpHom 𝐸) → (𝑈‘(0g𝐸)) = (0g𝐸))
3522, 34syl 17 . . . . . . . . . . . 12 (𝜑 → (𝑈‘(0g𝐸)) = (0g𝐸))
36 fvex 6830 . . . . . . . . . . . . 13 (0g𝐸) ∈ V
3736snid 4613 . . . . . . . . . . . 12 (0g𝐸) ∈ {(0g𝐸)}
3835, 37eqeltrdi 2837 . . . . . . . . . . 11 (𝜑 → (𝑈‘(0g𝐸)) ∈ {(0g𝐸)})
396, 33, 38elpreimad 6987 . . . . . . . . . 10 (𝜑 → (0g𝐸) ∈ (𝑈 “ {(0g𝐸)}))
4012, 3, 11ress0g 18662 . . . . . . . . . 10 ((𝐸 ∈ Mnd ∧ (0g𝐸) ∈ (𝑈 “ {(0g𝐸)}) ∧ (𝑈 “ {(0g𝐸)}) ⊆ 𝐵) → (0g𝐸) = (0g‘(𝐸s (𝑈 “ {(0g𝐸)}))))
4131, 39, 27, 40syl3anc 1373 . . . . . . . . 9 (𝜑 → (0g𝐸) = (0g‘(𝐸s (𝑈 “ {(0g𝐸)}))))
4241sneqd 4586 . . . . . . . 8 (𝜑 → {(0g𝐸)} = {(0g‘(𝐸s (𝑈 “ {(0g𝐸)})))})
4325, 29, 423eqtr3d 2773 . . . . . . 7 (𝜑 → (Base‘(𝐸s (𝑈 “ {(0g𝐸)}))) = {(0g‘(𝐸s (𝑈 “ {(0g𝐸)})))})
44 eqid 2730 . . . . . . . . 9 (0g‘(𝐸s (𝑈 “ {(0g𝐸)}))) = (0g‘(𝐸s (𝑈 “ {(0g𝐸)})))
4544lvecdim0 33609 . . . . . . . 8 ((𝐸s (𝑈 “ {(0g𝐸)})) ∈ LVec → ((dim‘(𝐸s (𝑈 “ {(0g𝐸)}))) = 0 ↔ (Base‘(𝐸s (𝑈 “ {(0g𝐸)}))) = {(0g‘(𝐸s (𝑈 “ {(0g𝐸)})))}))
4645biimpar 477 . . . . . . 7 (((𝐸s (𝑈 “ {(0g𝐸)})) ∈ LVec ∧ (Base‘(𝐸s (𝑈 “ {(0g𝐸)}))) = {(0g‘(𝐸s (𝑈 “ {(0g𝐸)})))}) → (dim‘(𝐸s (𝑈 “ {(0g𝐸)}))) = 0)
4721, 43, 46syl2anc 584 . . . . . 6 (𝜑 → (dim‘(𝐸s (𝑈 “ {(0g𝐸)}))) = 0)
4847oveq1d 7356 . . . . 5 (𝜑 → ((dim‘(𝐸s (𝑈 “ {(0g𝐸)}))) +𝑒 (dim‘(𝐸s ran 𝑈))) = (0 +𝑒 (dim‘(𝐸s ran 𝑈))))
4913, 17lsslvec 21036 . . . . . . 7 ((𝐸 ∈ LVec ∧ ran 𝑈 ∈ (LSubSp‘𝐸)) → (𝐸s ran 𝑈) ∈ LVec)
507, 10, 49syl2anc 584 . . . . . 6 (𝜑 → (𝐸s ran 𝑈) ∈ LVec)
51 dimcl 33605 . . . . . 6 ((𝐸s ran 𝑈) ∈ LVec → (dim‘(𝐸s ran 𝑈)) ∈ ℕ0*)
52 xnn0xr 12451 . . . . . 6 ((dim‘(𝐸s ran 𝑈)) ∈ ℕ0* → (dim‘(𝐸s ran 𝑈)) ∈ ℝ*)
53 xaddlid 13133 . . . . . 6 ((dim‘(𝐸s ran 𝑈)) ∈ ℝ* → (0 +𝑒 (dim‘(𝐸s ran 𝑈))) = (dim‘(𝐸s ran 𝑈)))
5450, 51, 52, 534syl 19 . . . . 5 (𝜑 → (0 +𝑒 (dim‘(𝐸s ran 𝑈))) = (dim‘(𝐸s ran 𝑈)))
5515, 48, 543eqtrrd 2770 . . . 4 (𝜑 → (dim‘(𝐸s ran 𝑈)) = (dim‘𝐸))
563, 7, 8, 10, 55dimlssid 33635 . . 3 (𝜑 → ran 𝑈 = 𝐵)
57 df-fo 6483 . . 3 (𝑈:𝐵onto𝐵 ↔ (𝑈 Fn 𝐵 ∧ ran 𝑈 = 𝐵))
586, 56, 57sylanbrc 583 . 2 (𝜑𝑈:𝐵onto𝐵)
59 df-f1o 6484 . 2 (𝑈:𝐵1-1-onto𝐵 ↔ (𝑈:𝐵1-1𝐵𝑈:𝐵onto𝐵))
601, 58, 59sylanbrc 583 1 (𝜑𝑈:𝐵1-1-onto𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1541  wcel 2110  wss 3900  {csn 4574  ccnv 5613  ran crn 5615  cima 5617   Fn wfn 6472  wf 6473  1-1wf1 6474  ontowfo 6475  1-1-ontowf1o 6476  cfv 6477  (class class class)co 7341  0cc0 10998  *cxr 11137  0cn0 12373  0*cxnn0 12446   +𝑒 cxad 13001  Basecbs 17112  s cress 17133  0gc0g 17335  Mndcmnd 18634   GrpHom cghm 19117  LSubSpclss 20857   LMHom clmhm 20946  LVecclvec 21029  dimcldim 33601
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2112  ax-9 2120  ax-10 2143  ax-11 2159  ax-12 2179  ax-ext 2702  ax-rep 5215  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7663  ax-reg 9473  ax-inf2 9526  ax-ac2 10346  ax-cnex 11054  ax-resscn 11055  ax-1cn 11056  ax-icn 11057  ax-addcl 11058  ax-addrcl 11059  ax-mulcl 11060  ax-mulrcl 11061  ax-mulcom 11062  ax-addass 11063  ax-mulass 11064  ax-distr 11065  ax-i2m1 11066  ax-1ne0 11067  ax-1rid 11068  ax-rnegex 11069  ax-rrecex 11070  ax-cnre 11071  ax-pre-lttri 11072  ax-pre-lttrn 11073  ax-pre-ltadd 11074  ax-pre-mulgt0 11075
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3344  df-reu 3345  df-rab 3394  df-v 3436  df-sbc 3740  df-csb 3849  df-dif 3903  df-un 3905  df-in 3907  df-ss 3917  df-pss 3920  df-nul 4282  df-if 4474  df-pw 4550  df-sn 4575  df-pr 4577  df-tp 4579  df-op 4581  df-uni 4858  df-int 4896  df-iun 4941  df-iin 4942  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-se 5568  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6244  df-ord 6305  df-on 6306  df-lim 6307  df-suc 6308  df-iota 6433  df-fun 6479  df-fn 6480  df-f 6481  df-f1 6482  df-fo 6483  df-f1o 6484  df-fv 6485  df-isom 6486  df-riota 7298  df-ov 7344  df-oprab 7345  df-mpo 7346  df-of 7605  df-rpss 7651  df-om 7792  df-1st 7916  df-2nd 7917  df-supp 8086  df-tpos 8151  df-frecs 8206  df-wrecs 8237  df-recs 8286  df-rdg 8324  df-1o 8380  df-2o 8381  df-oadd 8384  df-er 8617  df-map 8747  df-ixp 8817  df-en 8865  df-dom 8866  df-sdom 8867  df-fin 8868  df-fsupp 9241  df-sup 9321  df-oi 9391  df-r1 9649  df-rank 9650  df-dju 9786  df-card 9824  df-acn 9827  df-ac 9999  df-pnf 11140  df-mnf 11141  df-xr 11142  df-ltxr 11143  df-le 11144  df-sub 11338  df-neg 11339  df-nn 12118  df-2 12180  df-3 12181  df-4 12182  df-5 12183  df-6 12184  df-7 12185  df-8 12186  df-9 12187  df-n0 12374  df-xnn0 12447  df-z 12461  df-dec 12581  df-uz 12725  df-xadd 13004  df-fz 13400  df-fzo 13547  df-seq 13901  df-hash 14230  df-struct 17050  df-sets 17067  df-slot 17085  df-ndx 17097  df-base 17113  df-ress 17134  df-plusg 17166  df-mulr 17167  df-sca 17169  df-vsca 17170  df-ip 17171  df-tset 17172  df-ple 17173  df-ocomp 17174  df-ds 17175  df-hom 17177  df-cco 17178  df-0g 17337  df-gsum 17338  df-prds 17343  df-pws 17345  df-mre 17480  df-mrc 17481  df-mri 17482  df-acs 17483  df-proset 18192  df-drs 18193  df-poset 18211  df-ipo 18426  df-mgm 18540  df-sgrp 18619  df-mnd 18635  df-mhm 18683  df-submnd 18684  df-grp 18841  df-minusg 18842  df-sbg 18843  df-mulg 18973  df-subg 19028  df-ghm 19118  df-cntz 19222  df-lsm 19541  df-cmn 19687  df-abl 19688  df-mgp 20052  df-rng 20064  df-ur 20093  df-ring 20146  df-oppr 20248  df-dvdsr 20268  df-unit 20269  df-invr 20299  df-nzr 20421  df-subrg 20478  df-drng 20639  df-lmod 20788  df-lss 20858  df-lsp 20898  df-lmhm 20949  df-lmim 20950  df-lbs 21002  df-lvec 21030  df-sra 21100  df-rgmod 21101  df-dsmm 21662  df-frlm 21677  df-uvc 21713  df-lindf 21736  df-linds 21737  df-dim 33602
This theorem is referenced by:  assalactf1o  33638
  Copyright terms: Public domain W3C validator