Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lvecendof1f1o Structured version   Visualization version   GIF version

Theorem lvecendof1f1o 33661
Description: If an endomorphism 𝑈 of a vector space 𝐸 of finite dimension is injective, then it is bijective. Item (b) of Corollary of Proposition 9 in [BourbakiAlg1] p. 298 . (Contributed by Thierry Arnoux, 3-Aug-2025.)
Hypotheses
Ref Expression
lvecendof1f1o.b 𝐵 = (Base‘𝐸)
lvecendof1f1o.e (𝜑𝐸 ∈ LVec)
lvecendof1f1o.d (𝜑 → (dim‘𝐸) ∈ ℕ0)
lvecendof1f1o.u (𝜑𝑈 ∈ (𝐸 LMHom 𝐸))
lvecendof1f1o.1 (𝜑𝑈:𝐵1-1𝐵)
Assertion
Ref Expression
lvecendof1f1o (𝜑𝑈:𝐵1-1-onto𝐵)

Proof of Theorem lvecendof1f1o
StepHypRef Expression
1 lvecendof1f1o.1 . 2 (𝜑𝑈:𝐵1-1𝐵)
2 lvecendof1f1o.u . . . . 5 (𝜑𝑈 ∈ (𝐸 LMHom 𝐸))
3 lvecendof1f1o.b . . . . . 6 𝐵 = (Base‘𝐸)
43, 3lmhmf 21051 . . . . 5 (𝑈 ∈ (𝐸 LMHom 𝐸) → 𝑈:𝐵𝐵)
52, 4syl 17 . . . 4 (𝜑𝑈:𝐵𝐵)
65ffnd 6738 . . 3 (𝜑𝑈 Fn 𝐵)
7 lvecendof1f1o.e . . . 4 (𝜑𝐸 ∈ LVec)
8 lvecendof1f1o.d . . . 4 (𝜑 → (dim‘𝐸) ∈ ℕ0)
9 lmhmrnlss 21067 . . . . 5 (𝑈 ∈ (𝐸 LMHom 𝐸) → ran 𝑈 ∈ (LSubSp‘𝐸))
102, 9syl 17 . . . 4 (𝜑 → ran 𝑈 ∈ (LSubSp‘𝐸))
11 eqid 2735 . . . . . . 7 (0g𝐸) = (0g𝐸)
12 eqid 2735 . . . . . . 7 (𝐸s (𝑈 “ {(0g𝐸)})) = (𝐸s (𝑈 “ {(0g𝐸)}))
13 eqid 2735 . . . . . . 7 (𝐸s ran 𝑈) = (𝐸s ran 𝑈)
1411, 12, 13dimkerim 33655 . . . . . 6 ((𝐸 ∈ LVec ∧ 𝑈 ∈ (𝐸 LMHom 𝐸)) → (dim‘𝐸) = ((dim‘(𝐸s (𝑈 “ {(0g𝐸)}))) +𝑒 (dim‘(𝐸s ran 𝑈))))
157, 2, 14syl2anc 584 . . . . 5 (𝜑 → (dim‘𝐸) = ((dim‘(𝐸s (𝑈 “ {(0g𝐸)}))) +𝑒 (dim‘(𝐸s ran 𝑈))))
16 eqid 2735 . . . . . . . . . 10 (𝑈 “ {(0g𝐸)}) = (𝑈 “ {(0g𝐸)})
17 eqid 2735 . . . . . . . . . 10 (LSubSp‘𝐸) = (LSubSp‘𝐸)
1816, 11, 17lmhmkerlss 21068 . . . . . . . . 9 (𝑈 ∈ (𝐸 LMHom 𝐸) → (𝑈 “ {(0g𝐸)}) ∈ (LSubSp‘𝐸))
192, 18syl 17 . . . . . . . 8 (𝜑 → (𝑈 “ {(0g𝐸)}) ∈ (LSubSp‘𝐸))
2012, 17lsslvec 21126 . . . . . . . 8 ((𝐸 ∈ LVec ∧ (𝑈 “ {(0g𝐸)}) ∈ (LSubSp‘𝐸)) → (𝐸s (𝑈 “ {(0g𝐸)})) ∈ LVec)
217, 19, 20syl2anc 584 . . . . . . 7 (𝜑 → (𝐸s (𝑈 “ {(0g𝐸)})) ∈ LVec)
222lmhmghmd 33025 . . . . . . . . 9 (𝜑𝑈 ∈ (𝐸 GrpHom 𝐸))
233, 3, 11, 11kerf1ghm 19278 . . . . . . . . . 10 (𝑈 ∈ (𝐸 GrpHom 𝐸) → (𝑈:𝐵1-1𝐵 ↔ (𝑈 “ {(0g𝐸)}) = {(0g𝐸)}))
2423biimpa 476 . . . . . . . . 9 ((𝑈 ∈ (𝐸 GrpHom 𝐸) ∧ 𝑈:𝐵1-1𝐵) → (𝑈 “ {(0g𝐸)}) = {(0g𝐸)})
2522, 1, 24syl2anc 584 . . . . . . . 8 (𝜑 → (𝑈 “ {(0g𝐸)}) = {(0g𝐸)})
26 cnvimass 6102 . . . . . . . . . 10 (𝑈 “ {(0g𝐸)}) ⊆ dom 𝑈
2726, 5fssdm 6756 . . . . . . . . 9 (𝜑 → (𝑈 “ {(0g𝐸)}) ⊆ 𝐵)
2812, 3ressbas2 17283 . . . . . . . . 9 ((𝑈 “ {(0g𝐸)}) ⊆ 𝐵 → (𝑈 “ {(0g𝐸)}) = (Base‘(𝐸s (𝑈 “ {(0g𝐸)}))))
2927, 28syl 17 . . . . . . . 8 (𝜑 → (𝑈 “ {(0g𝐸)}) = (Base‘(𝐸s (𝑈 “ {(0g𝐸)}))))
307lvecgrpd 21125 . . . . . . . . . . 11 (𝜑𝐸 ∈ Grp)
3130grpmndd 18977 . . . . . . . . . 10 (𝜑𝐸 ∈ Mnd)
323, 11mndidcl 18775 . . . . . . . . . . . 12 (𝐸 ∈ Mnd → (0g𝐸) ∈ 𝐵)
3331, 32syl 17 . . . . . . . . . . 11 (𝜑 → (0g𝐸) ∈ 𝐵)
3411, 11ghmid 19253 . . . . . . . . . . . . 13 (𝑈 ∈ (𝐸 GrpHom 𝐸) → (𝑈‘(0g𝐸)) = (0g𝐸))
3522, 34syl 17 . . . . . . . . . . . 12 (𝜑 → (𝑈‘(0g𝐸)) = (0g𝐸))
36 fvex 6920 . . . . . . . . . . . . 13 (0g𝐸) ∈ V
3736snid 4667 . . . . . . . . . . . 12 (0g𝐸) ∈ {(0g𝐸)}
3835, 37eqeltrdi 2847 . . . . . . . . . . 11 (𝜑 → (𝑈‘(0g𝐸)) ∈ {(0g𝐸)})
396, 33, 38elpreimad 7079 . . . . . . . . . 10 (𝜑 → (0g𝐸) ∈ (𝑈 “ {(0g𝐸)}))
4012, 3, 11ress0g 18788 . . . . . . . . . 10 ((𝐸 ∈ Mnd ∧ (0g𝐸) ∈ (𝑈 “ {(0g𝐸)}) ∧ (𝑈 “ {(0g𝐸)}) ⊆ 𝐵) → (0g𝐸) = (0g‘(𝐸s (𝑈 “ {(0g𝐸)}))))
4131, 39, 27, 40syl3anc 1370 . . . . . . . . 9 (𝜑 → (0g𝐸) = (0g‘(𝐸s (𝑈 “ {(0g𝐸)}))))
4241sneqd 4643 . . . . . . . 8 (𝜑 → {(0g𝐸)} = {(0g‘(𝐸s (𝑈 “ {(0g𝐸)})))})
4325, 29, 423eqtr3d 2783 . . . . . . 7 (𝜑 → (Base‘(𝐸s (𝑈 “ {(0g𝐸)}))) = {(0g‘(𝐸s (𝑈 “ {(0g𝐸)})))})
44 eqid 2735 . . . . . . . . 9 (0g‘(𝐸s (𝑈 “ {(0g𝐸)}))) = (0g‘(𝐸s (𝑈 “ {(0g𝐸)})))
4544lvecdim0 33634 . . . . . . . 8 ((𝐸s (𝑈 “ {(0g𝐸)})) ∈ LVec → ((dim‘(𝐸s (𝑈 “ {(0g𝐸)}))) = 0 ↔ (Base‘(𝐸s (𝑈 “ {(0g𝐸)}))) = {(0g‘(𝐸s (𝑈 “ {(0g𝐸)})))}))
4645biimpar 477 . . . . . . 7 (((𝐸s (𝑈 “ {(0g𝐸)})) ∈ LVec ∧ (Base‘(𝐸s (𝑈 “ {(0g𝐸)}))) = {(0g‘(𝐸s (𝑈 “ {(0g𝐸)})))}) → (dim‘(𝐸s (𝑈 “ {(0g𝐸)}))) = 0)
4721, 43, 46syl2anc 584 . . . . . 6 (𝜑 → (dim‘(𝐸s (𝑈 “ {(0g𝐸)}))) = 0)
4847oveq1d 7446 . . . . 5 (𝜑 → ((dim‘(𝐸s (𝑈 “ {(0g𝐸)}))) +𝑒 (dim‘(𝐸s ran 𝑈))) = (0 +𝑒 (dim‘(𝐸s ran 𝑈))))
4913, 17lsslvec 21126 . . . . . . 7 ((𝐸 ∈ LVec ∧ ran 𝑈 ∈ (LSubSp‘𝐸)) → (𝐸s ran 𝑈) ∈ LVec)
507, 10, 49syl2anc 584 . . . . . 6 (𝜑 → (𝐸s ran 𝑈) ∈ LVec)
51 dimcl 33630 . . . . . 6 ((𝐸s ran 𝑈) ∈ LVec → (dim‘(𝐸s ran 𝑈)) ∈ ℕ0*)
52 xnn0xr 12602 . . . . . 6 ((dim‘(𝐸s ran 𝑈)) ∈ ℕ0* → (dim‘(𝐸s ran 𝑈)) ∈ ℝ*)
53 xaddlid 13281 . . . . . 6 ((dim‘(𝐸s ran 𝑈)) ∈ ℝ* → (0 +𝑒 (dim‘(𝐸s ran 𝑈))) = (dim‘(𝐸s ran 𝑈)))
5450, 51, 52, 534syl 19 . . . . 5 (𝜑 → (0 +𝑒 (dim‘(𝐸s ran 𝑈))) = (dim‘(𝐸s ran 𝑈)))
5515, 48, 543eqtrrd 2780 . . . 4 (𝜑 → (dim‘(𝐸s ran 𝑈)) = (dim‘𝐸))
563, 7, 8, 10, 55dimlssid 33660 . . 3 (𝜑 → ran 𝑈 = 𝐵)
57 df-fo 6569 . . 3 (𝑈:𝐵onto𝐵 ↔ (𝑈 Fn 𝐵 ∧ ran 𝑈 = 𝐵))
586, 56, 57sylanbrc 583 . 2 (𝜑𝑈:𝐵onto𝐵)
59 df-f1o 6570 . 2 (𝑈:𝐵1-1-onto𝐵 ↔ (𝑈:𝐵1-1𝐵𝑈:𝐵onto𝐵))
601, 58, 59sylanbrc 583 1 (𝜑𝑈:𝐵1-1-onto𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1537  wcel 2106  wss 3963  {csn 4631  ccnv 5688  ran crn 5690  cima 5692   Fn wfn 6558  wf 6559  1-1wf1 6560  ontowfo 6561  1-1-ontowf1o 6562  cfv 6563  (class class class)co 7431  0cc0 11153  *cxr 11292  0cn0 12524  0*cxnn0 12597   +𝑒 cxad 13150  Basecbs 17245  s cress 17274  0gc0g 17486  Mndcmnd 18760   GrpHom cghm 19243  LSubSpclss 20947   LMHom clmhm 21036  LVecclvec 21119  dimcldim 33626
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-rep 5285  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754  ax-reg 9630  ax-inf2 9679  ax-ac2 10501  ax-cnex 11209  ax-resscn 11210  ax-1cn 11211  ax-icn 11212  ax-addcl 11213  ax-addrcl 11214  ax-mulcl 11215  ax-mulrcl 11216  ax-mulcom 11217  ax-addass 11218  ax-mulass 11219  ax-distr 11220  ax-i2m1 11221  ax-1ne0 11222  ax-1rid 11223  ax-rnegex 11224  ax-rrecex 11225  ax-cnre 11226  ax-pre-lttri 11227  ax-pre-lttrn 11228  ax-pre-ltadd 11229  ax-pre-mulgt0 11230
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-rmo 3378  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-tp 4636  df-op 4638  df-uni 4913  df-int 4952  df-iun 4998  df-iin 4999  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5583  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-se 5642  df-we 5643  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-pred 6323  df-ord 6389  df-on 6390  df-lim 6391  df-suc 6392  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-isom 6572  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-of 7697  df-rpss 7742  df-om 7888  df-1st 8013  df-2nd 8014  df-supp 8185  df-tpos 8250  df-frecs 8305  df-wrecs 8336  df-recs 8410  df-rdg 8449  df-1o 8505  df-2o 8506  df-oadd 8509  df-er 8744  df-map 8867  df-ixp 8937  df-en 8985  df-dom 8986  df-sdom 8987  df-fin 8988  df-fsupp 9400  df-sup 9480  df-oi 9548  df-r1 9802  df-rank 9803  df-dju 9939  df-card 9977  df-acn 9980  df-ac 10154  df-pnf 11295  df-mnf 11296  df-xr 11297  df-ltxr 11298  df-le 11299  df-sub 11492  df-neg 11493  df-nn 12265  df-2 12327  df-3 12328  df-4 12329  df-5 12330  df-6 12331  df-7 12332  df-8 12333  df-9 12334  df-n0 12525  df-xnn0 12598  df-z 12612  df-dec 12732  df-uz 12877  df-xadd 13153  df-fz 13545  df-fzo 13692  df-seq 14040  df-hash 14367  df-struct 17181  df-sets 17198  df-slot 17216  df-ndx 17228  df-base 17246  df-ress 17275  df-plusg 17311  df-mulr 17312  df-sca 17314  df-vsca 17315  df-ip 17316  df-tset 17317  df-ple 17318  df-ocomp 17319  df-ds 17320  df-hom 17322  df-cco 17323  df-0g 17488  df-gsum 17489  df-prds 17494  df-pws 17496  df-mre 17631  df-mrc 17632  df-mri 17633  df-acs 17634  df-proset 18352  df-drs 18353  df-poset 18371  df-ipo 18586  df-mgm 18666  df-sgrp 18745  df-mnd 18761  df-mhm 18809  df-submnd 18810  df-grp 18967  df-minusg 18968  df-sbg 18969  df-mulg 19099  df-subg 19154  df-ghm 19244  df-cntz 19348  df-lsm 19669  df-cmn 19815  df-abl 19816  df-mgp 20153  df-rng 20171  df-ur 20200  df-ring 20253  df-oppr 20351  df-dvdsr 20374  df-unit 20375  df-invr 20405  df-nzr 20530  df-subrg 20587  df-drng 20748  df-lmod 20877  df-lss 20948  df-lsp 20988  df-lmhm 21039  df-lmim 21040  df-lbs 21092  df-lvec 21120  df-sra 21190  df-rgmod 21191  df-dsmm 21770  df-frlm 21785  df-uvc 21821  df-lindf 21844  df-linds 21845  df-dim 33627
This theorem is referenced by:  assalactf1o  33663
  Copyright terms: Public domain W3C validator