Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lvecendof1f1o Structured version   Visualization version   GIF version

Theorem lvecendof1f1o 33646
Description: If an endomorphism 𝑈 of a vector space 𝐸 of finite dimension is injective, then it is bijective. Item (b) of Corollary of Proposition 9 in [BourbakiAlg1] p. 298 . (Contributed by Thierry Arnoux, 3-Aug-2025.)
Hypotheses
Ref Expression
lvecendof1f1o.b 𝐵 = (Base‘𝐸)
lvecendof1f1o.e (𝜑𝐸 ∈ LVec)
lvecendof1f1o.d (𝜑 → (dim‘𝐸) ∈ ℕ0)
lvecendof1f1o.u (𝜑𝑈 ∈ (𝐸 LMHom 𝐸))
lvecendof1f1o.1 (𝜑𝑈:𝐵1-1𝐵)
Assertion
Ref Expression
lvecendof1f1o (𝜑𝑈:𝐵1-1-onto𝐵)

Proof of Theorem lvecendof1f1o
StepHypRef Expression
1 lvecendof1f1o.1 . 2 (𝜑𝑈:𝐵1-1𝐵)
2 lvecendof1f1o.u . . . . 5 (𝜑𝑈 ∈ (𝐸 LMHom 𝐸))
3 lvecendof1f1o.b . . . . . 6 𝐵 = (Base‘𝐸)
43, 3lmhmf 21056 . . . . 5 (𝑈 ∈ (𝐸 LMHom 𝐸) → 𝑈:𝐵𝐵)
52, 4syl 17 . . . 4 (𝜑𝑈:𝐵𝐵)
65ffnd 6748 . . 3 (𝜑𝑈 Fn 𝐵)
7 lvecendof1f1o.e . . . 4 (𝜑𝐸 ∈ LVec)
8 lvecendof1f1o.d . . . 4 (𝜑 → (dim‘𝐸) ∈ ℕ0)
9 lmhmrnlss 21072 . . . . 5 (𝑈 ∈ (𝐸 LMHom 𝐸) → ran 𝑈 ∈ (LSubSp‘𝐸))
102, 9syl 17 . . . 4 (𝜑 → ran 𝑈 ∈ (LSubSp‘𝐸))
11 eqid 2740 . . . . . . 7 (0g𝐸) = (0g𝐸)
12 eqid 2740 . . . . . . 7 (𝐸s (𝑈 “ {(0g𝐸)})) = (𝐸s (𝑈 “ {(0g𝐸)}))
13 eqid 2740 . . . . . . 7 (𝐸s ran 𝑈) = (𝐸s ran 𝑈)
1411, 12, 13dimkerim 33640 . . . . . 6 ((𝐸 ∈ LVec ∧ 𝑈 ∈ (𝐸 LMHom 𝐸)) → (dim‘𝐸) = ((dim‘(𝐸s (𝑈 “ {(0g𝐸)}))) +𝑒 (dim‘(𝐸s ran 𝑈))))
157, 2, 14syl2anc 583 . . . . 5 (𝜑 → (dim‘𝐸) = ((dim‘(𝐸s (𝑈 “ {(0g𝐸)}))) +𝑒 (dim‘(𝐸s ran 𝑈))))
16 eqid 2740 . . . . . . . . . 10 (𝑈 “ {(0g𝐸)}) = (𝑈 “ {(0g𝐸)})
17 eqid 2740 . . . . . . . . . 10 (LSubSp‘𝐸) = (LSubSp‘𝐸)
1816, 11, 17lmhmkerlss 21073 . . . . . . . . 9 (𝑈 ∈ (𝐸 LMHom 𝐸) → (𝑈 “ {(0g𝐸)}) ∈ (LSubSp‘𝐸))
192, 18syl 17 . . . . . . . 8 (𝜑 → (𝑈 “ {(0g𝐸)}) ∈ (LSubSp‘𝐸))
2012, 17lsslvec 21131 . . . . . . . 8 ((𝐸 ∈ LVec ∧ (𝑈 “ {(0g𝐸)}) ∈ (LSubSp‘𝐸)) → (𝐸s (𝑈 “ {(0g𝐸)})) ∈ LVec)
217, 19, 20syl2anc 583 . . . . . . 7 (𝜑 → (𝐸s (𝑈 “ {(0g𝐸)})) ∈ LVec)
222lmhmghmd 33023 . . . . . . . . 9 (𝜑𝑈 ∈ (𝐸 GrpHom 𝐸))
233, 3, 11, 11kerf1ghm 19287 . . . . . . . . . 10 (𝑈 ∈ (𝐸 GrpHom 𝐸) → (𝑈:𝐵1-1𝐵 ↔ (𝑈 “ {(0g𝐸)}) = {(0g𝐸)}))
2423biimpa 476 . . . . . . . . 9 ((𝑈 ∈ (𝐸 GrpHom 𝐸) ∧ 𝑈:𝐵1-1𝐵) → (𝑈 “ {(0g𝐸)}) = {(0g𝐸)})
2522, 1, 24syl2anc 583 . . . . . . . 8 (𝜑 → (𝑈 “ {(0g𝐸)}) = {(0g𝐸)})
26 cnvimass 6111 . . . . . . . . . 10 (𝑈 “ {(0g𝐸)}) ⊆ dom 𝑈
2726, 5fssdm 6766 . . . . . . . . 9 (𝜑 → (𝑈 “ {(0g𝐸)}) ⊆ 𝐵)
2812, 3ressbas2 17296 . . . . . . . . 9 ((𝑈 “ {(0g𝐸)}) ⊆ 𝐵 → (𝑈 “ {(0g𝐸)}) = (Base‘(𝐸s (𝑈 “ {(0g𝐸)}))))
2927, 28syl 17 . . . . . . . 8 (𝜑 → (𝑈 “ {(0g𝐸)}) = (Base‘(𝐸s (𝑈 “ {(0g𝐸)}))))
307lvecgrpd 21130 . . . . . . . . . . 11 (𝜑𝐸 ∈ Grp)
3130grpmndd 18986 . . . . . . . . . 10 (𝜑𝐸 ∈ Mnd)
323, 11mndidcl 18787 . . . . . . . . . . . 12 (𝐸 ∈ Mnd → (0g𝐸) ∈ 𝐵)
3331, 32syl 17 . . . . . . . . . . 11 (𝜑 → (0g𝐸) ∈ 𝐵)
3411, 11ghmid 19262 . . . . . . . . . . . . 13 (𝑈 ∈ (𝐸 GrpHom 𝐸) → (𝑈‘(0g𝐸)) = (0g𝐸))
3522, 34syl 17 . . . . . . . . . . . 12 (𝜑 → (𝑈‘(0g𝐸)) = (0g𝐸))
36 fvex 6933 . . . . . . . . . . . . 13 (0g𝐸) ∈ V
3736snid 4684 . . . . . . . . . . . 12 (0g𝐸) ∈ {(0g𝐸)}
3835, 37eqeltrdi 2852 . . . . . . . . . . 11 (𝜑 → (𝑈‘(0g𝐸)) ∈ {(0g𝐸)})
396, 33, 38elpreimad 7092 . . . . . . . . . 10 (𝜑 → (0g𝐸) ∈ (𝑈 “ {(0g𝐸)}))
4012, 3, 11ress0g 18800 . . . . . . . . . 10 ((𝐸 ∈ Mnd ∧ (0g𝐸) ∈ (𝑈 “ {(0g𝐸)}) ∧ (𝑈 “ {(0g𝐸)}) ⊆ 𝐵) → (0g𝐸) = (0g‘(𝐸s (𝑈 “ {(0g𝐸)}))))
4131, 39, 27, 40syl3anc 1371 . . . . . . . . 9 (𝜑 → (0g𝐸) = (0g‘(𝐸s (𝑈 “ {(0g𝐸)}))))
4241sneqd 4660 . . . . . . . 8 (𝜑 → {(0g𝐸)} = {(0g‘(𝐸s (𝑈 “ {(0g𝐸)})))})
4325, 29, 423eqtr3d 2788 . . . . . . 7 (𝜑 → (Base‘(𝐸s (𝑈 “ {(0g𝐸)}))) = {(0g‘(𝐸s (𝑈 “ {(0g𝐸)})))})
44 eqid 2740 . . . . . . . . 9 (0g‘(𝐸s (𝑈 “ {(0g𝐸)}))) = (0g‘(𝐸s (𝑈 “ {(0g𝐸)})))
4544lvecdim0 33619 . . . . . . . 8 ((𝐸s (𝑈 “ {(0g𝐸)})) ∈ LVec → ((dim‘(𝐸s (𝑈 “ {(0g𝐸)}))) = 0 ↔ (Base‘(𝐸s (𝑈 “ {(0g𝐸)}))) = {(0g‘(𝐸s (𝑈 “ {(0g𝐸)})))}))
4645biimpar 477 . . . . . . 7 (((𝐸s (𝑈 “ {(0g𝐸)})) ∈ LVec ∧ (Base‘(𝐸s (𝑈 “ {(0g𝐸)}))) = {(0g‘(𝐸s (𝑈 “ {(0g𝐸)})))}) → (dim‘(𝐸s (𝑈 “ {(0g𝐸)}))) = 0)
4721, 43, 46syl2anc 583 . . . . . 6 (𝜑 → (dim‘(𝐸s (𝑈 “ {(0g𝐸)}))) = 0)
4847oveq1d 7463 . . . . 5 (𝜑 → ((dim‘(𝐸s (𝑈 “ {(0g𝐸)}))) +𝑒 (dim‘(𝐸s ran 𝑈))) = (0 +𝑒 (dim‘(𝐸s ran 𝑈))))
4913, 17lsslvec 21131 . . . . . . 7 ((𝐸 ∈ LVec ∧ ran 𝑈 ∈ (LSubSp‘𝐸)) → (𝐸s ran 𝑈) ∈ LVec)
507, 10, 49syl2anc 583 . . . . . 6 (𝜑 → (𝐸s ran 𝑈) ∈ LVec)
51 dimcl 33615 . . . . . 6 ((𝐸s ran 𝑈) ∈ LVec → (dim‘(𝐸s ran 𝑈)) ∈ ℕ0*)
52 xnn0xr 12630 . . . . . 6 ((dim‘(𝐸s ran 𝑈)) ∈ ℕ0* → (dim‘(𝐸s ran 𝑈)) ∈ ℝ*)
53 xaddlid 13304 . . . . . 6 ((dim‘(𝐸s ran 𝑈)) ∈ ℝ* → (0 +𝑒 (dim‘(𝐸s ran 𝑈))) = (dim‘(𝐸s ran 𝑈)))
5450, 51, 52, 534syl 19 . . . . 5 (𝜑 → (0 +𝑒 (dim‘(𝐸s ran 𝑈))) = (dim‘(𝐸s ran 𝑈)))
5515, 48, 543eqtrrd 2785 . . . 4 (𝜑 → (dim‘(𝐸s ran 𝑈)) = (dim‘𝐸))
563, 7, 8, 10, 55dimlssid 33645 . . 3 (𝜑 → ran 𝑈 = 𝐵)
57 df-fo 6579 . . 3 (𝑈:𝐵onto𝐵 ↔ (𝑈 Fn 𝐵 ∧ ran 𝑈 = 𝐵))
586, 56, 57sylanbrc 582 . 2 (𝜑𝑈:𝐵onto𝐵)
59 df-f1o 6580 . 2 (𝑈:𝐵1-1-onto𝐵 ↔ (𝑈:𝐵1-1𝐵𝑈:𝐵onto𝐵))
601, 58, 59sylanbrc 582 1 (𝜑𝑈:𝐵1-1-onto𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1537  wcel 2108  wss 3976  {csn 4648  ccnv 5699  ran crn 5701  cima 5703   Fn wfn 6568  wf 6569  1-1wf1 6570  ontowfo 6571  1-1-ontowf1o 6572  cfv 6573  (class class class)co 7448  0cc0 11184  *cxr 11323  0cn0 12553  0*cxnn0 12625   +𝑒 cxad 13173  Basecbs 17258  s cress 17287  0gc0g 17499  Mndcmnd 18772   GrpHom cghm 19252  LSubSpclss 20952   LMHom clmhm 21041  LVecclvec 21124  dimcldim 33611
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-reg 9661  ax-inf2 9710  ax-ac2 10532  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-tp 4653  df-op 4655  df-uni 4932  df-int 4971  df-iun 5017  df-iin 5018  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-se 5653  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-isom 6582  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-of 7714  df-rpss 7758  df-om 7904  df-1st 8030  df-2nd 8031  df-supp 8202  df-tpos 8267  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-1o 8522  df-2o 8523  df-oadd 8526  df-er 8763  df-map 8886  df-ixp 8956  df-en 9004  df-dom 9005  df-sdom 9006  df-fin 9007  df-fsupp 9432  df-sup 9511  df-oi 9579  df-r1 9833  df-rank 9834  df-dju 9970  df-card 10008  df-acn 10011  df-ac 10185  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-nn 12294  df-2 12356  df-3 12357  df-4 12358  df-5 12359  df-6 12360  df-7 12361  df-8 12362  df-9 12363  df-n0 12554  df-xnn0 12626  df-z 12640  df-dec 12759  df-uz 12904  df-xadd 13176  df-fz 13568  df-fzo 13712  df-seq 14053  df-hash 14380  df-struct 17194  df-sets 17211  df-slot 17229  df-ndx 17241  df-base 17259  df-ress 17288  df-plusg 17324  df-mulr 17325  df-sca 17327  df-vsca 17328  df-ip 17329  df-tset 17330  df-ple 17331  df-ocomp 17332  df-ds 17333  df-hom 17335  df-cco 17336  df-0g 17501  df-gsum 17502  df-prds 17507  df-pws 17509  df-mre 17644  df-mrc 17645  df-mri 17646  df-acs 17647  df-proset 18365  df-drs 18366  df-poset 18383  df-ipo 18598  df-mgm 18678  df-sgrp 18757  df-mnd 18773  df-mhm 18818  df-submnd 18819  df-grp 18976  df-minusg 18977  df-sbg 18978  df-mulg 19108  df-subg 19163  df-ghm 19253  df-cntz 19357  df-lsm 19678  df-cmn 19824  df-abl 19825  df-mgp 20162  df-rng 20180  df-ur 20209  df-ring 20262  df-oppr 20360  df-dvdsr 20383  df-unit 20384  df-invr 20414  df-nzr 20539  df-subrg 20597  df-drng 20753  df-lmod 20882  df-lss 20953  df-lsp 20993  df-lmhm 21044  df-lmim 21045  df-lbs 21097  df-lvec 21125  df-sra 21195  df-rgmod 21196  df-dsmm 21775  df-frlm 21790  df-uvc 21826  df-lindf 21849  df-linds 21850  df-dim 33612
This theorem is referenced by:  assalactf1o  33648
  Copyright terms: Public domain W3C validator