Proof of Theorem lvecendof1f1o
Step | Hyp | Ref
| Expression |
1 | | lvecendof1f1o.1 |
. 2
⊢ (𝜑 → 𝑈:𝐵–1-1→𝐵) |
2 | | lvecendof1f1o.u |
. . . . 5
⊢ (𝜑 → 𝑈 ∈ (𝐸 LMHom 𝐸)) |
3 | | lvecendof1f1o.b |
. . . . . 6
⊢ 𝐵 = (Base‘𝐸) |
4 | 3, 3 | lmhmf 21056 |
. . . . 5
⊢ (𝑈 ∈ (𝐸 LMHom 𝐸) → 𝑈:𝐵⟶𝐵) |
5 | 2, 4 | syl 17 |
. . . 4
⊢ (𝜑 → 𝑈:𝐵⟶𝐵) |
6 | 5 | ffnd 6748 |
. . 3
⊢ (𝜑 → 𝑈 Fn 𝐵) |
7 | | lvecendof1f1o.e |
. . . 4
⊢ (𝜑 → 𝐸 ∈ LVec) |
8 | | lvecendof1f1o.d |
. . . 4
⊢ (𝜑 → (dim‘𝐸) ∈
ℕ0) |
9 | | lmhmrnlss 21072 |
. . . . 5
⊢ (𝑈 ∈ (𝐸 LMHom 𝐸) → ran 𝑈 ∈ (LSubSp‘𝐸)) |
10 | 2, 9 | syl 17 |
. . . 4
⊢ (𝜑 → ran 𝑈 ∈ (LSubSp‘𝐸)) |
11 | | eqid 2740 |
. . . . . . 7
⊢
(0g‘𝐸) = (0g‘𝐸) |
12 | | eqid 2740 |
. . . . . . 7
⊢ (𝐸 ↾s (◡𝑈 “ {(0g‘𝐸)})) = (𝐸 ↾s (◡𝑈 “ {(0g‘𝐸)})) |
13 | | eqid 2740 |
. . . . . . 7
⊢ (𝐸 ↾s ran 𝑈) = (𝐸 ↾s ran 𝑈) |
14 | 11, 12, 13 | dimkerim 33640 |
. . . . . 6
⊢ ((𝐸 ∈ LVec ∧ 𝑈 ∈ (𝐸 LMHom 𝐸)) → (dim‘𝐸) = ((dim‘(𝐸 ↾s (◡𝑈 “ {(0g‘𝐸)}))) +𝑒
(dim‘(𝐸
↾s ran 𝑈)))) |
15 | 7, 2, 14 | syl2anc 583 |
. . . . 5
⊢ (𝜑 → (dim‘𝐸) = ((dim‘(𝐸 ↾s (◡𝑈 “ {(0g‘𝐸)}))) +𝑒
(dim‘(𝐸
↾s ran 𝑈)))) |
16 | | eqid 2740 |
. . . . . . . . . 10
⊢ (◡𝑈 “ {(0g‘𝐸)}) = (◡𝑈 “ {(0g‘𝐸)}) |
17 | | eqid 2740 |
. . . . . . . . . 10
⊢
(LSubSp‘𝐸) =
(LSubSp‘𝐸) |
18 | 16, 11, 17 | lmhmkerlss 21073 |
. . . . . . . . 9
⊢ (𝑈 ∈ (𝐸 LMHom 𝐸) → (◡𝑈 “ {(0g‘𝐸)}) ∈ (LSubSp‘𝐸)) |
19 | 2, 18 | syl 17 |
. . . . . . . 8
⊢ (𝜑 → (◡𝑈 “ {(0g‘𝐸)}) ∈ (LSubSp‘𝐸)) |
20 | 12, 17 | lsslvec 21131 |
. . . . . . . 8
⊢ ((𝐸 ∈ LVec ∧ (◡𝑈 “ {(0g‘𝐸)}) ∈ (LSubSp‘𝐸)) → (𝐸 ↾s (◡𝑈 “ {(0g‘𝐸)})) ∈
LVec) |
21 | 7, 19, 20 | syl2anc 583 |
. . . . . . 7
⊢ (𝜑 → (𝐸 ↾s (◡𝑈 “ {(0g‘𝐸)})) ∈
LVec) |
22 | 2 | lmhmghmd 33023 |
. . . . . . . . 9
⊢ (𝜑 → 𝑈 ∈ (𝐸 GrpHom 𝐸)) |
23 | 3, 3, 11, 11 | kerf1ghm 19287 |
. . . . . . . . . 10
⊢ (𝑈 ∈ (𝐸 GrpHom 𝐸) → (𝑈:𝐵–1-1→𝐵 ↔ (◡𝑈 “ {(0g‘𝐸)}) =
{(0g‘𝐸)})) |
24 | 23 | biimpa 476 |
. . . . . . . . 9
⊢ ((𝑈 ∈ (𝐸 GrpHom 𝐸) ∧ 𝑈:𝐵–1-1→𝐵) → (◡𝑈 “ {(0g‘𝐸)}) =
{(0g‘𝐸)}) |
25 | 22, 1, 24 | syl2anc 583 |
. . . . . . . 8
⊢ (𝜑 → (◡𝑈 “ {(0g‘𝐸)}) =
{(0g‘𝐸)}) |
26 | | cnvimass 6111 |
. . . . . . . . . 10
⊢ (◡𝑈 “ {(0g‘𝐸)}) ⊆ dom 𝑈 |
27 | 26, 5 | fssdm 6766 |
. . . . . . . . 9
⊢ (𝜑 → (◡𝑈 “ {(0g‘𝐸)}) ⊆ 𝐵) |
28 | 12, 3 | ressbas2 17296 |
. . . . . . . . 9
⊢ ((◡𝑈 “ {(0g‘𝐸)}) ⊆ 𝐵 → (◡𝑈 “ {(0g‘𝐸)}) = (Base‘(𝐸 ↾s (◡𝑈 “ {(0g‘𝐸)})))) |
29 | 27, 28 | syl 17 |
. . . . . . . 8
⊢ (𝜑 → (◡𝑈 “ {(0g‘𝐸)}) = (Base‘(𝐸 ↾s (◡𝑈 “ {(0g‘𝐸)})))) |
30 | 7 | lvecgrpd 21130 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝐸 ∈ Grp) |
31 | 30 | grpmndd 18986 |
. . . . . . . . . 10
⊢ (𝜑 → 𝐸 ∈ Mnd) |
32 | 3, 11 | mndidcl 18787 |
. . . . . . . . . . . 12
⊢ (𝐸 ∈ Mnd →
(0g‘𝐸)
∈ 𝐵) |
33 | 31, 32 | syl 17 |
. . . . . . . . . . 11
⊢ (𝜑 → (0g‘𝐸) ∈ 𝐵) |
34 | 11, 11 | ghmid 19262 |
. . . . . . . . . . . . 13
⊢ (𝑈 ∈ (𝐸 GrpHom 𝐸) → (𝑈‘(0g‘𝐸)) = (0g‘𝐸)) |
35 | 22, 34 | syl 17 |
. . . . . . . . . . . 12
⊢ (𝜑 → (𝑈‘(0g‘𝐸)) = (0g‘𝐸)) |
36 | | fvex 6933 |
. . . . . . . . . . . . 13
⊢
(0g‘𝐸) ∈ V |
37 | 36 | snid 4684 |
. . . . . . . . . . . 12
⊢
(0g‘𝐸) ∈ {(0g‘𝐸)} |
38 | 35, 37 | eqeltrdi 2852 |
. . . . . . . . . . 11
⊢ (𝜑 → (𝑈‘(0g‘𝐸)) ∈
{(0g‘𝐸)}) |
39 | 6, 33, 38 | elpreimad 7092 |
. . . . . . . . . 10
⊢ (𝜑 → (0g‘𝐸) ∈ (◡𝑈 “ {(0g‘𝐸)})) |
40 | 12, 3, 11 | ress0g 18800 |
. . . . . . . . . 10
⊢ ((𝐸 ∈ Mnd ∧
(0g‘𝐸)
∈ (◡𝑈 “ {(0g‘𝐸)}) ∧ (◡𝑈 “ {(0g‘𝐸)}) ⊆ 𝐵) → (0g‘𝐸) = (0g‘(𝐸 ↾s (◡𝑈 “ {(0g‘𝐸)})))) |
41 | 31, 39, 27, 40 | syl3anc 1371 |
. . . . . . . . 9
⊢ (𝜑 → (0g‘𝐸) = (0g‘(𝐸 ↾s (◡𝑈 “ {(0g‘𝐸)})))) |
42 | 41 | sneqd 4660 |
. . . . . . . 8
⊢ (𝜑 →
{(0g‘𝐸)} =
{(0g‘(𝐸
↾s (◡𝑈 “ {(0g‘𝐸)})))}) |
43 | 25, 29, 42 | 3eqtr3d 2788 |
. . . . . . 7
⊢ (𝜑 → (Base‘(𝐸 ↾s (◡𝑈 “ {(0g‘𝐸)}))) =
{(0g‘(𝐸
↾s (◡𝑈 “ {(0g‘𝐸)})))}) |
44 | | eqid 2740 |
. . . . . . . . 9
⊢
(0g‘(𝐸 ↾s (◡𝑈 “ {(0g‘𝐸)}))) =
(0g‘(𝐸
↾s (◡𝑈 “ {(0g‘𝐸)}))) |
45 | 44 | lvecdim0 33619 |
. . . . . . . 8
⊢ ((𝐸 ↾s (◡𝑈 “ {(0g‘𝐸)})) ∈ LVec →
((dim‘(𝐸
↾s (◡𝑈 “ {(0g‘𝐸)}))) = 0 ↔
(Base‘(𝐸
↾s (◡𝑈 “ {(0g‘𝐸)}))) =
{(0g‘(𝐸
↾s (◡𝑈 “ {(0g‘𝐸)})))})) |
46 | 45 | biimpar 477 |
. . . . . . 7
⊢ (((𝐸 ↾s (◡𝑈 “ {(0g‘𝐸)})) ∈ LVec ∧
(Base‘(𝐸
↾s (◡𝑈 “ {(0g‘𝐸)}))) =
{(0g‘(𝐸
↾s (◡𝑈 “ {(0g‘𝐸)})))}) → (dim‘(𝐸 ↾s (◡𝑈 “ {(0g‘𝐸)}))) = 0) |
47 | 21, 43, 46 | syl2anc 583 |
. . . . . 6
⊢ (𝜑 → (dim‘(𝐸 ↾s (◡𝑈 “ {(0g‘𝐸)}))) = 0) |
48 | 47 | oveq1d 7463 |
. . . . 5
⊢ (𝜑 → ((dim‘(𝐸 ↾s (◡𝑈 “ {(0g‘𝐸)}))) +𝑒
(dim‘(𝐸
↾s ran 𝑈))) = (0 +𝑒
(dim‘(𝐸
↾s ran 𝑈)))) |
49 | 13, 17 | lsslvec 21131 |
. . . . . . 7
⊢ ((𝐸 ∈ LVec ∧ ran 𝑈 ∈ (LSubSp‘𝐸)) → (𝐸 ↾s ran 𝑈) ∈ LVec) |
50 | 7, 10, 49 | syl2anc 583 |
. . . . . 6
⊢ (𝜑 → (𝐸 ↾s ran 𝑈) ∈ LVec) |
51 | | dimcl 33615 |
. . . . . 6
⊢ ((𝐸 ↾s ran 𝑈) ∈ LVec →
(dim‘(𝐸
↾s ran 𝑈))
∈ ℕ0*) |
52 | | xnn0xr 12630 |
. . . . . 6
⊢
((dim‘(𝐸
↾s ran 𝑈))
∈ ℕ0* → (dim‘(𝐸 ↾s ran 𝑈)) ∈
ℝ*) |
53 | | xaddlid 13304 |
. . . . . 6
⊢
((dim‘(𝐸
↾s ran 𝑈))
∈ ℝ* → (0 +𝑒 (dim‘(𝐸 ↾s ran 𝑈))) = (dim‘(𝐸 ↾s ran 𝑈))) |
54 | 50, 51, 52, 53 | 4syl 19 |
. . . . 5
⊢ (𝜑 → (0 +𝑒
(dim‘(𝐸
↾s ran 𝑈))) = (dim‘(𝐸 ↾s ran 𝑈))) |
55 | 15, 48, 54 | 3eqtrrd 2785 |
. . . 4
⊢ (𝜑 → (dim‘(𝐸 ↾s ran 𝑈)) = (dim‘𝐸)) |
56 | 3, 7, 8, 10, 55 | dimlssid 33645 |
. . 3
⊢ (𝜑 → ran 𝑈 = 𝐵) |
57 | | df-fo 6579 |
. . 3
⊢ (𝑈:𝐵–onto→𝐵 ↔ (𝑈 Fn 𝐵 ∧ ran 𝑈 = 𝐵)) |
58 | 6, 56, 57 | sylanbrc 582 |
. 2
⊢ (𝜑 → 𝑈:𝐵–onto→𝐵) |
59 | | df-f1o 6580 |
. 2
⊢ (𝑈:𝐵–1-1-onto→𝐵 ↔ (𝑈:𝐵–1-1→𝐵 ∧ 𝑈:𝐵–onto→𝐵)) |
60 | 1, 58, 59 | sylanbrc 582 |
1
⊢ (𝜑 → 𝑈:𝐵–1-1-onto→𝐵) |