![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > islshp | Structured version Visualization version GIF version |
Description: The predicate "is a hyperplane" (of a left module or left vector space). (Contributed by NM, 29-Jun-2014.) |
Ref | Expression |
---|---|
lshpset.v | ⊢ 𝑉 = (Base‘𝑊) |
lshpset.n | ⊢ 𝑁 = (LSpan‘𝑊) |
lshpset.s | ⊢ 𝑆 = (LSubSp‘𝑊) |
lshpset.h | ⊢ 𝐻 = (LSHyp‘𝑊) |
Ref | Expression |
---|---|
islshp | ⊢ (𝑊 ∈ 𝑋 → (𝑈 ∈ 𝐻 ↔ (𝑈 ∈ 𝑆 ∧ 𝑈 ≠ 𝑉 ∧ ∃𝑣 ∈ 𝑉 (𝑁‘(𝑈 ∪ {𝑣})) = 𝑉))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lshpset.v | . . . 4 ⊢ 𝑉 = (Base‘𝑊) | |
2 | lshpset.n | . . . 4 ⊢ 𝑁 = (LSpan‘𝑊) | |
3 | lshpset.s | . . . 4 ⊢ 𝑆 = (LSubSp‘𝑊) | |
4 | lshpset.h | . . . 4 ⊢ 𝐻 = (LSHyp‘𝑊) | |
5 | 1, 2, 3, 4 | lshpset 38582 | . . 3 ⊢ (𝑊 ∈ 𝑋 → 𝐻 = {𝑠 ∈ 𝑆 ∣ (𝑠 ≠ 𝑉 ∧ ∃𝑣 ∈ 𝑉 (𝑁‘(𝑠 ∪ {𝑣})) = 𝑉)}) |
6 | 5 | eleq2d 2811 | . 2 ⊢ (𝑊 ∈ 𝑋 → (𝑈 ∈ 𝐻 ↔ 𝑈 ∈ {𝑠 ∈ 𝑆 ∣ (𝑠 ≠ 𝑉 ∧ ∃𝑣 ∈ 𝑉 (𝑁‘(𝑠 ∪ {𝑣})) = 𝑉)})) |
7 | neeq1 2992 | . . . . 5 ⊢ (𝑠 = 𝑈 → (𝑠 ≠ 𝑉 ↔ 𝑈 ≠ 𝑉)) | |
8 | uneq1 4153 | . . . . . . 7 ⊢ (𝑠 = 𝑈 → (𝑠 ∪ {𝑣}) = (𝑈 ∪ {𝑣})) | |
9 | 8 | fveqeq2d 6904 | . . . . . 6 ⊢ (𝑠 = 𝑈 → ((𝑁‘(𝑠 ∪ {𝑣})) = 𝑉 ↔ (𝑁‘(𝑈 ∪ {𝑣})) = 𝑉)) |
10 | 9 | rexbidv 3168 | . . . . 5 ⊢ (𝑠 = 𝑈 → (∃𝑣 ∈ 𝑉 (𝑁‘(𝑠 ∪ {𝑣})) = 𝑉 ↔ ∃𝑣 ∈ 𝑉 (𝑁‘(𝑈 ∪ {𝑣})) = 𝑉)) |
11 | 7, 10 | anbi12d 630 | . . . 4 ⊢ (𝑠 = 𝑈 → ((𝑠 ≠ 𝑉 ∧ ∃𝑣 ∈ 𝑉 (𝑁‘(𝑠 ∪ {𝑣})) = 𝑉) ↔ (𝑈 ≠ 𝑉 ∧ ∃𝑣 ∈ 𝑉 (𝑁‘(𝑈 ∪ {𝑣})) = 𝑉))) |
12 | 11 | elrab 3679 | . . 3 ⊢ (𝑈 ∈ {𝑠 ∈ 𝑆 ∣ (𝑠 ≠ 𝑉 ∧ ∃𝑣 ∈ 𝑉 (𝑁‘(𝑠 ∪ {𝑣})) = 𝑉)} ↔ (𝑈 ∈ 𝑆 ∧ (𝑈 ≠ 𝑉 ∧ ∃𝑣 ∈ 𝑉 (𝑁‘(𝑈 ∪ {𝑣})) = 𝑉))) |
13 | 3anass 1092 | . . 3 ⊢ ((𝑈 ∈ 𝑆 ∧ 𝑈 ≠ 𝑉 ∧ ∃𝑣 ∈ 𝑉 (𝑁‘(𝑈 ∪ {𝑣})) = 𝑉) ↔ (𝑈 ∈ 𝑆 ∧ (𝑈 ≠ 𝑉 ∧ ∃𝑣 ∈ 𝑉 (𝑁‘(𝑈 ∪ {𝑣})) = 𝑉))) | |
14 | 12, 13 | bitr4i 277 | . 2 ⊢ (𝑈 ∈ {𝑠 ∈ 𝑆 ∣ (𝑠 ≠ 𝑉 ∧ ∃𝑣 ∈ 𝑉 (𝑁‘(𝑠 ∪ {𝑣})) = 𝑉)} ↔ (𝑈 ∈ 𝑆 ∧ 𝑈 ≠ 𝑉 ∧ ∃𝑣 ∈ 𝑉 (𝑁‘(𝑈 ∪ {𝑣})) = 𝑉)) |
15 | 6, 14 | bitrdi 286 | 1 ⊢ (𝑊 ∈ 𝑋 → (𝑈 ∈ 𝐻 ↔ (𝑈 ∈ 𝑆 ∧ 𝑈 ≠ 𝑉 ∧ ∃𝑣 ∈ 𝑉 (𝑁‘(𝑈 ∪ {𝑣})) = 𝑉))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 394 ∧ w3a 1084 = wceq 1533 ∈ wcel 2098 ≠ wne 2929 ∃wrex 3059 {crab 3418 ∪ cun 3942 {csn 4630 ‘cfv 6549 Basecbs 17188 LSubSpclss 20832 LSpanclspn 20872 LSHypclsh 38579 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2696 ax-sep 5300 ax-nul 5307 ax-pr 5429 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2703 df-cleq 2717 df-clel 2802 df-nfc 2877 df-ne 2930 df-ral 3051 df-rex 3060 df-rab 3419 df-v 3463 df-dif 3947 df-un 3949 df-in 3951 df-ss 3961 df-nul 4323 df-if 4531 df-sn 4631 df-pr 4633 df-op 4637 df-uni 4910 df-br 5150 df-opab 5212 df-mpt 5233 df-id 5576 df-xp 5684 df-rel 5685 df-cnv 5686 df-co 5687 df-dm 5688 df-iota 6501 df-fun 6551 df-fv 6557 df-lshyp 38581 |
This theorem is referenced by: islshpsm 38584 lshplss 38585 lshpne 38586 lshpnel2N 38589 lkrshp 38709 lshpset2N 38723 dochsatshp 41056 |
Copyright terms: Public domain | W3C validator |