Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  islshp Structured version   Visualization version   GIF version

Theorem islshp 35138
Description: The predicate "is a hyperplane" (of a left module or left vector space). (Contributed by NM, 29-Jun-2014.)
Hypotheses
Ref Expression
lshpset.v 𝑉 = (Base‘𝑊)
lshpset.n 𝑁 = (LSpan‘𝑊)
lshpset.s 𝑆 = (LSubSp‘𝑊)
lshpset.h 𝐻 = (LSHyp‘𝑊)
Assertion
Ref Expression
islshp (𝑊𝑋 → (𝑈𝐻 ↔ (𝑈𝑆𝑈𝑉 ∧ ∃𝑣𝑉 (𝑁‘(𝑈 ∪ {𝑣})) = 𝑉)))
Distinct variable groups:   𝑣,𝑉   𝑣,𝑊   𝑣,𝑈
Allowed substitution hints:   𝑆(𝑣)   𝐻(𝑣)   𝑁(𝑣)   𝑋(𝑣)

Proof of Theorem islshp
Dummy variable 𝑠 is distinct from all other variables.
StepHypRef Expression
1 lshpset.v . . . 4 𝑉 = (Base‘𝑊)
2 lshpset.n . . . 4 𝑁 = (LSpan‘𝑊)
3 lshpset.s . . . 4 𝑆 = (LSubSp‘𝑊)
4 lshpset.h . . . 4 𝐻 = (LSHyp‘𝑊)
51, 2, 3, 4lshpset 35137 . . 3 (𝑊𝑋𝐻 = {𝑠𝑆 ∣ (𝑠𝑉 ∧ ∃𝑣𝑉 (𝑁‘(𝑠 ∪ {𝑣})) = 𝑉)})
65eleq2d 2845 . 2 (𝑊𝑋 → (𝑈𝐻𝑈 ∈ {𝑠𝑆 ∣ (𝑠𝑉 ∧ ∃𝑣𝑉 (𝑁‘(𝑠 ∪ {𝑣})) = 𝑉)}))
7 neeq1 3031 . . . . 5 (𝑠 = 𝑈 → (𝑠𝑉𝑈𝑉))
8 uneq1 3983 . . . . . . 7 (𝑠 = 𝑈 → (𝑠 ∪ {𝑣}) = (𝑈 ∪ {𝑣}))
98fveqeq2d 6456 . . . . . 6 (𝑠 = 𝑈 → ((𝑁‘(𝑠 ∪ {𝑣})) = 𝑉 ↔ (𝑁‘(𝑈 ∪ {𝑣})) = 𝑉))
109rexbidv 3237 . . . . 5 (𝑠 = 𝑈 → (∃𝑣𝑉 (𝑁‘(𝑠 ∪ {𝑣})) = 𝑉 ↔ ∃𝑣𝑉 (𝑁‘(𝑈 ∪ {𝑣})) = 𝑉))
117, 10anbi12d 624 . . . 4 (𝑠 = 𝑈 → ((𝑠𝑉 ∧ ∃𝑣𝑉 (𝑁‘(𝑠 ∪ {𝑣})) = 𝑉) ↔ (𝑈𝑉 ∧ ∃𝑣𝑉 (𝑁‘(𝑈 ∪ {𝑣})) = 𝑉)))
1211elrab 3572 . . 3 (𝑈 ∈ {𝑠𝑆 ∣ (𝑠𝑉 ∧ ∃𝑣𝑉 (𝑁‘(𝑠 ∪ {𝑣})) = 𝑉)} ↔ (𝑈𝑆 ∧ (𝑈𝑉 ∧ ∃𝑣𝑉 (𝑁‘(𝑈 ∪ {𝑣})) = 𝑉)))
13 3anass 1079 . . 3 ((𝑈𝑆𝑈𝑉 ∧ ∃𝑣𝑉 (𝑁‘(𝑈 ∪ {𝑣})) = 𝑉) ↔ (𝑈𝑆 ∧ (𝑈𝑉 ∧ ∃𝑣𝑉 (𝑁‘(𝑈 ∪ {𝑣})) = 𝑉)))
1412, 13bitr4i 270 . 2 (𝑈 ∈ {𝑠𝑆 ∣ (𝑠𝑉 ∧ ∃𝑣𝑉 (𝑁‘(𝑠 ∪ {𝑣})) = 𝑉)} ↔ (𝑈𝑆𝑈𝑉 ∧ ∃𝑣𝑉 (𝑁‘(𝑈 ∪ {𝑣})) = 𝑉))
156, 14syl6bb 279 1 (𝑊𝑋 → (𝑈𝐻 ↔ (𝑈𝑆𝑈𝑉 ∧ ∃𝑣𝑉 (𝑁‘(𝑈 ∪ {𝑣})) = 𝑉)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 198  wa 386  w3a 1071   = wceq 1601  wcel 2107  wne 2969  wrex 3091  {crab 3094  cun 3790  {csn 4398  cfv 6137  Basecbs 16259  LSubSpclss 19328  LSpanclspn 19370  LSHypclsh 35134
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1839  ax-4 1853  ax-5 1953  ax-6 2021  ax-7 2055  ax-9 2116  ax-10 2135  ax-11 2150  ax-12 2163  ax-13 2334  ax-ext 2754  ax-sep 5019  ax-nul 5027  ax-pr 5140
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 837  df-3an 1073  df-tru 1605  df-ex 1824  df-nf 1828  df-sb 2012  df-mo 2551  df-eu 2587  df-clab 2764  df-cleq 2770  df-clel 2774  df-nfc 2921  df-ne 2970  df-ral 3095  df-rex 3096  df-rab 3099  df-v 3400  df-sbc 3653  df-dif 3795  df-un 3797  df-in 3799  df-ss 3806  df-nul 4142  df-if 4308  df-sn 4399  df-pr 4401  df-op 4405  df-uni 4674  df-br 4889  df-opab 4951  df-mpt 4968  df-id 5263  df-xp 5363  df-rel 5364  df-cnv 5365  df-co 5366  df-dm 5367  df-iota 6101  df-fun 6139  df-fv 6145  df-lshyp 35136
This theorem is referenced by:  islshpsm  35139  lshplss  35140  lshpne  35141  lshpnel2N  35144  lkrshp  35264  lshpset2N  35278  dochsatshp  37610
  Copyright terms: Public domain W3C validator