Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > islshp | Structured version Visualization version GIF version |
Description: The predicate "is a hyperplane" (of a left module or left vector space). (Contributed by NM, 29-Jun-2014.) |
Ref | Expression |
---|---|
lshpset.v | ⊢ 𝑉 = (Base‘𝑊) |
lshpset.n | ⊢ 𝑁 = (LSpan‘𝑊) |
lshpset.s | ⊢ 𝑆 = (LSubSp‘𝑊) |
lshpset.h | ⊢ 𝐻 = (LSHyp‘𝑊) |
Ref | Expression |
---|---|
islshp | ⊢ (𝑊 ∈ 𝑋 → (𝑈 ∈ 𝐻 ↔ (𝑈 ∈ 𝑆 ∧ 𝑈 ≠ 𝑉 ∧ ∃𝑣 ∈ 𝑉 (𝑁‘(𝑈 ∪ {𝑣})) = 𝑉))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lshpset.v | . . . 4 ⊢ 𝑉 = (Base‘𝑊) | |
2 | lshpset.n | . . . 4 ⊢ 𝑁 = (LSpan‘𝑊) | |
3 | lshpset.s | . . . 4 ⊢ 𝑆 = (LSubSp‘𝑊) | |
4 | lshpset.h | . . . 4 ⊢ 𝐻 = (LSHyp‘𝑊) | |
5 | 1, 2, 3, 4 | lshpset 36919 | . . 3 ⊢ (𝑊 ∈ 𝑋 → 𝐻 = {𝑠 ∈ 𝑆 ∣ (𝑠 ≠ 𝑉 ∧ ∃𝑣 ∈ 𝑉 (𝑁‘(𝑠 ∪ {𝑣})) = 𝑉)}) |
6 | 5 | eleq2d 2824 | . 2 ⊢ (𝑊 ∈ 𝑋 → (𝑈 ∈ 𝐻 ↔ 𝑈 ∈ {𝑠 ∈ 𝑆 ∣ (𝑠 ≠ 𝑉 ∧ ∃𝑣 ∈ 𝑉 (𝑁‘(𝑠 ∪ {𝑣})) = 𝑉)})) |
7 | neeq1 3005 | . . . . 5 ⊢ (𝑠 = 𝑈 → (𝑠 ≠ 𝑉 ↔ 𝑈 ≠ 𝑉)) | |
8 | uneq1 4086 | . . . . . . 7 ⊢ (𝑠 = 𝑈 → (𝑠 ∪ {𝑣}) = (𝑈 ∪ {𝑣})) | |
9 | 8 | fveqeq2d 6764 | . . . . . 6 ⊢ (𝑠 = 𝑈 → ((𝑁‘(𝑠 ∪ {𝑣})) = 𝑉 ↔ (𝑁‘(𝑈 ∪ {𝑣})) = 𝑉)) |
10 | 9 | rexbidv 3225 | . . . . 5 ⊢ (𝑠 = 𝑈 → (∃𝑣 ∈ 𝑉 (𝑁‘(𝑠 ∪ {𝑣})) = 𝑉 ↔ ∃𝑣 ∈ 𝑉 (𝑁‘(𝑈 ∪ {𝑣})) = 𝑉)) |
11 | 7, 10 | anbi12d 630 | . . . 4 ⊢ (𝑠 = 𝑈 → ((𝑠 ≠ 𝑉 ∧ ∃𝑣 ∈ 𝑉 (𝑁‘(𝑠 ∪ {𝑣})) = 𝑉) ↔ (𝑈 ≠ 𝑉 ∧ ∃𝑣 ∈ 𝑉 (𝑁‘(𝑈 ∪ {𝑣})) = 𝑉))) |
12 | 11 | elrab 3617 | . . 3 ⊢ (𝑈 ∈ {𝑠 ∈ 𝑆 ∣ (𝑠 ≠ 𝑉 ∧ ∃𝑣 ∈ 𝑉 (𝑁‘(𝑠 ∪ {𝑣})) = 𝑉)} ↔ (𝑈 ∈ 𝑆 ∧ (𝑈 ≠ 𝑉 ∧ ∃𝑣 ∈ 𝑉 (𝑁‘(𝑈 ∪ {𝑣})) = 𝑉))) |
13 | 3anass 1093 | . . 3 ⊢ ((𝑈 ∈ 𝑆 ∧ 𝑈 ≠ 𝑉 ∧ ∃𝑣 ∈ 𝑉 (𝑁‘(𝑈 ∪ {𝑣})) = 𝑉) ↔ (𝑈 ∈ 𝑆 ∧ (𝑈 ≠ 𝑉 ∧ ∃𝑣 ∈ 𝑉 (𝑁‘(𝑈 ∪ {𝑣})) = 𝑉))) | |
14 | 12, 13 | bitr4i 277 | . 2 ⊢ (𝑈 ∈ {𝑠 ∈ 𝑆 ∣ (𝑠 ≠ 𝑉 ∧ ∃𝑣 ∈ 𝑉 (𝑁‘(𝑠 ∪ {𝑣})) = 𝑉)} ↔ (𝑈 ∈ 𝑆 ∧ 𝑈 ≠ 𝑉 ∧ ∃𝑣 ∈ 𝑉 (𝑁‘(𝑈 ∪ {𝑣})) = 𝑉)) |
15 | 6, 14 | bitrdi 286 | 1 ⊢ (𝑊 ∈ 𝑋 → (𝑈 ∈ 𝐻 ↔ (𝑈 ∈ 𝑆 ∧ 𝑈 ≠ 𝑉 ∧ ∃𝑣 ∈ 𝑉 (𝑁‘(𝑈 ∪ {𝑣})) = 𝑉))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 ∧ w3a 1085 = wceq 1539 ∈ wcel 2108 ≠ wne 2942 ∃wrex 3064 {crab 3067 ∪ cun 3881 {csn 4558 ‘cfv 6418 Basecbs 16840 LSubSpclss 20108 LSpanclspn 20148 LSHypclsh 36916 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pr 5347 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-br 5071 df-opab 5133 df-mpt 5154 df-id 5480 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-iota 6376 df-fun 6420 df-fv 6426 df-lshyp 36918 |
This theorem is referenced by: islshpsm 36921 lshplss 36922 lshpne 36923 lshpnel2N 36926 lkrshp 37046 lshpset2N 37060 dochsatshp 39392 |
Copyright terms: Public domain | W3C validator |