Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  islshp Structured version   Visualization version   GIF version

Theorem islshp 38583
Description: The predicate "is a hyperplane" (of a left module or left vector space). (Contributed by NM, 29-Jun-2014.)
Hypotheses
Ref Expression
lshpset.v 𝑉 = (Base‘𝑊)
lshpset.n 𝑁 = (LSpan‘𝑊)
lshpset.s 𝑆 = (LSubSp‘𝑊)
lshpset.h 𝐻 = (LSHyp‘𝑊)
Assertion
Ref Expression
islshp (𝑊𝑋 → (𝑈𝐻 ↔ (𝑈𝑆𝑈𝑉 ∧ ∃𝑣𝑉 (𝑁‘(𝑈 ∪ {𝑣})) = 𝑉)))
Distinct variable groups:   𝑣,𝑉   𝑣,𝑊   𝑣,𝑈
Allowed substitution hints:   𝑆(𝑣)   𝐻(𝑣)   𝑁(𝑣)   𝑋(𝑣)

Proof of Theorem islshp
Dummy variable 𝑠 is distinct from all other variables.
StepHypRef Expression
1 lshpset.v . . . 4 𝑉 = (Base‘𝑊)
2 lshpset.n . . . 4 𝑁 = (LSpan‘𝑊)
3 lshpset.s . . . 4 𝑆 = (LSubSp‘𝑊)
4 lshpset.h . . . 4 𝐻 = (LSHyp‘𝑊)
51, 2, 3, 4lshpset 38582 . . 3 (𝑊𝑋𝐻 = {𝑠𝑆 ∣ (𝑠𝑉 ∧ ∃𝑣𝑉 (𝑁‘(𝑠 ∪ {𝑣})) = 𝑉)})
65eleq2d 2811 . 2 (𝑊𝑋 → (𝑈𝐻𝑈 ∈ {𝑠𝑆 ∣ (𝑠𝑉 ∧ ∃𝑣𝑉 (𝑁‘(𝑠 ∪ {𝑣})) = 𝑉)}))
7 neeq1 2992 . . . . 5 (𝑠 = 𝑈 → (𝑠𝑉𝑈𝑉))
8 uneq1 4153 . . . . . . 7 (𝑠 = 𝑈 → (𝑠 ∪ {𝑣}) = (𝑈 ∪ {𝑣}))
98fveqeq2d 6904 . . . . . 6 (𝑠 = 𝑈 → ((𝑁‘(𝑠 ∪ {𝑣})) = 𝑉 ↔ (𝑁‘(𝑈 ∪ {𝑣})) = 𝑉))
109rexbidv 3168 . . . . 5 (𝑠 = 𝑈 → (∃𝑣𝑉 (𝑁‘(𝑠 ∪ {𝑣})) = 𝑉 ↔ ∃𝑣𝑉 (𝑁‘(𝑈 ∪ {𝑣})) = 𝑉))
117, 10anbi12d 630 . . . 4 (𝑠 = 𝑈 → ((𝑠𝑉 ∧ ∃𝑣𝑉 (𝑁‘(𝑠 ∪ {𝑣})) = 𝑉) ↔ (𝑈𝑉 ∧ ∃𝑣𝑉 (𝑁‘(𝑈 ∪ {𝑣})) = 𝑉)))
1211elrab 3679 . . 3 (𝑈 ∈ {𝑠𝑆 ∣ (𝑠𝑉 ∧ ∃𝑣𝑉 (𝑁‘(𝑠 ∪ {𝑣})) = 𝑉)} ↔ (𝑈𝑆 ∧ (𝑈𝑉 ∧ ∃𝑣𝑉 (𝑁‘(𝑈 ∪ {𝑣})) = 𝑉)))
13 3anass 1092 . . 3 ((𝑈𝑆𝑈𝑉 ∧ ∃𝑣𝑉 (𝑁‘(𝑈 ∪ {𝑣})) = 𝑉) ↔ (𝑈𝑆 ∧ (𝑈𝑉 ∧ ∃𝑣𝑉 (𝑁‘(𝑈 ∪ {𝑣})) = 𝑉)))
1412, 13bitr4i 277 . 2 (𝑈 ∈ {𝑠𝑆 ∣ (𝑠𝑉 ∧ ∃𝑣𝑉 (𝑁‘(𝑠 ∪ {𝑣})) = 𝑉)} ↔ (𝑈𝑆𝑈𝑉 ∧ ∃𝑣𝑉 (𝑁‘(𝑈 ∪ {𝑣})) = 𝑉))
156, 14bitrdi 286 1 (𝑊𝑋 → (𝑈𝐻 ↔ (𝑈𝑆𝑈𝑉 ∧ ∃𝑣𝑉 (𝑁‘(𝑈 ∪ {𝑣})) = 𝑉)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 394  w3a 1084   = wceq 1533  wcel 2098  wne 2929  wrex 3059  {crab 3418  cun 3942  {csn 4630  cfv 6549  Basecbs 17188  LSubSpclss 20832  LSpanclspn 20872  LSHypclsh 38579
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2696  ax-sep 5300  ax-nul 5307  ax-pr 5429
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2703  df-cleq 2717  df-clel 2802  df-nfc 2877  df-ne 2930  df-ral 3051  df-rex 3060  df-rab 3419  df-v 3463  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-nul 4323  df-if 4531  df-sn 4631  df-pr 4633  df-op 4637  df-uni 4910  df-br 5150  df-opab 5212  df-mpt 5233  df-id 5576  df-xp 5684  df-rel 5685  df-cnv 5686  df-co 5687  df-dm 5688  df-iota 6501  df-fun 6551  df-fv 6557  df-lshyp 38581
This theorem is referenced by:  islshpsm  38584  lshplss  38585  lshpne  38586  lshpnel2N  38589  lkrshp  38709  lshpset2N  38723  dochsatshp  41056
  Copyright terms: Public domain W3C validator