| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > islshp | Structured version Visualization version GIF version | ||
| Description: The predicate "is a hyperplane" (of a left module or left vector space). (Contributed by NM, 29-Jun-2014.) |
| Ref | Expression |
|---|---|
| lshpset.v | ⊢ 𝑉 = (Base‘𝑊) |
| lshpset.n | ⊢ 𝑁 = (LSpan‘𝑊) |
| lshpset.s | ⊢ 𝑆 = (LSubSp‘𝑊) |
| lshpset.h | ⊢ 𝐻 = (LSHyp‘𝑊) |
| Ref | Expression |
|---|---|
| islshp | ⊢ (𝑊 ∈ 𝑋 → (𝑈 ∈ 𝐻 ↔ (𝑈 ∈ 𝑆 ∧ 𝑈 ≠ 𝑉 ∧ ∃𝑣 ∈ 𝑉 (𝑁‘(𝑈 ∪ {𝑣})) = 𝑉))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lshpset.v | . . . 4 ⊢ 𝑉 = (Base‘𝑊) | |
| 2 | lshpset.n | . . . 4 ⊢ 𝑁 = (LSpan‘𝑊) | |
| 3 | lshpset.s | . . . 4 ⊢ 𝑆 = (LSubSp‘𝑊) | |
| 4 | lshpset.h | . . . 4 ⊢ 𝐻 = (LSHyp‘𝑊) | |
| 5 | 1, 2, 3, 4 | lshpset 38971 | . . 3 ⊢ (𝑊 ∈ 𝑋 → 𝐻 = {𝑠 ∈ 𝑆 ∣ (𝑠 ≠ 𝑉 ∧ ∃𝑣 ∈ 𝑉 (𝑁‘(𝑠 ∪ {𝑣})) = 𝑉)}) |
| 6 | 5 | eleq2d 2814 | . 2 ⊢ (𝑊 ∈ 𝑋 → (𝑈 ∈ 𝐻 ↔ 𝑈 ∈ {𝑠 ∈ 𝑆 ∣ (𝑠 ≠ 𝑉 ∧ ∃𝑣 ∈ 𝑉 (𝑁‘(𝑠 ∪ {𝑣})) = 𝑉)})) |
| 7 | neeq1 2987 | . . . . 5 ⊢ (𝑠 = 𝑈 → (𝑠 ≠ 𝑉 ↔ 𝑈 ≠ 𝑉)) | |
| 8 | uneq1 4124 | . . . . . . 7 ⊢ (𝑠 = 𝑈 → (𝑠 ∪ {𝑣}) = (𝑈 ∪ {𝑣})) | |
| 9 | 8 | fveqeq2d 6866 | . . . . . 6 ⊢ (𝑠 = 𝑈 → ((𝑁‘(𝑠 ∪ {𝑣})) = 𝑉 ↔ (𝑁‘(𝑈 ∪ {𝑣})) = 𝑉)) |
| 10 | 9 | rexbidv 3157 | . . . . 5 ⊢ (𝑠 = 𝑈 → (∃𝑣 ∈ 𝑉 (𝑁‘(𝑠 ∪ {𝑣})) = 𝑉 ↔ ∃𝑣 ∈ 𝑉 (𝑁‘(𝑈 ∪ {𝑣})) = 𝑉)) |
| 11 | 7, 10 | anbi12d 632 | . . . 4 ⊢ (𝑠 = 𝑈 → ((𝑠 ≠ 𝑉 ∧ ∃𝑣 ∈ 𝑉 (𝑁‘(𝑠 ∪ {𝑣})) = 𝑉) ↔ (𝑈 ≠ 𝑉 ∧ ∃𝑣 ∈ 𝑉 (𝑁‘(𝑈 ∪ {𝑣})) = 𝑉))) |
| 12 | 11 | elrab 3659 | . . 3 ⊢ (𝑈 ∈ {𝑠 ∈ 𝑆 ∣ (𝑠 ≠ 𝑉 ∧ ∃𝑣 ∈ 𝑉 (𝑁‘(𝑠 ∪ {𝑣})) = 𝑉)} ↔ (𝑈 ∈ 𝑆 ∧ (𝑈 ≠ 𝑉 ∧ ∃𝑣 ∈ 𝑉 (𝑁‘(𝑈 ∪ {𝑣})) = 𝑉))) |
| 13 | 3anass 1094 | . . 3 ⊢ ((𝑈 ∈ 𝑆 ∧ 𝑈 ≠ 𝑉 ∧ ∃𝑣 ∈ 𝑉 (𝑁‘(𝑈 ∪ {𝑣})) = 𝑉) ↔ (𝑈 ∈ 𝑆 ∧ (𝑈 ≠ 𝑉 ∧ ∃𝑣 ∈ 𝑉 (𝑁‘(𝑈 ∪ {𝑣})) = 𝑉))) | |
| 14 | 12, 13 | bitr4i 278 | . 2 ⊢ (𝑈 ∈ {𝑠 ∈ 𝑆 ∣ (𝑠 ≠ 𝑉 ∧ ∃𝑣 ∈ 𝑉 (𝑁‘(𝑠 ∪ {𝑣})) = 𝑉)} ↔ (𝑈 ∈ 𝑆 ∧ 𝑈 ≠ 𝑉 ∧ ∃𝑣 ∈ 𝑉 (𝑁‘(𝑈 ∪ {𝑣})) = 𝑉)) |
| 15 | 6, 14 | bitrdi 287 | 1 ⊢ (𝑊 ∈ 𝑋 → (𝑈 ∈ 𝐻 ↔ (𝑈 ∈ 𝑆 ∧ 𝑈 ≠ 𝑉 ∧ ∃𝑣 ∈ 𝑉 (𝑁‘(𝑈 ∪ {𝑣})) = 𝑉))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ≠ wne 2925 ∃wrex 3053 {crab 3405 ∪ cun 3912 {csn 4589 ‘cfv 6511 Basecbs 17179 LSubSpclss 20837 LSpanclspn 20877 LSHypclsh 38968 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pr 5387 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3406 df-v 3449 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-br 5108 df-opab 5170 df-mpt 5189 df-id 5533 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-iota 6464 df-fun 6513 df-fv 6519 df-lshyp 38970 |
| This theorem is referenced by: islshpsm 38973 lshplss 38974 lshpne 38975 lshpnel2N 38978 lkrshp 39098 lshpset2N 39112 dochsatshp 41445 |
| Copyright terms: Public domain | W3C validator |