Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > islshp | Structured version Visualization version GIF version |
Description: The predicate "is a hyperplane" (of a left module or left vector space). (Contributed by NM, 29-Jun-2014.) |
Ref | Expression |
---|---|
lshpset.v | ⊢ 𝑉 = (Base‘𝑊) |
lshpset.n | ⊢ 𝑁 = (LSpan‘𝑊) |
lshpset.s | ⊢ 𝑆 = (LSubSp‘𝑊) |
lshpset.h | ⊢ 𝐻 = (LSHyp‘𝑊) |
Ref | Expression |
---|---|
islshp | ⊢ (𝑊 ∈ 𝑋 → (𝑈 ∈ 𝐻 ↔ (𝑈 ∈ 𝑆 ∧ 𝑈 ≠ 𝑉 ∧ ∃𝑣 ∈ 𝑉 (𝑁‘(𝑈 ∪ {𝑣})) = 𝑉))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lshpset.v | . . . 4 ⊢ 𝑉 = (Base‘𝑊) | |
2 | lshpset.n | . . . 4 ⊢ 𝑁 = (LSpan‘𝑊) | |
3 | lshpset.s | . . . 4 ⊢ 𝑆 = (LSubSp‘𝑊) | |
4 | lshpset.h | . . . 4 ⊢ 𝐻 = (LSHyp‘𝑊) | |
5 | 1, 2, 3, 4 | lshpset 36988 | . . 3 ⊢ (𝑊 ∈ 𝑋 → 𝐻 = {𝑠 ∈ 𝑆 ∣ (𝑠 ≠ 𝑉 ∧ ∃𝑣 ∈ 𝑉 (𝑁‘(𝑠 ∪ {𝑣})) = 𝑉)}) |
6 | 5 | eleq2d 2826 | . 2 ⊢ (𝑊 ∈ 𝑋 → (𝑈 ∈ 𝐻 ↔ 𝑈 ∈ {𝑠 ∈ 𝑆 ∣ (𝑠 ≠ 𝑉 ∧ ∃𝑣 ∈ 𝑉 (𝑁‘(𝑠 ∪ {𝑣})) = 𝑉)})) |
7 | neeq1 3008 | . . . . 5 ⊢ (𝑠 = 𝑈 → (𝑠 ≠ 𝑉 ↔ 𝑈 ≠ 𝑉)) | |
8 | uneq1 4095 | . . . . . . 7 ⊢ (𝑠 = 𝑈 → (𝑠 ∪ {𝑣}) = (𝑈 ∪ {𝑣})) | |
9 | 8 | fveqeq2d 6779 | . . . . . 6 ⊢ (𝑠 = 𝑈 → ((𝑁‘(𝑠 ∪ {𝑣})) = 𝑉 ↔ (𝑁‘(𝑈 ∪ {𝑣})) = 𝑉)) |
10 | 9 | rexbidv 3228 | . . . . 5 ⊢ (𝑠 = 𝑈 → (∃𝑣 ∈ 𝑉 (𝑁‘(𝑠 ∪ {𝑣})) = 𝑉 ↔ ∃𝑣 ∈ 𝑉 (𝑁‘(𝑈 ∪ {𝑣})) = 𝑉)) |
11 | 7, 10 | anbi12d 631 | . . . 4 ⊢ (𝑠 = 𝑈 → ((𝑠 ≠ 𝑉 ∧ ∃𝑣 ∈ 𝑉 (𝑁‘(𝑠 ∪ {𝑣})) = 𝑉) ↔ (𝑈 ≠ 𝑉 ∧ ∃𝑣 ∈ 𝑉 (𝑁‘(𝑈 ∪ {𝑣})) = 𝑉))) |
12 | 11 | elrab 3626 | . . 3 ⊢ (𝑈 ∈ {𝑠 ∈ 𝑆 ∣ (𝑠 ≠ 𝑉 ∧ ∃𝑣 ∈ 𝑉 (𝑁‘(𝑠 ∪ {𝑣})) = 𝑉)} ↔ (𝑈 ∈ 𝑆 ∧ (𝑈 ≠ 𝑉 ∧ ∃𝑣 ∈ 𝑉 (𝑁‘(𝑈 ∪ {𝑣})) = 𝑉))) |
13 | 3anass 1094 | . . 3 ⊢ ((𝑈 ∈ 𝑆 ∧ 𝑈 ≠ 𝑉 ∧ ∃𝑣 ∈ 𝑉 (𝑁‘(𝑈 ∪ {𝑣})) = 𝑉) ↔ (𝑈 ∈ 𝑆 ∧ (𝑈 ≠ 𝑉 ∧ ∃𝑣 ∈ 𝑉 (𝑁‘(𝑈 ∪ {𝑣})) = 𝑉))) | |
14 | 12, 13 | bitr4i 277 | . 2 ⊢ (𝑈 ∈ {𝑠 ∈ 𝑆 ∣ (𝑠 ≠ 𝑉 ∧ ∃𝑣 ∈ 𝑉 (𝑁‘(𝑠 ∪ {𝑣})) = 𝑉)} ↔ (𝑈 ∈ 𝑆 ∧ 𝑈 ≠ 𝑉 ∧ ∃𝑣 ∈ 𝑉 (𝑁‘(𝑈 ∪ {𝑣})) = 𝑉)) |
15 | 6, 14 | bitrdi 287 | 1 ⊢ (𝑊 ∈ 𝑋 → (𝑈 ∈ 𝐻 ↔ (𝑈 ∈ 𝑆 ∧ 𝑈 ≠ 𝑉 ∧ ∃𝑣 ∈ 𝑉 (𝑁‘(𝑈 ∪ {𝑣})) = 𝑉))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 ∧ w3a 1086 = wceq 1542 ∈ wcel 2110 ≠ wne 2945 ∃wrex 3067 {crab 3070 ∪ cun 3890 {csn 4567 ‘cfv 6432 Basecbs 16910 LSubSpclss 20191 LSpanclspn 20231 LSHypclsh 36985 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2015 ax-8 2112 ax-9 2120 ax-10 2141 ax-11 2158 ax-12 2175 ax-ext 2711 ax-sep 5227 ax-nul 5234 ax-pr 5356 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1545 df-fal 1555 df-ex 1787 df-nf 1791 df-sb 2072 df-mo 2542 df-eu 2571 df-clab 2718 df-cleq 2732 df-clel 2818 df-nfc 2891 df-ne 2946 df-ral 3071 df-rex 3072 df-rab 3075 df-v 3433 df-dif 3895 df-un 3897 df-in 3899 df-ss 3909 df-nul 4263 df-if 4466 df-sn 4568 df-pr 4570 df-op 4574 df-uni 4846 df-br 5080 df-opab 5142 df-mpt 5163 df-id 5490 df-xp 5596 df-rel 5597 df-cnv 5598 df-co 5599 df-dm 5600 df-iota 6390 df-fun 6434 df-fv 6440 df-lshyp 36987 |
This theorem is referenced by: islshpsm 36990 lshplss 36991 lshpne 36992 lshpnel2N 36995 lkrshp 37115 lshpset2N 37129 dochsatshp 39461 |
Copyright terms: Public domain | W3C validator |