MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tgcgrsub2 Structured version   Visualization version   GIF version

Theorem tgcgrsub2 28621
Description: Removing identical parts from the end of a line segment preserves congruence. In this version the order of points is not known. (Contributed by Thierry Arnoux, 3-Apr-2019.)
Hypotheses
Ref Expression
legval.p 𝑃 = (Base‘𝐺)
legval.d = (dist‘𝐺)
legval.i 𝐼 = (Itv‘𝐺)
legval.l = (≤G‘𝐺)
legval.g (𝜑𝐺 ∈ TarskiG)
legid.a (𝜑𝐴𝑃)
legid.b (𝜑𝐵𝑃)
legtrd.c (𝜑𝐶𝑃)
legtrd.d (𝜑𝐷𝑃)
tgcgrsub2.d (𝜑𝐷𝑃)
tgcgrsub2.e (𝜑𝐸𝑃)
tgcgrsub2.f (𝜑𝐹𝑃)
tgcgrsub2.1 (𝜑 → (𝐵 ∈ (𝐴𝐼𝐶) ∨ 𝐶 ∈ (𝐴𝐼𝐵)))
tgcgrsub2.2 (𝜑 → (𝐸 ∈ (𝐷𝐼𝐹) ∨ 𝐹 ∈ (𝐷𝐼𝐸)))
tgcgrsub2.3 (𝜑 → (𝐴 𝐵) = (𝐷 𝐸))
tgcgrsub2.4 (𝜑 → (𝐴 𝐶) = (𝐷 𝐹))
Assertion
Ref Expression
tgcgrsub2 (𝜑 → (𝐵 𝐶) = (𝐸 𝐹))

Proof of Theorem tgcgrsub2
StepHypRef Expression
1 legval.p . . 3 𝑃 = (Base‘𝐺)
2 legval.d . . 3 = (dist‘𝐺)
3 legval.i . . 3 𝐼 = (Itv‘𝐺)
4 legval.g . . . 4 (𝜑𝐺 ∈ TarskiG)
54adantr 480 . . 3 ((𝜑𝐵 ∈ (𝐴𝐼𝐶)) → 𝐺 ∈ TarskiG)
6 legtrd.c . . . 4 (𝜑𝐶𝑃)
76adantr 480 . . 3 ((𝜑𝐵 ∈ (𝐴𝐼𝐶)) → 𝐶𝑃)
8 legid.b . . . 4 (𝜑𝐵𝑃)
98adantr 480 . . 3 ((𝜑𝐵 ∈ (𝐴𝐼𝐶)) → 𝐵𝑃)
10 tgcgrsub2.f . . . 4 (𝜑𝐹𝑃)
1110adantr 480 . . 3 ((𝜑𝐵 ∈ (𝐴𝐼𝐶)) → 𝐹𝑃)
12 tgcgrsub2.e . . . 4 (𝜑𝐸𝑃)
1312adantr 480 . . 3 ((𝜑𝐵 ∈ (𝐴𝐼𝐶)) → 𝐸𝑃)
14 legid.a . . . . 5 (𝜑𝐴𝑃)
1514adantr 480 . . . 4 ((𝜑𝐵 ∈ (𝐴𝐼𝐶)) → 𝐴𝑃)
16 legtrd.d . . . . 5 (𝜑𝐷𝑃)
1716adantr 480 . . . 4 ((𝜑𝐵 ∈ (𝐴𝐼𝐶)) → 𝐷𝑃)
18 simpr 484 . . . . 5 ((𝜑𝐵 ∈ (𝐴𝐼𝐶)) → 𝐵 ∈ (𝐴𝐼𝐶))
191, 2, 3, 5, 15, 9, 7, 18tgbtwncom 28514 . . . 4 ((𝜑𝐵 ∈ (𝐴𝐼𝐶)) → 𝐵 ∈ (𝐶𝐼𝐴))
20 legval.l . . . . . 6 = (≤G‘𝐺)
21 tgcgrsub2.2 . . . . . . 7 (𝜑 → (𝐸 ∈ (𝐷𝐼𝐹) ∨ 𝐹 ∈ (𝐷𝐼𝐸)))
2221adantr 480 . . . . . 6 ((𝜑𝐵 ∈ (𝐴𝐼𝐶)) → (𝐸 ∈ (𝐷𝐼𝐹) ∨ 𝐹 ∈ (𝐷𝐼𝐸)))
231, 2, 3, 20, 5, 15, 9, 7, 18btwnleg 28614 . . . . . . 7 ((𝜑𝐵 ∈ (𝐴𝐼𝐶)) → (𝐴 𝐵) (𝐴 𝐶))
24 tgcgrsub2.3 . . . . . . . 8 (𝜑 → (𝐴 𝐵) = (𝐷 𝐸))
2524adantr 480 . . . . . . 7 ((𝜑𝐵 ∈ (𝐴𝐼𝐶)) → (𝐴 𝐵) = (𝐷 𝐸))
26 tgcgrsub2.4 . . . . . . . 8 (𝜑 → (𝐴 𝐶) = (𝐷 𝐹))
2726adantr 480 . . . . . . 7 ((𝜑𝐵 ∈ (𝐴𝐼𝐶)) → (𝐴 𝐶) = (𝐷 𝐹))
2823, 25, 273brtr3d 5197 . . . . . 6 ((𝜑𝐵 ∈ (𝐴𝐼𝐶)) → (𝐷 𝐸) (𝐷 𝐹))
291, 2, 3, 20, 5, 13, 11, 17, 17, 22, 28legbtwn 28620 . . . . 5 ((𝜑𝐵 ∈ (𝐴𝐼𝐶)) → 𝐸 ∈ (𝐷𝐼𝐹))
301, 2, 3, 5, 17, 13, 11, 29tgbtwncom 28514 . . . 4 ((𝜑𝐵 ∈ (𝐴𝐼𝐶)) → 𝐸 ∈ (𝐹𝐼𝐷))
311, 2, 3, 4, 14, 6, 16, 10, 26tgcgrcomlr 28506 . . . . 5 (𝜑 → (𝐶 𝐴) = (𝐹 𝐷))
3231adantr 480 . . . 4 ((𝜑𝐵 ∈ (𝐴𝐼𝐶)) → (𝐶 𝐴) = (𝐹 𝐷))
331, 2, 3, 4, 14, 8, 16, 12, 24tgcgrcomlr 28506 . . . . 5 (𝜑 → (𝐵 𝐴) = (𝐸 𝐷))
3433adantr 480 . . . 4 ((𝜑𝐵 ∈ (𝐴𝐼𝐶)) → (𝐵 𝐴) = (𝐸 𝐷))
351, 2, 3, 5, 7, 9, 15, 11, 13, 17, 19, 30, 32, 34tgcgrsub 28535 . . 3 ((𝜑𝐵 ∈ (𝐴𝐼𝐶)) → (𝐶 𝐵) = (𝐹 𝐸))
361, 2, 3, 5, 7, 9, 11, 13, 35tgcgrcomlr 28506 . 2 ((𝜑𝐵 ∈ (𝐴𝐼𝐶)) → (𝐵 𝐶) = (𝐸 𝐹))
374adantr 480 . . 3 ((𝜑𝐶 ∈ (𝐴𝐼𝐵)) → 𝐺 ∈ TarskiG)
388adantr 480 . . 3 ((𝜑𝐶 ∈ (𝐴𝐼𝐵)) → 𝐵𝑃)
396adantr 480 . . 3 ((𝜑𝐶 ∈ (𝐴𝐼𝐵)) → 𝐶𝑃)
4014adantr 480 . . 3 ((𝜑𝐶 ∈ (𝐴𝐼𝐵)) → 𝐴𝑃)
4112adantr 480 . . 3 ((𝜑𝐶 ∈ (𝐴𝐼𝐵)) → 𝐸𝑃)
4210adantr 480 . . 3 ((𝜑𝐶 ∈ (𝐴𝐼𝐵)) → 𝐹𝑃)
4316adantr 480 . . 3 ((𝜑𝐶 ∈ (𝐴𝐼𝐵)) → 𝐷𝑃)
44 simpr 484 . . . 4 ((𝜑𝐶 ∈ (𝐴𝐼𝐵)) → 𝐶 ∈ (𝐴𝐼𝐵))
451, 2, 3, 37, 40, 39, 38, 44tgbtwncom 28514 . . 3 ((𝜑𝐶 ∈ (𝐴𝐼𝐵)) → 𝐶 ∈ (𝐵𝐼𝐴))
4621orcomd 870 . . . . . 6 (𝜑 → (𝐹 ∈ (𝐷𝐼𝐸) ∨ 𝐸 ∈ (𝐷𝐼𝐹)))
4746adantr 480 . . . . 5 ((𝜑𝐶 ∈ (𝐴𝐼𝐵)) → (𝐹 ∈ (𝐷𝐼𝐸) ∨ 𝐸 ∈ (𝐷𝐼𝐹)))
481, 2, 3, 20, 37, 40, 39, 38, 44btwnleg 28614 . . . . . 6 ((𝜑𝐶 ∈ (𝐴𝐼𝐵)) → (𝐴 𝐶) (𝐴 𝐵))
4926adantr 480 . . . . . 6 ((𝜑𝐶 ∈ (𝐴𝐼𝐵)) → (𝐴 𝐶) = (𝐷 𝐹))
5024adantr 480 . . . . . 6 ((𝜑𝐶 ∈ (𝐴𝐼𝐵)) → (𝐴 𝐵) = (𝐷 𝐸))
5148, 49, 503brtr3d 5197 . . . . 5 ((𝜑𝐶 ∈ (𝐴𝐼𝐵)) → (𝐷 𝐹) (𝐷 𝐸))
521, 2, 3, 20, 37, 42, 41, 43, 43, 47, 51legbtwn 28620 . . . 4 ((𝜑𝐶 ∈ (𝐴𝐼𝐵)) → 𝐹 ∈ (𝐷𝐼𝐸))
531, 2, 3, 37, 43, 42, 41, 52tgbtwncom 28514 . . 3 ((𝜑𝐶 ∈ (𝐴𝐼𝐵)) → 𝐹 ∈ (𝐸𝐼𝐷))
5433adantr 480 . . 3 ((𝜑𝐶 ∈ (𝐴𝐼𝐵)) → (𝐵 𝐴) = (𝐸 𝐷))
5531adantr 480 . . 3 ((𝜑𝐶 ∈ (𝐴𝐼𝐵)) → (𝐶 𝐴) = (𝐹 𝐷))
561, 2, 3, 37, 38, 39, 40, 41, 42, 43, 45, 53, 54, 55tgcgrsub 28535 . 2 ((𝜑𝐶 ∈ (𝐴𝐼𝐵)) → (𝐵 𝐶) = (𝐸 𝐹))
57 tgcgrsub2.1 . 2 (𝜑 → (𝐵 ∈ (𝐴𝐼𝐶) ∨ 𝐶 ∈ (𝐴𝐼𝐵)))
5836, 56, 57mpjaodan 959 1 (𝜑 → (𝐵 𝐶) = (𝐸 𝐹))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wo 846   = wceq 1537  wcel 2108  cfv 6573  (class class class)co 7448  Basecbs 17258  distcds 17320  TarskiGcstrkg 28453  Itvcitv 28459  ≤Gcleg 28608
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-tp 4653  df-op 4655  df-uni 4932  df-int 4971  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-om 7904  df-1st 8030  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-1o 8522  df-oadd 8526  df-er 8763  df-pm 8887  df-en 9004  df-dom 9005  df-sdom 9006  df-fin 9007  df-dju 9970  df-card 10008  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-nn 12294  df-2 12356  df-3 12357  df-n0 12554  df-xnn0 12626  df-z 12640  df-uz 12904  df-fz 13568  df-fzo 13712  df-hash 14380  df-word 14563  df-concat 14619  df-s1 14644  df-s2 14897  df-s3 14898  df-trkgc 28474  df-trkgb 28475  df-trkgcb 28476  df-trkg 28479  df-cgrg 28537  df-leg 28609
This theorem is referenced by:  cgracgr  28844  cgraswap  28846
  Copyright terms: Public domain W3C validator