MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tgcgrsub2 Structured version   Visualization version   GIF version

Theorem tgcgrsub2 26368
Description: Removing identical parts from the end of a line segment preserves congruence. In this version the order of points is not known. (Contributed by Thierry Arnoux, 3-Apr-2019.)
Hypotheses
Ref Expression
legval.p 𝑃 = (Base‘𝐺)
legval.d = (dist‘𝐺)
legval.i 𝐼 = (Itv‘𝐺)
legval.l = (≤G‘𝐺)
legval.g (𝜑𝐺 ∈ TarskiG)
legid.a (𝜑𝐴𝑃)
legid.b (𝜑𝐵𝑃)
legtrd.c (𝜑𝐶𝑃)
legtrd.d (𝜑𝐷𝑃)
tgcgrsub2.d (𝜑𝐷𝑃)
tgcgrsub2.e (𝜑𝐸𝑃)
tgcgrsub2.f (𝜑𝐹𝑃)
tgcgrsub2.1 (𝜑 → (𝐵 ∈ (𝐴𝐼𝐶) ∨ 𝐶 ∈ (𝐴𝐼𝐵)))
tgcgrsub2.2 (𝜑 → (𝐸 ∈ (𝐷𝐼𝐹) ∨ 𝐹 ∈ (𝐷𝐼𝐸)))
tgcgrsub2.3 (𝜑 → (𝐴 𝐵) = (𝐷 𝐸))
tgcgrsub2.4 (𝜑 → (𝐴 𝐶) = (𝐷 𝐹))
Assertion
Ref Expression
tgcgrsub2 (𝜑 → (𝐵 𝐶) = (𝐸 𝐹))

Proof of Theorem tgcgrsub2
StepHypRef Expression
1 legval.p . . 3 𝑃 = (Base‘𝐺)
2 legval.d . . 3 = (dist‘𝐺)
3 legval.i . . 3 𝐼 = (Itv‘𝐺)
4 legval.g . . . 4 (𝜑𝐺 ∈ TarskiG)
54adantr 483 . . 3 ((𝜑𝐵 ∈ (𝐴𝐼𝐶)) → 𝐺 ∈ TarskiG)
6 legtrd.c . . . 4 (𝜑𝐶𝑃)
76adantr 483 . . 3 ((𝜑𝐵 ∈ (𝐴𝐼𝐶)) → 𝐶𝑃)
8 legid.b . . . 4 (𝜑𝐵𝑃)
98adantr 483 . . 3 ((𝜑𝐵 ∈ (𝐴𝐼𝐶)) → 𝐵𝑃)
10 tgcgrsub2.f . . . 4 (𝜑𝐹𝑃)
1110adantr 483 . . 3 ((𝜑𝐵 ∈ (𝐴𝐼𝐶)) → 𝐹𝑃)
12 tgcgrsub2.e . . . 4 (𝜑𝐸𝑃)
1312adantr 483 . . 3 ((𝜑𝐵 ∈ (𝐴𝐼𝐶)) → 𝐸𝑃)
14 legid.a . . . . 5 (𝜑𝐴𝑃)
1514adantr 483 . . . 4 ((𝜑𝐵 ∈ (𝐴𝐼𝐶)) → 𝐴𝑃)
16 legtrd.d . . . . 5 (𝜑𝐷𝑃)
1716adantr 483 . . . 4 ((𝜑𝐵 ∈ (𝐴𝐼𝐶)) → 𝐷𝑃)
18 simpr 487 . . . . 5 ((𝜑𝐵 ∈ (𝐴𝐼𝐶)) → 𝐵 ∈ (𝐴𝐼𝐶))
191, 2, 3, 5, 15, 9, 7, 18tgbtwncom 26261 . . . 4 ((𝜑𝐵 ∈ (𝐴𝐼𝐶)) → 𝐵 ∈ (𝐶𝐼𝐴))
20 legval.l . . . . . 6 = (≤G‘𝐺)
21 tgcgrsub2.2 . . . . . . 7 (𝜑 → (𝐸 ∈ (𝐷𝐼𝐹) ∨ 𝐹 ∈ (𝐷𝐼𝐸)))
2221adantr 483 . . . . . 6 ((𝜑𝐵 ∈ (𝐴𝐼𝐶)) → (𝐸 ∈ (𝐷𝐼𝐹) ∨ 𝐹 ∈ (𝐷𝐼𝐸)))
231, 2, 3, 20, 5, 15, 9, 7, 18btwnleg 26361 . . . . . . 7 ((𝜑𝐵 ∈ (𝐴𝐼𝐶)) → (𝐴 𝐵) (𝐴 𝐶))
24 tgcgrsub2.3 . . . . . . . 8 (𝜑 → (𝐴 𝐵) = (𝐷 𝐸))
2524adantr 483 . . . . . . 7 ((𝜑𝐵 ∈ (𝐴𝐼𝐶)) → (𝐴 𝐵) = (𝐷 𝐸))
26 tgcgrsub2.4 . . . . . . . 8 (𝜑 → (𝐴 𝐶) = (𝐷 𝐹))
2726adantr 483 . . . . . . 7 ((𝜑𝐵 ∈ (𝐴𝐼𝐶)) → (𝐴 𝐶) = (𝐷 𝐹))
2823, 25, 273brtr3d 5073 . . . . . 6 ((𝜑𝐵 ∈ (𝐴𝐼𝐶)) → (𝐷 𝐸) (𝐷 𝐹))
291, 2, 3, 20, 5, 13, 11, 17, 17, 22, 28legbtwn 26367 . . . . 5 ((𝜑𝐵 ∈ (𝐴𝐼𝐶)) → 𝐸 ∈ (𝐷𝐼𝐹))
301, 2, 3, 5, 17, 13, 11, 29tgbtwncom 26261 . . . 4 ((𝜑𝐵 ∈ (𝐴𝐼𝐶)) → 𝐸 ∈ (𝐹𝐼𝐷))
311, 2, 3, 4, 14, 6, 16, 10, 26tgcgrcomlr 26253 . . . . 5 (𝜑 → (𝐶 𝐴) = (𝐹 𝐷))
3231adantr 483 . . . 4 ((𝜑𝐵 ∈ (𝐴𝐼𝐶)) → (𝐶 𝐴) = (𝐹 𝐷))
331, 2, 3, 4, 14, 8, 16, 12, 24tgcgrcomlr 26253 . . . . 5 (𝜑 → (𝐵 𝐴) = (𝐸 𝐷))
3433adantr 483 . . . 4 ((𝜑𝐵 ∈ (𝐴𝐼𝐶)) → (𝐵 𝐴) = (𝐸 𝐷))
351, 2, 3, 5, 7, 9, 15, 11, 13, 17, 19, 30, 32, 34tgcgrsub 26282 . . 3 ((𝜑𝐵 ∈ (𝐴𝐼𝐶)) → (𝐶 𝐵) = (𝐹 𝐸))
361, 2, 3, 5, 7, 9, 11, 13, 35tgcgrcomlr 26253 . 2 ((𝜑𝐵 ∈ (𝐴𝐼𝐶)) → (𝐵 𝐶) = (𝐸 𝐹))
374adantr 483 . . 3 ((𝜑𝐶 ∈ (𝐴𝐼𝐵)) → 𝐺 ∈ TarskiG)
388adantr 483 . . 3 ((𝜑𝐶 ∈ (𝐴𝐼𝐵)) → 𝐵𝑃)
396adantr 483 . . 3 ((𝜑𝐶 ∈ (𝐴𝐼𝐵)) → 𝐶𝑃)
4014adantr 483 . . 3 ((𝜑𝐶 ∈ (𝐴𝐼𝐵)) → 𝐴𝑃)
4112adantr 483 . . 3 ((𝜑𝐶 ∈ (𝐴𝐼𝐵)) → 𝐸𝑃)
4210adantr 483 . . 3 ((𝜑𝐶 ∈ (𝐴𝐼𝐵)) → 𝐹𝑃)
4316adantr 483 . . 3 ((𝜑𝐶 ∈ (𝐴𝐼𝐵)) → 𝐷𝑃)
44 simpr 487 . . . 4 ((𝜑𝐶 ∈ (𝐴𝐼𝐵)) → 𝐶 ∈ (𝐴𝐼𝐵))
451, 2, 3, 37, 40, 39, 38, 44tgbtwncom 26261 . . 3 ((𝜑𝐶 ∈ (𝐴𝐼𝐵)) → 𝐶 ∈ (𝐵𝐼𝐴))
4621orcomd 867 . . . . . 6 (𝜑 → (𝐹 ∈ (𝐷𝐼𝐸) ∨ 𝐸 ∈ (𝐷𝐼𝐹)))
4746adantr 483 . . . . 5 ((𝜑𝐶 ∈ (𝐴𝐼𝐵)) → (𝐹 ∈ (𝐷𝐼𝐸) ∨ 𝐸 ∈ (𝐷𝐼𝐹)))
481, 2, 3, 20, 37, 40, 39, 38, 44btwnleg 26361 . . . . . 6 ((𝜑𝐶 ∈ (𝐴𝐼𝐵)) → (𝐴 𝐶) (𝐴 𝐵))
4926adantr 483 . . . . . 6 ((𝜑𝐶 ∈ (𝐴𝐼𝐵)) → (𝐴 𝐶) = (𝐷 𝐹))
5024adantr 483 . . . . . 6 ((𝜑𝐶 ∈ (𝐴𝐼𝐵)) → (𝐴 𝐵) = (𝐷 𝐸))
5148, 49, 503brtr3d 5073 . . . . 5 ((𝜑𝐶 ∈ (𝐴𝐼𝐵)) → (𝐷 𝐹) (𝐷 𝐸))
521, 2, 3, 20, 37, 42, 41, 43, 43, 47, 51legbtwn 26367 . . . 4 ((𝜑𝐶 ∈ (𝐴𝐼𝐵)) → 𝐹 ∈ (𝐷𝐼𝐸))
531, 2, 3, 37, 43, 42, 41, 52tgbtwncom 26261 . . 3 ((𝜑𝐶 ∈ (𝐴𝐼𝐵)) → 𝐹 ∈ (𝐸𝐼𝐷))
5433adantr 483 . . 3 ((𝜑𝐶 ∈ (𝐴𝐼𝐵)) → (𝐵 𝐴) = (𝐸 𝐷))
5531adantr 483 . . 3 ((𝜑𝐶 ∈ (𝐴𝐼𝐵)) → (𝐶 𝐴) = (𝐹 𝐷))
561, 2, 3, 37, 38, 39, 40, 41, 42, 43, 45, 53, 54, 55tgcgrsub 26282 . 2 ((𝜑𝐶 ∈ (𝐴𝐼𝐵)) → (𝐵 𝐶) = (𝐸 𝐹))
57 tgcgrsub2.1 . 2 (𝜑 → (𝐵 ∈ (𝐴𝐼𝐶) ∨ 𝐶 ∈ (𝐴𝐼𝐵)))
5836, 56, 57mpjaodan 955 1 (𝜑 → (𝐵 𝐶) = (𝐸 𝐹))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398  wo 843   = wceq 1537  wcel 2114  cfv 6331  (class class class)co 7133  Basecbs 16462  distcds 16553  TarskiGcstrkg 26203  Itvcitv 26209  ≤Gcleg 26355
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2792  ax-rep 5166  ax-sep 5179  ax-nul 5186  ax-pow 5242  ax-pr 5306  ax-un 7439  ax-cnex 10571  ax-resscn 10572  ax-1cn 10573  ax-icn 10574  ax-addcl 10575  ax-addrcl 10576  ax-mulcl 10577  ax-mulrcl 10578  ax-mulcom 10579  ax-addass 10580  ax-mulass 10581  ax-distr 10582  ax-i2m1 10583  ax-1ne0 10584  ax-1rid 10585  ax-rnegex 10586  ax-rrecex 10587  ax-cnre 10588  ax-pre-lttri 10589  ax-pre-lttrn 10590  ax-pre-ltadd 10591  ax-pre-mulgt0 10592
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2653  df-clab 2799  df-cleq 2813  df-clel 2891  df-nfc 2959  df-ne 3007  df-nel 3111  df-ral 3130  df-rex 3131  df-reu 3132  df-rmo 3133  df-rab 3134  df-v 3475  df-sbc 3753  df-csb 3861  df-dif 3916  df-un 3918  df-in 3920  df-ss 3930  df-pss 3932  df-nul 4270  df-if 4444  df-pw 4517  df-sn 4544  df-pr 4546  df-tp 4548  df-op 4550  df-uni 4815  df-int 4853  df-iun 4897  df-br 5043  df-opab 5105  df-mpt 5123  df-tr 5149  df-id 5436  df-eprel 5441  df-po 5450  df-so 5451  df-fr 5490  df-we 5492  df-xp 5537  df-rel 5538  df-cnv 5539  df-co 5540  df-dm 5541  df-rn 5542  df-res 5543  df-ima 5544  df-pred 6124  df-ord 6170  df-on 6171  df-lim 6172  df-suc 6173  df-iota 6290  df-fun 6333  df-fn 6334  df-f 6335  df-f1 6336  df-fo 6337  df-f1o 6338  df-fv 6339  df-riota 7091  df-ov 7136  df-oprab 7137  df-mpo 7138  df-om 7559  df-1st 7667  df-2nd 7668  df-wrecs 7925  df-recs 7986  df-rdg 8024  df-1o 8080  df-oadd 8084  df-er 8267  df-pm 8387  df-en 8488  df-dom 8489  df-sdom 8490  df-fin 8491  df-dju 9308  df-card 9346  df-pnf 10655  df-mnf 10656  df-xr 10657  df-ltxr 10658  df-le 10659  df-sub 10850  df-neg 10851  df-nn 11617  df-2 11679  df-3 11680  df-n0 11877  df-xnn0 11947  df-z 11961  df-uz 12223  df-fz 12877  df-fzo 13018  df-hash 13676  df-word 13847  df-concat 13903  df-s1 13930  df-s2 14190  df-s3 14191  df-trkgc 26221  df-trkgb 26222  df-trkgcb 26223  df-trkg 26226  df-cgrg 26284  df-leg 26356
This theorem is referenced by:  cgracgr  26591  cgraswap  26593
  Copyright terms: Public domain W3C validator