MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  luble Structured version   Visualization version   GIF version

Theorem luble 18374
Description: The greatest lower bound is the least element. (Contributed by NM, 22-Oct-2011.) (Revised by NM, 7-Sep-2018.)
Hypotheses
Ref Expression
lubprop.b 𝐵 = (Base‘𝐾)
lubprop.l = (le‘𝐾)
lubprop.u 𝑈 = (lub‘𝐾)
lubprop.k (𝜑𝐾𝑉)
lubprop.s (𝜑𝑆 ∈ dom 𝑈)
luble.x (𝜑𝑋𝑆)
Assertion
Ref Expression
luble (𝜑𝑋 (𝑈𝑆))

Proof of Theorem luble
Dummy variables 𝑧 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 breq1 5127 . 2 (𝑦 = 𝑋 → (𝑦 (𝑈𝑆) ↔ 𝑋 (𝑈𝑆)))
2 lubprop.b . . . 4 𝐵 = (Base‘𝐾)
3 lubprop.l . . . 4 = (le‘𝐾)
4 lubprop.u . . . 4 𝑈 = (lub‘𝐾)
5 lubprop.k . . . 4 (𝜑𝐾𝑉)
6 lubprop.s . . . 4 (𝜑𝑆 ∈ dom 𝑈)
72, 3, 4, 5, 6lubprop 18373 . . 3 (𝜑 → (∀𝑦𝑆 𝑦 (𝑈𝑆) ∧ ∀𝑧𝐵 (∀𝑦𝑆 𝑦 𝑧 → (𝑈𝑆) 𝑧)))
87simpld 494 . 2 (𝜑 → ∀𝑦𝑆 𝑦 (𝑈𝑆))
9 luble.x . 2 (𝜑𝑋𝑆)
101, 8, 9rspcdva 3607 1 (𝜑𝑋 (𝑈𝑆))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2109  wral 3052   class class class wbr 5124  dom cdm 5659  cfv 6536  Basecbs 17233  lecple 17283  lubclub 18326
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-rep 5254  ax-sep 5271  ax-nul 5281  ax-pow 5340  ax-pr 5407
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-ral 3053  df-rex 3062  df-rmo 3364  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-iun 4974  df-br 5125  df-opab 5187  df-mpt 5207  df-id 5553  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-riota 7367  df-lub 18361
This theorem is referenced by:  ple1  18445  lubsscl  48901
  Copyright terms: Public domain W3C validator