| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > luble | Structured version Visualization version GIF version | ||
| Description: The greatest lower bound is the least element. (Contributed by NM, 22-Oct-2011.) (Revised by NM, 7-Sep-2018.) |
| Ref | Expression |
|---|---|
| lubprop.b | ⊢ 𝐵 = (Base‘𝐾) |
| lubprop.l | ⊢ ≤ = (le‘𝐾) |
| lubprop.u | ⊢ 𝑈 = (lub‘𝐾) |
| lubprop.k | ⊢ (𝜑 → 𝐾 ∈ 𝑉) |
| lubprop.s | ⊢ (𝜑 → 𝑆 ∈ dom 𝑈) |
| luble.x | ⊢ (𝜑 → 𝑋 ∈ 𝑆) |
| Ref | Expression |
|---|---|
| luble | ⊢ (𝜑 → 𝑋 ≤ (𝑈‘𝑆)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | breq1 5127 | . 2 ⊢ (𝑦 = 𝑋 → (𝑦 ≤ (𝑈‘𝑆) ↔ 𝑋 ≤ (𝑈‘𝑆))) | |
| 2 | lubprop.b | . . . 4 ⊢ 𝐵 = (Base‘𝐾) | |
| 3 | lubprop.l | . . . 4 ⊢ ≤ = (le‘𝐾) | |
| 4 | lubprop.u | . . . 4 ⊢ 𝑈 = (lub‘𝐾) | |
| 5 | lubprop.k | . . . 4 ⊢ (𝜑 → 𝐾 ∈ 𝑉) | |
| 6 | lubprop.s | . . . 4 ⊢ (𝜑 → 𝑆 ∈ dom 𝑈) | |
| 7 | 2, 3, 4, 5, 6 | lubprop 18373 | . . 3 ⊢ (𝜑 → (∀𝑦 ∈ 𝑆 𝑦 ≤ (𝑈‘𝑆) ∧ ∀𝑧 ∈ 𝐵 (∀𝑦 ∈ 𝑆 𝑦 ≤ 𝑧 → (𝑈‘𝑆) ≤ 𝑧))) |
| 8 | 7 | simpld 494 | . 2 ⊢ (𝜑 → ∀𝑦 ∈ 𝑆 𝑦 ≤ (𝑈‘𝑆)) |
| 9 | luble.x | . 2 ⊢ (𝜑 → 𝑋 ∈ 𝑆) | |
| 10 | 1, 8, 9 | rspcdva 3607 | 1 ⊢ (𝜑 → 𝑋 ≤ (𝑈‘𝑆)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 ∀wral 3052 class class class wbr 5124 dom cdm 5659 ‘cfv 6536 Basecbs 17233 lecple 17283 lubclub 18326 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-rep 5254 ax-sep 5271 ax-nul 5281 ax-pow 5340 ax-pr 5407 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-ne 2934 df-ral 3053 df-rex 3062 df-rmo 3364 df-reu 3365 df-rab 3421 df-v 3466 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-iun 4974 df-br 5125 df-opab 5187 df-mpt 5207 df-id 5553 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-rn 5670 df-res 5671 df-ima 5672 df-iota 6489 df-fun 6538 df-fn 6539 df-f 6540 df-f1 6541 df-fo 6542 df-f1o 6543 df-fv 6544 df-riota 7367 df-lub 18361 |
| This theorem is referenced by: ple1 18445 lubsscl 48901 |
| Copyright terms: Public domain | W3C validator |