MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  luble Structured version   Visualization version   GIF version

Theorem luble 17591
Description: The greatest lower bound is the least element. (Contributed by NM, 22-Oct-2011.) (Revised by NM, 7-Sep-2018.)
Hypotheses
Ref Expression
lubprop.b 𝐵 = (Base‘𝐾)
lubprop.l = (le‘𝐾)
lubprop.u 𝑈 = (lub‘𝐾)
lubprop.k (𝜑𝐾𝑉)
lubprop.s (𝜑𝑆 ∈ dom 𝑈)
luble.x (𝜑𝑋𝑆)
Assertion
Ref Expression
luble (𝜑𝑋 (𝑈𝑆))

Proof of Theorem luble
Dummy variables 𝑧 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 breq1 5061 . 2 (𝑦 = 𝑋 → (𝑦 (𝑈𝑆) ↔ 𝑋 (𝑈𝑆)))
2 lubprop.b . . . 4 𝐵 = (Base‘𝐾)
3 lubprop.l . . . 4 = (le‘𝐾)
4 lubprop.u . . . 4 𝑈 = (lub‘𝐾)
5 lubprop.k . . . 4 (𝜑𝐾𝑉)
6 lubprop.s . . . 4 (𝜑𝑆 ∈ dom 𝑈)
72, 3, 4, 5, 6lubprop 17590 . . 3 (𝜑 → (∀𝑦𝑆 𝑦 (𝑈𝑆) ∧ ∀𝑧𝐵 (∀𝑦𝑆 𝑦 𝑧 → (𝑈𝑆) 𝑧)))
87simpld 497 . 2 (𝜑 → ∀𝑦𝑆 𝑦 (𝑈𝑆))
9 luble.x . 2 (𝜑𝑋𝑆)
101, 8, 9rspcdva 3624 1 (𝜑𝑋 (𝑈𝑆))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1533  wcel 2110  wral 3138   class class class wbr 5058  dom cdm 5549  cfv 6349  Basecbs 16477  lecple 16566  lubclub 17546
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2157  ax-12 2173  ax-ext 2793  ax-rep 5182  ax-sep 5195  ax-nul 5202  ax-pow 5258  ax-pr 5321
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-ral 3143  df-rex 3144  df-reu 3145  df-rab 3147  df-v 3496  df-sbc 3772  df-csb 3883  df-dif 3938  df-un 3940  df-in 3942  df-ss 3951  df-nul 4291  df-if 4467  df-pw 4540  df-sn 4561  df-pr 4563  df-op 4567  df-uni 4832  df-iun 4913  df-br 5059  df-opab 5121  df-mpt 5139  df-id 5454  df-xp 5555  df-rel 5556  df-cnv 5557  df-co 5558  df-dm 5559  df-rn 5560  df-res 5561  df-ima 5562  df-iota 6308  df-fun 6351  df-fn 6352  df-f 6353  df-f1 6354  df-fo 6355  df-f1o 6356  df-fv 6357  df-riota 7108  df-lub 17578
This theorem is referenced by:  ple1  17648
  Copyright terms: Public domain W3C validator