MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  luble Structured version   Visualization version   GIF version

Theorem luble 17992
Description: The greatest lower bound is the least element. (Contributed by NM, 22-Oct-2011.) (Revised by NM, 7-Sep-2018.)
Hypotheses
Ref Expression
lubprop.b 𝐵 = (Base‘𝐾)
lubprop.l = (le‘𝐾)
lubprop.u 𝑈 = (lub‘𝐾)
lubprop.k (𝜑𝐾𝑉)
lubprop.s (𝜑𝑆 ∈ dom 𝑈)
luble.x (𝜑𝑋𝑆)
Assertion
Ref Expression
luble (𝜑𝑋 (𝑈𝑆))

Proof of Theorem luble
Dummy variables 𝑧 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 breq1 5073 . 2 (𝑦 = 𝑋 → (𝑦 (𝑈𝑆) ↔ 𝑋 (𝑈𝑆)))
2 lubprop.b . . . 4 𝐵 = (Base‘𝐾)
3 lubprop.l . . . 4 = (le‘𝐾)
4 lubprop.u . . . 4 𝑈 = (lub‘𝐾)
5 lubprop.k . . . 4 (𝜑𝐾𝑉)
6 lubprop.s . . . 4 (𝜑𝑆 ∈ dom 𝑈)
72, 3, 4, 5, 6lubprop 17991 . . 3 (𝜑 → (∀𝑦𝑆 𝑦 (𝑈𝑆) ∧ ∀𝑧𝐵 (∀𝑦𝑆 𝑦 𝑧 → (𝑈𝑆) 𝑧)))
87simpld 494 . 2 (𝜑 → ∀𝑦𝑆 𝑦 (𝑈𝑆))
9 luble.x . 2 (𝜑𝑋𝑆)
101, 8, 9rspcdva 3554 1 (𝜑𝑋 (𝑈𝑆))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1539  wcel 2108  wral 3063   class class class wbr 5070  dom cdm 5580  cfv 6418  Basecbs 16840  lecple 16895  lubclub 17942
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-reu 3070  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-id 5480  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-lub 17979
This theorem is referenced by:  ple1  18063  lubsscl  46142
  Copyright terms: Public domain W3C validator