| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > luble | Structured version Visualization version GIF version | ||
| Description: The greatest lower bound is the least element. (Contributed by NM, 22-Oct-2011.) (Revised by NM, 7-Sep-2018.) |
| Ref | Expression |
|---|---|
| lubprop.b | ⊢ 𝐵 = (Base‘𝐾) |
| lubprop.l | ⊢ ≤ = (le‘𝐾) |
| lubprop.u | ⊢ 𝑈 = (lub‘𝐾) |
| lubprop.k | ⊢ (𝜑 → 𝐾 ∈ 𝑉) |
| lubprop.s | ⊢ (𝜑 → 𝑆 ∈ dom 𝑈) |
| luble.x | ⊢ (𝜑 → 𝑋 ∈ 𝑆) |
| Ref | Expression |
|---|---|
| luble | ⊢ (𝜑 → 𝑋 ≤ (𝑈‘𝑆)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | breq1 5089 | . 2 ⊢ (𝑦 = 𝑋 → (𝑦 ≤ (𝑈‘𝑆) ↔ 𝑋 ≤ (𝑈‘𝑆))) | |
| 2 | lubprop.b | . . . 4 ⊢ 𝐵 = (Base‘𝐾) | |
| 3 | lubprop.l | . . . 4 ⊢ ≤ = (le‘𝐾) | |
| 4 | lubprop.u | . . . 4 ⊢ 𝑈 = (lub‘𝐾) | |
| 5 | lubprop.k | . . . 4 ⊢ (𝜑 → 𝐾 ∈ 𝑉) | |
| 6 | lubprop.s | . . . 4 ⊢ (𝜑 → 𝑆 ∈ dom 𝑈) | |
| 7 | 2, 3, 4, 5, 6 | lubprop 18257 | . . 3 ⊢ (𝜑 → (∀𝑦 ∈ 𝑆 𝑦 ≤ (𝑈‘𝑆) ∧ ∀𝑧 ∈ 𝐵 (∀𝑦 ∈ 𝑆 𝑦 ≤ 𝑧 → (𝑈‘𝑆) ≤ 𝑧))) |
| 8 | 7 | simpld 494 | . 2 ⊢ (𝜑 → ∀𝑦 ∈ 𝑆 𝑦 ≤ (𝑈‘𝑆)) |
| 9 | luble.x | . 2 ⊢ (𝜑 → 𝑋 ∈ 𝑆) | |
| 10 | 1, 8, 9 | rspcdva 3573 | 1 ⊢ (𝜑 → 𝑋 ≤ (𝑈‘𝑆)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2111 ∀wral 3047 class class class wbr 5086 dom cdm 5611 ‘cfv 6476 Basecbs 17115 lecple 17163 lubclub 18210 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5212 ax-sep 5229 ax-nul 5239 ax-pow 5298 ax-pr 5365 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4279 df-if 4471 df-pw 4547 df-sn 4572 df-pr 4574 df-op 4578 df-uni 4855 df-iun 4938 df-br 5087 df-opab 5149 df-mpt 5168 df-id 5506 df-xp 5617 df-rel 5618 df-cnv 5619 df-co 5620 df-dm 5621 df-rn 5622 df-res 5623 df-ima 5624 df-iota 6432 df-fun 6478 df-fn 6479 df-f 6480 df-f1 6481 df-fo 6482 df-f1o 6483 df-fv 6484 df-riota 7298 df-lub 18245 |
| This theorem is referenced by: ple1 18329 lubsscl 48991 |
| Copyright terms: Public domain | W3C validator |