![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > luble | Structured version Visualization version GIF version |
Description: The greatest lower bound is the least element. (Contributed by NM, 22-Oct-2011.) (Revised by NM, 7-Sep-2018.) |
Ref | Expression |
---|---|
lubprop.b | β’ π΅ = (BaseβπΎ) |
lubprop.l | β’ β€ = (leβπΎ) |
lubprop.u | β’ π = (lubβπΎ) |
lubprop.k | β’ (π β πΎ β π) |
lubprop.s | β’ (π β π β dom π) |
luble.x | β’ (π β π β π) |
Ref | Expression |
---|---|
luble | β’ (π β π β€ (πβπ)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | breq1 5151 | . 2 β’ (π¦ = π β (π¦ β€ (πβπ) β π β€ (πβπ))) | |
2 | lubprop.b | . . . 4 β’ π΅ = (BaseβπΎ) | |
3 | lubprop.l | . . . 4 β’ β€ = (leβπΎ) | |
4 | lubprop.u | . . . 4 β’ π = (lubβπΎ) | |
5 | lubprop.k | . . . 4 β’ (π β πΎ β π) | |
6 | lubprop.s | . . . 4 β’ (π β π β dom π) | |
7 | 2, 3, 4, 5, 6 | lubprop 18310 | . . 3 β’ (π β (βπ¦ β π π¦ β€ (πβπ) β§ βπ§ β π΅ (βπ¦ β π π¦ β€ π§ β (πβπ) β€ π§))) |
8 | 7 | simpld 495 | . 2 β’ (π β βπ¦ β π π¦ β€ (πβπ)) |
9 | luble.x | . 2 β’ (π β π β π) | |
10 | 1, 8, 9 | rspcdva 3613 | 1 β’ (π β π β€ (πβπ)) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 = wceq 1541 β wcel 2106 βwral 3061 class class class wbr 5148 dom cdm 5676 βcfv 6543 Basecbs 17143 lecple 17203 lubclub 18261 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-rep 5285 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-ral 3062 df-rex 3071 df-rmo 3376 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-iun 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5574 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-riota 7364 df-lub 18298 |
This theorem is referenced by: ple1 18382 lubsscl 47583 |
Copyright terms: Public domain | W3C validator |