MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lubid Structured version   Visualization version   GIF version

Theorem lubid 17995
Description: The LUB of elements less than or equal to a fixed value equals that value. (Contributed by NM, 19-Oct-2011.) (Revised by NM, 7-Sep-2018.)
Hypotheses
Ref Expression
lubid.b 𝐵 = (Base‘𝐾)
lubid.l = (le‘𝐾)
lubid.u 𝑈 = (lub‘𝐾)
lubid.k (𝜑𝐾 ∈ Poset)
lubid.x (𝜑𝑋𝐵)
Assertion
Ref Expression
lubid (𝜑 → (𝑈‘{𝑦𝐵𝑦 𝑋}) = 𝑋)
Distinct variable groups:   𝑦,   𝑦,𝐵   𝑦,𝑋
Allowed substitution hints:   𝜑(𝑦)   𝑈(𝑦)   𝐾(𝑦)

Proof of Theorem lubid
Dummy variables 𝑥 𝑤 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 lubid.b . . 3 𝐵 = (Base‘𝐾)
2 lubid.l . . 3 = (le‘𝐾)
3 lubid.u . . 3 𝑈 = (lub‘𝐾)
4 biid 260 . . 3 ((∀𝑧 ∈ {𝑦𝐵𝑦 𝑋}𝑧 𝑥 ∧ ∀𝑤𝐵 (∀𝑧 ∈ {𝑦𝐵𝑦 𝑋}𝑧 𝑤𝑥 𝑤)) ↔ (∀𝑧 ∈ {𝑦𝐵𝑦 𝑋}𝑧 𝑥 ∧ ∀𝑤𝐵 (∀𝑧 ∈ {𝑦𝐵𝑦 𝑋}𝑧 𝑤𝑥 𝑤)))
5 lubid.k . . 3 (𝜑𝐾 ∈ Poset)
6 ssrab2 4009 . . . 4 {𝑦𝐵𝑦 𝑋} ⊆ 𝐵
76a1i 11 . . 3 (𝜑 → {𝑦𝐵𝑦 𝑋} ⊆ 𝐵)
81, 2, 3, 4, 5, 7lubval 17989 . 2 (𝜑 → (𝑈‘{𝑦𝐵𝑦 𝑋}) = (𝑥𝐵 (∀𝑧 ∈ {𝑦𝐵𝑦 𝑋}𝑧 𝑥 ∧ ∀𝑤𝐵 (∀𝑧 ∈ {𝑦𝐵𝑦 𝑋}𝑧 𝑤𝑥 𝑤))))
9 lubid.x . . 3 (𝜑𝑋𝐵)
101, 2, 3, 5, 9lublecllem 17993 . . 3 ((𝜑𝑥𝐵) → ((∀𝑧 ∈ {𝑦𝐵𝑦 𝑋}𝑧 𝑥 ∧ ∀𝑤𝐵 (∀𝑧 ∈ {𝑦𝐵𝑦 𝑋}𝑧 𝑤𝑥 𝑤)) ↔ 𝑥 = 𝑋))
119, 10riota5 7242 . 2 (𝜑 → (𝑥𝐵 (∀𝑧 ∈ {𝑦𝐵𝑦 𝑋}𝑧 𝑥 ∧ ∀𝑤𝐵 (∀𝑧 ∈ {𝑦𝐵𝑦 𝑋}𝑧 𝑤𝑥 𝑤))) = 𝑋)
128, 11eqtrd 2778 1 (𝜑 → (𝑈‘{𝑦𝐵𝑦 𝑋}) = 𝑋)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1539  wcel 2108  wral 3063  {crab 3067  wss 3883   class class class wbr 5070  cfv 6418  crio 7211  Basecbs 16840  lecple 16895  Posetcpo 17940  lubclub 17942
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-reu 3070  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-id 5480  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-proset 17928  df-poset 17946  df-lub 17979
This theorem is referenced by:  atlatmstc  37260  lubprlem  46144
  Copyright terms: Public domain W3C validator