![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > lubid | Structured version Visualization version GIF version |
Description: The LUB of elements less than or equal to a fixed value equals that value. (Contributed by NM, 19-Oct-2011.) (Revised by NM, 7-Sep-2018.) |
Ref | Expression |
---|---|
lubid.b | ⊢ 𝐵 = (Base‘𝐾) |
lubid.l | ⊢ ≤ = (le‘𝐾) |
lubid.u | ⊢ 𝑈 = (lub‘𝐾) |
lubid.k | ⊢ (𝜑 → 𝐾 ∈ Poset) |
lubid.x | ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
Ref | Expression |
---|---|
lubid | ⊢ (𝜑 → (𝑈‘{𝑦 ∈ 𝐵 ∣ 𝑦 ≤ 𝑋}) = 𝑋) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lubid.b | . . 3 ⊢ 𝐵 = (Base‘𝐾) | |
2 | lubid.l | . . 3 ⊢ ≤ = (le‘𝐾) | |
3 | lubid.u | . . 3 ⊢ 𝑈 = (lub‘𝐾) | |
4 | biid 253 | . . 3 ⊢ ((∀𝑧 ∈ {𝑦 ∈ 𝐵 ∣ 𝑦 ≤ 𝑋}𝑧 ≤ 𝑥 ∧ ∀𝑤 ∈ 𝐵 (∀𝑧 ∈ {𝑦 ∈ 𝐵 ∣ 𝑦 ≤ 𝑋}𝑧 ≤ 𝑤 → 𝑥 ≤ 𝑤)) ↔ (∀𝑧 ∈ {𝑦 ∈ 𝐵 ∣ 𝑦 ≤ 𝑋}𝑧 ≤ 𝑥 ∧ ∀𝑤 ∈ 𝐵 (∀𝑧 ∈ {𝑦 ∈ 𝐵 ∣ 𝑦 ≤ 𝑋}𝑧 ≤ 𝑤 → 𝑥 ≤ 𝑤))) | |
5 | lubid.k | . . 3 ⊢ (𝜑 → 𝐾 ∈ Poset) | |
6 | ssrab2 3907 | . . . 4 ⊢ {𝑦 ∈ 𝐵 ∣ 𝑦 ≤ 𝑋} ⊆ 𝐵 | |
7 | 6 | a1i 11 | . . 3 ⊢ (𝜑 → {𝑦 ∈ 𝐵 ∣ 𝑦 ≤ 𝑋} ⊆ 𝐵) |
8 | 1, 2, 3, 4, 5, 7 | lubval 17370 | . 2 ⊢ (𝜑 → (𝑈‘{𝑦 ∈ 𝐵 ∣ 𝑦 ≤ 𝑋}) = (℩𝑥 ∈ 𝐵 (∀𝑧 ∈ {𝑦 ∈ 𝐵 ∣ 𝑦 ≤ 𝑋}𝑧 ≤ 𝑥 ∧ ∀𝑤 ∈ 𝐵 (∀𝑧 ∈ {𝑦 ∈ 𝐵 ∣ 𝑦 ≤ 𝑋}𝑧 ≤ 𝑤 → 𝑥 ≤ 𝑤)))) |
9 | lubid.x | . . 3 ⊢ (𝜑 → 𝑋 ∈ 𝐵) | |
10 | 1, 2, 3, 5, 9 | lublecllem 17374 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → ((∀𝑧 ∈ {𝑦 ∈ 𝐵 ∣ 𝑦 ≤ 𝑋}𝑧 ≤ 𝑥 ∧ ∀𝑤 ∈ 𝐵 (∀𝑧 ∈ {𝑦 ∈ 𝐵 ∣ 𝑦 ≤ 𝑋}𝑧 ≤ 𝑤 → 𝑥 ≤ 𝑤)) ↔ 𝑥 = 𝑋)) |
11 | 9, 10 | riota5 6909 | . 2 ⊢ (𝜑 → (℩𝑥 ∈ 𝐵 (∀𝑧 ∈ {𝑦 ∈ 𝐵 ∣ 𝑦 ≤ 𝑋}𝑧 ≤ 𝑥 ∧ ∀𝑤 ∈ 𝐵 (∀𝑧 ∈ {𝑦 ∈ 𝐵 ∣ 𝑦 ≤ 𝑋}𝑧 ≤ 𝑤 → 𝑥 ≤ 𝑤))) = 𝑋) |
12 | 8, 11 | eqtrd 2813 | 1 ⊢ (𝜑 → (𝑈‘{𝑦 ∈ 𝐵 ∣ 𝑦 ≤ 𝑋}) = 𝑋) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 386 = wceq 1601 ∈ wcel 2106 ∀wral 3089 {crab 3093 ⊆ wss 3791 class class class wbr 4886 ‘cfv 6135 ℩crio 6882 Basecbs 16255 lecple 16345 Posetcpo 17326 lubclub 17328 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1839 ax-4 1853 ax-5 1953 ax-6 2021 ax-7 2054 ax-8 2108 ax-9 2115 ax-10 2134 ax-11 2149 ax-12 2162 ax-13 2333 ax-ext 2753 ax-rep 5006 ax-sep 5017 ax-nul 5025 ax-pow 5077 ax-pr 5138 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 837 df-3an 1073 df-tru 1605 df-ex 1824 df-nf 1828 df-sb 2012 df-mo 2550 df-eu 2586 df-clab 2763 df-cleq 2769 df-clel 2773 df-nfc 2920 df-ne 2969 df-ral 3094 df-rex 3095 df-reu 3096 df-rab 3098 df-v 3399 df-sbc 3652 df-csb 3751 df-dif 3794 df-un 3796 df-in 3798 df-ss 3805 df-nul 4141 df-if 4307 df-pw 4380 df-sn 4398 df-pr 4400 df-op 4404 df-uni 4672 df-iun 4755 df-br 4887 df-opab 4949 df-mpt 4966 df-id 5261 df-xp 5361 df-rel 5362 df-cnv 5363 df-co 5364 df-dm 5365 df-rn 5366 df-res 5367 df-ima 5368 df-iota 6099 df-fun 6137 df-fn 6138 df-f 6139 df-f1 6140 df-fo 6141 df-f1o 6142 df-fv 6143 df-riota 6883 df-proset 17314 df-poset 17332 df-lub 17360 |
This theorem is referenced by: atlatmstc 35467 |
Copyright terms: Public domain | W3C validator |