MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lubid Structured version   Visualization version   GIF version

Theorem lubid 18301
Description: The LUB of elements less than or equal to a fixed value equals that value. (Contributed by NM, 19-Oct-2011.) (Revised by NM, 7-Sep-2018.)
Hypotheses
Ref Expression
lubid.b 𝐵 = (Base‘𝐾)
lubid.l = (le‘𝐾)
lubid.u 𝑈 = (lub‘𝐾)
lubid.k (𝜑𝐾 ∈ Poset)
lubid.x (𝜑𝑋𝐵)
Assertion
Ref Expression
lubid (𝜑 → (𝑈‘{𝑦𝐵𝑦 𝑋}) = 𝑋)
Distinct variable groups:   𝑦,   𝑦,𝐵   𝑦,𝑋
Allowed substitution hints:   𝜑(𝑦)   𝑈(𝑦)   𝐾(𝑦)

Proof of Theorem lubid
Dummy variables 𝑥 𝑤 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 lubid.b . . 3 𝐵 = (Base‘𝐾)
2 lubid.l . . 3 = (le‘𝐾)
3 lubid.u . . 3 𝑈 = (lub‘𝐾)
4 biid 261 . . 3 ((∀𝑧 ∈ {𝑦𝐵𝑦 𝑋}𝑧 𝑥 ∧ ∀𝑤𝐵 (∀𝑧 ∈ {𝑦𝐵𝑦 𝑋}𝑧 𝑤𝑥 𝑤)) ↔ (∀𝑧 ∈ {𝑦𝐵𝑦 𝑋}𝑧 𝑥 ∧ ∀𝑤𝐵 (∀𝑧 ∈ {𝑦𝐵𝑦 𝑋}𝑧 𝑤𝑥 𝑤)))
5 lubid.k . . 3 (𝜑𝐾 ∈ Poset)
6 ssrab2 4039 . . . 4 {𝑦𝐵𝑦 𝑋} ⊆ 𝐵
76a1i 11 . . 3 (𝜑 → {𝑦𝐵𝑦 𝑋} ⊆ 𝐵)
81, 2, 3, 4, 5, 7lubval 18295 . 2 (𝜑 → (𝑈‘{𝑦𝐵𝑦 𝑋}) = (𝑥𝐵 (∀𝑧 ∈ {𝑦𝐵𝑦 𝑋}𝑧 𝑥 ∧ ∀𝑤𝐵 (∀𝑧 ∈ {𝑦𝐵𝑦 𝑋}𝑧 𝑤𝑥 𝑤))))
9 lubid.x . . 3 (𝜑𝑋𝐵)
101, 2, 3, 5, 9lublecllem 18299 . . 3 ((𝜑𝑥𝐵) → ((∀𝑧 ∈ {𝑦𝐵𝑦 𝑋}𝑧 𝑥 ∧ ∀𝑤𝐵 (∀𝑧 ∈ {𝑦𝐵𝑦 𝑋}𝑧 𝑤𝑥 𝑤)) ↔ 𝑥 = 𝑋))
119, 10riota5 7355 . 2 (𝜑 → (𝑥𝐵 (∀𝑧 ∈ {𝑦𝐵𝑦 𝑋}𝑧 𝑥 ∧ ∀𝑤𝐵 (∀𝑧 ∈ {𝑦𝐵𝑦 𝑋}𝑧 𝑤𝑥 𝑤))) = 𝑋)
128, 11eqtrd 2764 1 (𝜑 → (𝑈‘{𝑦𝐵𝑦 𝑋}) = 𝑋)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  wral 3044  {crab 3402  wss 3911   class class class wbr 5102  cfv 6499  crio 7325  Basecbs 17155  lecple 17203  Posetcpo 18248  lubclub 18250
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rmo 3351  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-id 5526  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-riota 7326  df-proset 18235  df-poset 18254  df-lub 18285
This theorem is referenced by:  atlatmstc  39305  lubprlem  48943
  Copyright terms: Public domain W3C validator