![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > lubid | Structured version Visualization version GIF version |
Description: The LUB of elements less than or equal to a fixed value equals that value. (Contributed by NM, 19-Oct-2011.) (Revised by NM, 7-Sep-2018.) |
Ref | Expression |
---|---|
lubid.b | ⊢ 𝐵 = (Base‘𝐾) |
lubid.l | ⊢ ≤ = (le‘𝐾) |
lubid.u | ⊢ 𝑈 = (lub‘𝐾) |
lubid.k | ⊢ (𝜑 → 𝐾 ∈ Poset) |
lubid.x | ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
Ref | Expression |
---|---|
lubid | ⊢ (𝜑 → (𝑈‘{𝑦 ∈ 𝐵 ∣ 𝑦 ≤ 𝑋}) = 𝑋) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lubid.b | . . 3 ⊢ 𝐵 = (Base‘𝐾) | |
2 | lubid.l | . . 3 ⊢ ≤ = (le‘𝐾) | |
3 | lubid.u | . . 3 ⊢ 𝑈 = (lub‘𝐾) | |
4 | biid 261 | . . 3 ⊢ ((∀𝑧 ∈ {𝑦 ∈ 𝐵 ∣ 𝑦 ≤ 𝑋}𝑧 ≤ 𝑥 ∧ ∀𝑤 ∈ 𝐵 (∀𝑧 ∈ {𝑦 ∈ 𝐵 ∣ 𝑦 ≤ 𝑋}𝑧 ≤ 𝑤 → 𝑥 ≤ 𝑤)) ↔ (∀𝑧 ∈ {𝑦 ∈ 𝐵 ∣ 𝑦 ≤ 𝑋}𝑧 ≤ 𝑥 ∧ ∀𝑤 ∈ 𝐵 (∀𝑧 ∈ {𝑦 ∈ 𝐵 ∣ 𝑦 ≤ 𝑋}𝑧 ≤ 𝑤 → 𝑥 ≤ 𝑤))) | |
5 | lubid.k | . . 3 ⊢ (𝜑 → 𝐾 ∈ Poset) | |
6 | ssrab2 4103 | . . . 4 ⊢ {𝑦 ∈ 𝐵 ∣ 𝑦 ≤ 𝑋} ⊆ 𝐵 | |
7 | 6 | a1i 11 | . . 3 ⊢ (𝜑 → {𝑦 ∈ 𝐵 ∣ 𝑦 ≤ 𝑋} ⊆ 𝐵) |
8 | 1, 2, 3, 4, 5, 7 | lubval 18428 | . 2 ⊢ (𝜑 → (𝑈‘{𝑦 ∈ 𝐵 ∣ 𝑦 ≤ 𝑋}) = (℩𝑥 ∈ 𝐵 (∀𝑧 ∈ {𝑦 ∈ 𝐵 ∣ 𝑦 ≤ 𝑋}𝑧 ≤ 𝑥 ∧ ∀𝑤 ∈ 𝐵 (∀𝑧 ∈ {𝑦 ∈ 𝐵 ∣ 𝑦 ≤ 𝑋}𝑧 ≤ 𝑤 → 𝑥 ≤ 𝑤)))) |
9 | lubid.x | . . 3 ⊢ (𝜑 → 𝑋 ∈ 𝐵) | |
10 | 1, 2, 3, 5, 9 | lublecllem 18432 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → ((∀𝑧 ∈ {𝑦 ∈ 𝐵 ∣ 𝑦 ≤ 𝑋}𝑧 ≤ 𝑥 ∧ ∀𝑤 ∈ 𝐵 (∀𝑧 ∈ {𝑦 ∈ 𝐵 ∣ 𝑦 ≤ 𝑋}𝑧 ≤ 𝑤 → 𝑥 ≤ 𝑤)) ↔ 𝑥 = 𝑋)) |
11 | 9, 10 | riota5 7436 | . 2 ⊢ (𝜑 → (℩𝑥 ∈ 𝐵 (∀𝑧 ∈ {𝑦 ∈ 𝐵 ∣ 𝑦 ≤ 𝑋}𝑧 ≤ 𝑥 ∧ ∀𝑤 ∈ 𝐵 (∀𝑧 ∈ {𝑦 ∈ 𝐵 ∣ 𝑦 ≤ 𝑋}𝑧 ≤ 𝑤 → 𝑥 ≤ 𝑤))) = 𝑋) |
12 | 8, 11 | eqtrd 2780 | 1 ⊢ (𝜑 → (𝑈‘{𝑦 ∈ 𝐵 ∣ 𝑦 ≤ 𝑋}) = 𝑋) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1537 ∈ wcel 2108 ∀wral 3067 {crab 3443 ⊆ wss 3976 class class class wbr 5166 ‘cfv 6575 ℩crio 7405 Basecbs 17260 lecple 17320 Posetcpo 18379 lubclub 18381 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-rep 5303 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-ral 3068 df-rex 3077 df-rmo 3388 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-id 5593 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-iota 6527 df-fun 6577 df-fn 6578 df-f 6579 df-f1 6580 df-fo 6581 df-f1o 6582 df-fv 6583 df-riota 7406 df-proset 18367 df-poset 18385 df-lub 18418 |
This theorem is referenced by: atlatmstc 39277 lubprlem 48644 |
Copyright terms: Public domain | W3C validator |