![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > lubid | Structured version Visualization version GIF version |
Description: The LUB of elements less than or equal to a fixed value equals that value. (Contributed by NM, 19-Oct-2011.) (Revised by NM, 7-Sep-2018.) |
Ref | Expression |
---|---|
lubid.b | β’ π΅ = (BaseβπΎ) |
lubid.l | β’ β€ = (leβπΎ) |
lubid.u | β’ π = (lubβπΎ) |
lubid.k | β’ (π β πΎ β Poset) |
lubid.x | β’ (π β π β π΅) |
Ref | Expression |
---|---|
lubid | β’ (π β (πβ{π¦ β π΅ β£ π¦ β€ π}) = π) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lubid.b | . . 3 β’ π΅ = (BaseβπΎ) | |
2 | lubid.l | . . 3 β’ β€ = (leβπΎ) | |
3 | lubid.u | . . 3 β’ π = (lubβπΎ) | |
4 | biid 260 | . . 3 β’ ((βπ§ β {π¦ β π΅ β£ π¦ β€ π}π§ β€ π₯ β§ βπ€ β π΅ (βπ§ β {π¦ β π΅ β£ π¦ β€ π}π§ β€ π€ β π₯ β€ π€)) β (βπ§ β {π¦ β π΅ β£ π¦ β€ π}π§ β€ π₯ β§ βπ€ β π΅ (βπ§ β {π¦ β π΅ β£ π¦ β€ π}π§ β€ π€ β π₯ β€ π€))) | |
5 | lubid.k | . . 3 β’ (π β πΎ β Poset) | |
6 | ssrab2 4078 | . . . 4 β’ {π¦ β π΅ β£ π¦ β€ π} β π΅ | |
7 | 6 | a1i 11 | . . 3 β’ (π β {π¦ β π΅ β£ π¦ β€ π} β π΅) |
8 | 1, 2, 3, 4, 5, 7 | lubval 18315 | . 2 β’ (π β (πβ{π¦ β π΅ β£ π¦ β€ π}) = (β©π₯ β π΅ (βπ§ β {π¦ β π΅ β£ π¦ β€ π}π§ β€ π₯ β§ βπ€ β π΅ (βπ§ β {π¦ β π΅ β£ π¦ β€ π}π§ β€ π€ β π₯ β€ π€)))) |
9 | lubid.x | . . 3 β’ (π β π β π΅) | |
10 | 1, 2, 3, 5, 9 | lublecllem 18319 | . . 3 β’ ((π β§ π₯ β π΅) β ((βπ§ β {π¦ β π΅ β£ π¦ β€ π}π§ β€ π₯ β§ βπ€ β π΅ (βπ§ β {π¦ β π΅ β£ π¦ β€ π}π§ β€ π€ β π₯ β€ π€)) β π₯ = π)) |
11 | 9, 10 | riota5 7399 | . 2 β’ (π β (β©π₯ β π΅ (βπ§ β {π¦ β π΅ β£ π¦ β€ π}π§ β€ π₯ β§ βπ€ β π΅ (βπ§ β {π¦ β π΅ β£ π¦ β€ π}π§ β€ π€ β π₯ β€ π€))) = π) |
12 | 8, 11 | eqtrd 2770 | 1 β’ (π β (πβ{π¦ β π΅ β£ π¦ β€ π}) = π) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β§ wa 394 = wceq 1539 β wcel 2104 βwral 3059 {crab 3430 β wss 3949 class class class wbr 5149 βcfv 6544 β©crio 7368 Basecbs 17150 lecple 17210 Posetcpo 18266 lubclub 18268 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-10 2135 ax-11 2152 ax-12 2169 ax-ext 2701 ax-rep 5286 ax-sep 5300 ax-nul 5307 ax-pow 5364 ax-pr 5428 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2532 df-eu 2561 df-clab 2708 df-cleq 2722 df-clel 2808 df-nfc 2883 df-ne 2939 df-ral 3060 df-rex 3069 df-rmo 3374 df-reu 3375 df-rab 3431 df-v 3474 df-sbc 3779 df-csb 3895 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4910 df-iun 5000 df-br 5150 df-opab 5212 df-mpt 5233 df-id 5575 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-rn 5688 df-res 5689 df-ima 5690 df-iota 6496 df-fun 6546 df-fn 6547 df-f 6548 df-f1 6549 df-fo 6550 df-f1o 6551 df-fv 6552 df-riota 7369 df-proset 18254 df-poset 18272 df-lub 18305 |
This theorem is referenced by: atlatmstc 38494 lubprlem 47684 |
Copyright terms: Public domain | W3C validator |