![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > mapdhval2 | Structured version Visualization version GIF version |
Description: Lemmma for ~? mapdh . (Contributed by NM, 3-Apr-2015.) |
Ref | Expression |
---|---|
mapdh.q | ⊢ 𝑄 = (0g‘𝐶) |
mapdh.i | ⊢ 𝐼 = (𝑥 ∈ V ↦ if((2nd ‘𝑥) = 0 , 𝑄, (℩ℎ ∈ 𝐷 ((𝑀‘(𝑁‘{(2nd ‘𝑥)})) = (𝐽‘{ℎ}) ∧ (𝑀‘(𝑁‘{((1st ‘(1st ‘𝑥)) − (2nd ‘𝑥))})) = (𝐽‘{((2nd ‘(1st ‘𝑥))𝑅ℎ)}))))) |
mapdh2.x | ⊢ (𝜑 → 𝑋 ∈ 𝐴) |
mapdh2.f | ⊢ (𝜑 → 𝐹 ∈ 𝐵) |
mapdh2.y | ⊢ (𝜑 → 𝑌 ∈ (𝑉 ∖ { 0 })) |
Ref | Expression |
---|---|
mapdhval2 | ⊢ (𝜑 → (𝐼‘〈𝑋, 𝐹, 𝑌〉) = (℩ℎ ∈ 𝐷 ((𝑀‘(𝑁‘{𝑌})) = (𝐽‘{ℎ}) ∧ (𝑀‘(𝑁‘{(𝑋 − 𝑌)})) = (𝐽‘{(𝐹𝑅ℎ)})))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mapdh.q | . . 3 ⊢ 𝑄 = (0g‘𝐶) | |
2 | mapdh.i | . . 3 ⊢ 𝐼 = (𝑥 ∈ V ↦ if((2nd ‘𝑥) = 0 , 𝑄, (℩ℎ ∈ 𝐷 ((𝑀‘(𝑁‘{(2nd ‘𝑥)})) = (𝐽‘{ℎ}) ∧ (𝑀‘(𝑁‘{((1st ‘(1st ‘𝑥)) − (2nd ‘𝑥))})) = (𝐽‘{((2nd ‘(1st ‘𝑥))𝑅ℎ)}))))) | |
3 | mapdh2.x | . . 3 ⊢ (𝜑 → 𝑋 ∈ 𝐴) | |
4 | mapdh2.f | . . 3 ⊢ (𝜑 → 𝐹 ∈ 𝐵) | |
5 | mapdh2.y | . . 3 ⊢ (𝜑 → 𝑌 ∈ (𝑉 ∖ { 0 })) | |
6 | 1, 2, 3, 4, 5 | mapdhval 37883 | . 2 ⊢ (𝜑 → (𝐼‘〈𝑋, 𝐹, 𝑌〉) = if(𝑌 = 0 , 𝑄, (℩ℎ ∈ 𝐷 ((𝑀‘(𝑁‘{𝑌})) = (𝐽‘{ℎ}) ∧ (𝑀‘(𝑁‘{(𝑋 − 𝑌)})) = (𝐽‘{(𝐹𝑅ℎ)}))))) |
7 | eldifsni 4553 | . . . 4 ⊢ (𝑌 ∈ (𝑉 ∖ { 0 }) → 𝑌 ≠ 0 ) | |
8 | 7 | neneqd 2974 | . . 3 ⊢ (𝑌 ∈ (𝑉 ∖ { 0 }) → ¬ 𝑌 = 0 ) |
9 | iffalse 4316 | . . 3 ⊢ (¬ 𝑌 = 0 → if(𝑌 = 0 , 𝑄, (℩ℎ ∈ 𝐷 ((𝑀‘(𝑁‘{𝑌})) = (𝐽‘{ℎ}) ∧ (𝑀‘(𝑁‘{(𝑋 − 𝑌)})) = (𝐽‘{(𝐹𝑅ℎ)})))) = (℩ℎ ∈ 𝐷 ((𝑀‘(𝑁‘{𝑌})) = (𝐽‘{ℎ}) ∧ (𝑀‘(𝑁‘{(𝑋 − 𝑌)})) = (𝐽‘{(𝐹𝑅ℎ)})))) | |
10 | 5, 8, 9 | 3syl 18 | . 2 ⊢ (𝜑 → if(𝑌 = 0 , 𝑄, (℩ℎ ∈ 𝐷 ((𝑀‘(𝑁‘{𝑌})) = (𝐽‘{ℎ}) ∧ (𝑀‘(𝑁‘{(𝑋 − 𝑌)})) = (𝐽‘{(𝐹𝑅ℎ)})))) = (℩ℎ ∈ 𝐷 ((𝑀‘(𝑁‘{𝑌})) = (𝐽‘{ℎ}) ∧ (𝑀‘(𝑁‘{(𝑋 − 𝑌)})) = (𝐽‘{(𝐹𝑅ℎ)})))) |
11 | 6, 10 | eqtrd 2814 | 1 ⊢ (𝜑 → (𝐼‘〈𝑋, 𝐹, 𝑌〉) = (℩ℎ ∈ 𝐷 ((𝑀‘(𝑁‘{𝑌})) = (𝐽‘{ℎ}) ∧ (𝑀‘(𝑁‘{(𝑋 − 𝑌)})) = (𝐽‘{(𝐹𝑅ℎ)})))) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 386 = wceq 1601 ∈ wcel 2107 Vcvv 3398 ∖ cdif 3789 ifcif 4307 {csn 4398 〈cotp 4406 ↦ cmpt 4967 ‘cfv 6137 ℩crio 6884 (class class class)co 6924 1st c1st 7445 2nd c2nd 7446 0gc0g 16490 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1839 ax-4 1853 ax-5 1953 ax-6 2021 ax-7 2055 ax-8 2109 ax-9 2116 ax-10 2135 ax-11 2150 ax-12 2163 ax-13 2334 ax-ext 2754 ax-sep 5019 ax-nul 5027 ax-pow 5079 ax-pr 5140 ax-un 7228 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 837 df-3an 1073 df-tru 1605 df-ex 1824 df-nf 1828 df-sb 2012 df-mo 2551 df-eu 2587 df-clab 2764 df-cleq 2770 df-clel 2774 df-nfc 2921 df-ne 2970 df-ral 3095 df-rex 3096 df-rab 3099 df-v 3400 df-sbc 3653 df-dif 3795 df-un 3797 df-in 3799 df-ss 3806 df-nul 4142 df-if 4308 df-sn 4399 df-pr 4401 df-op 4405 df-ot 4407 df-uni 4674 df-br 4889 df-opab 4951 df-mpt 4968 df-id 5263 df-xp 5363 df-rel 5364 df-cnv 5365 df-co 5366 df-dm 5367 df-rn 5368 df-iota 6101 df-fun 6139 df-fv 6145 df-riota 6885 df-ov 6927 df-1st 7447 df-2nd 7448 |
This theorem is referenced by: mapdhcl 37886 mapdheq 37887 |
Copyright terms: Public domain | W3C validator |