| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > mapdhval0 | Structured version Visualization version GIF version | ||
| Description: Lemmma for ~? mapdh . (Contributed by NM, 3-Apr-2015.) |
| Ref | Expression |
|---|---|
| mapdh.q | ⊢ 𝑄 = (0g‘𝐶) |
| mapdh.i | ⊢ 𝐼 = (𝑥 ∈ V ↦ if((2nd ‘𝑥) = 0 , 𝑄, (℩ℎ ∈ 𝐷 ((𝑀‘(𝑁‘{(2nd ‘𝑥)})) = (𝐽‘{ℎ}) ∧ (𝑀‘(𝑁‘{((1st ‘(1st ‘𝑥)) − (2nd ‘𝑥))})) = (𝐽‘{((2nd ‘(1st ‘𝑥))𝑅ℎ)}))))) |
| mapdh0.o | ⊢ 0 = (0g‘𝑈) |
| mapdh0.x | ⊢ (𝜑 → 𝑋 ∈ 𝐴) |
| mapdh0.f | ⊢ (𝜑 → 𝐹 ∈ 𝐵) |
| Ref | Expression |
|---|---|
| mapdhval0 | ⊢ (𝜑 → (𝐼‘〈𝑋, 𝐹, 0 〉) = 𝑄) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mapdh.q | . . 3 ⊢ 𝑄 = (0g‘𝐶) | |
| 2 | mapdh.i | . . 3 ⊢ 𝐼 = (𝑥 ∈ V ↦ if((2nd ‘𝑥) = 0 , 𝑄, (℩ℎ ∈ 𝐷 ((𝑀‘(𝑁‘{(2nd ‘𝑥)})) = (𝐽‘{ℎ}) ∧ (𝑀‘(𝑁‘{((1st ‘(1st ‘𝑥)) − (2nd ‘𝑥))})) = (𝐽‘{((2nd ‘(1st ‘𝑥))𝑅ℎ)}))))) | |
| 3 | mapdh0.x | . . 3 ⊢ (𝜑 → 𝑋 ∈ 𝐴) | |
| 4 | mapdh0.f | . . 3 ⊢ (𝜑 → 𝐹 ∈ 𝐵) | |
| 5 | mapdh0.o | . . . . 5 ⊢ 0 = (0g‘𝑈) | |
| 6 | 5 | fvexi 6895 | . . . 4 ⊢ 0 ∈ V |
| 7 | 6 | a1i 11 | . . 3 ⊢ (𝜑 → 0 ∈ V) |
| 8 | 1, 2, 3, 4, 7 | mapdhval 41748 | . 2 ⊢ (𝜑 → (𝐼‘〈𝑋, 𝐹, 0 〉) = if( 0 = 0 , 𝑄, (℩ℎ ∈ 𝐷 ((𝑀‘(𝑁‘{ 0 })) = (𝐽‘{ℎ}) ∧ (𝑀‘(𝑁‘{(𝑋 − 0 )})) = (𝐽‘{(𝐹𝑅ℎ)}))))) |
| 9 | eqid 2736 | . . 3 ⊢ 0 = 0 | |
| 10 | 9 | iftruei 4512 | . 2 ⊢ if( 0 = 0 , 𝑄, (℩ℎ ∈ 𝐷 ((𝑀‘(𝑁‘{ 0 })) = (𝐽‘{ℎ}) ∧ (𝑀‘(𝑁‘{(𝑋 − 0 )})) = (𝐽‘{(𝐹𝑅ℎ)})))) = 𝑄 |
| 11 | 8, 10 | eqtrdi 2787 | 1 ⊢ (𝜑 → (𝐼‘〈𝑋, 𝐹, 0 〉) = 𝑄) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 Vcvv 3464 ifcif 4505 {csn 4606 〈cotp 4614 ↦ cmpt 5206 ‘cfv 6536 ℩crio 7366 (class class class)co 7410 1st c1st 7991 2nd c2nd 7992 0gc0g 17458 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-sep 5271 ax-nul 5281 ax-pr 5407 ax-un 7734 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-ne 2934 df-ral 3053 df-rex 3062 df-rab 3421 df-v 3466 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-nul 4314 df-if 4506 df-sn 4607 df-pr 4609 df-op 4613 df-ot 4615 df-uni 4889 df-br 5125 df-opab 5187 df-mpt 5207 df-id 5553 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-rn 5670 df-iota 6489 df-fun 6538 df-fv 6544 df-riota 7367 df-ov 7413 df-1st 7993 df-2nd 7994 |
| This theorem is referenced by: mapdhcl 41751 mapdh6bN 41761 mapdh6cN 41762 mapdh6dN 41763 mapdh8 41812 |
| Copyright terms: Public domain | W3C validator |