Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > mapdhval0 | Structured version Visualization version GIF version |
Description: Lemmma for ~? mapdh . (Contributed by NM, 3-Apr-2015.) |
Ref | Expression |
---|---|
mapdh.q | ⊢ 𝑄 = (0g‘𝐶) |
mapdh.i | ⊢ 𝐼 = (𝑥 ∈ V ↦ if((2nd ‘𝑥) = 0 , 𝑄, (℩ℎ ∈ 𝐷 ((𝑀‘(𝑁‘{(2nd ‘𝑥)})) = (𝐽‘{ℎ}) ∧ (𝑀‘(𝑁‘{((1st ‘(1st ‘𝑥)) − (2nd ‘𝑥))})) = (𝐽‘{((2nd ‘(1st ‘𝑥))𝑅ℎ)}))))) |
mapdh0.o | ⊢ 0 = (0g‘𝑈) |
mapdh0.x | ⊢ (𝜑 → 𝑋 ∈ 𝐴) |
mapdh0.f | ⊢ (𝜑 → 𝐹 ∈ 𝐵) |
Ref | Expression |
---|---|
mapdhval0 | ⊢ (𝜑 → (𝐼‘〈𝑋, 𝐹, 0 〉) = 𝑄) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mapdh.q | . . 3 ⊢ 𝑄 = (0g‘𝐶) | |
2 | mapdh.i | . . 3 ⊢ 𝐼 = (𝑥 ∈ V ↦ if((2nd ‘𝑥) = 0 , 𝑄, (℩ℎ ∈ 𝐷 ((𝑀‘(𝑁‘{(2nd ‘𝑥)})) = (𝐽‘{ℎ}) ∧ (𝑀‘(𝑁‘{((1st ‘(1st ‘𝑥)) − (2nd ‘𝑥))})) = (𝐽‘{((2nd ‘(1st ‘𝑥))𝑅ℎ)}))))) | |
3 | mapdh0.x | . . 3 ⊢ (𝜑 → 𝑋 ∈ 𝐴) | |
4 | mapdh0.f | . . 3 ⊢ (𝜑 → 𝐹 ∈ 𝐵) | |
5 | mapdh0.o | . . . . 5 ⊢ 0 = (0g‘𝑈) | |
6 | 5 | fvexi 6788 | . . . 4 ⊢ 0 ∈ V |
7 | 6 | a1i 11 | . . 3 ⊢ (𝜑 → 0 ∈ V) |
8 | 1, 2, 3, 4, 7 | mapdhval 39738 | . 2 ⊢ (𝜑 → (𝐼‘〈𝑋, 𝐹, 0 〉) = if( 0 = 0 , 𝑄, (℩ℎ ∈ 𝐷 ((𝑀‘(𝑁‘{ 0 })) = (𝐽‘{ℎ}) ∧ (𝑀‘(𝑁‘{(𝑋 − 0 )})) = (𝐽‘{(𝐹𝑅ℎ)}))))) |
9 | eqid 2738 | . . 3 ⊢ 0 = 0 | |
10 | 9 | iftruei 4466 | . 2 ⊢ if( 0 = 0 , 𝑄, (℩ℎ ∈ 𝐷 ((𝑀‘(𝑁‘{ 0 })) = (𝐽‘{ℎ}) ∧ (𝑀‘(𝑁‘{(𝑋 − 0 )})) = (𝐽‘{(𝐹𝑅ℎ)})))) = 𝑄 |
11 | 8, 10 | eqtrdi 2794 | 1 ⊢ (𝜑 → (𝐼‘〈𝑋, 𝐹, 0 〉) = 𝑄) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1539 ∈ wcel 2106 Vcvv 3432 ifcif 4459 {csn 4561 〈cotp 4569 ↦ cmpt 5157 ‘cfv 6433 ℩crio 7231 (class class class)co 7275 1st c1st 7829 2nd c2nd 7830 0gc0g 17150 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pr 5352 ax-un 7588 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3434 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-sn 4562 df-pr 4564 df-op 4568 df-ot 4570 df-uni 4840 df-br 5075 df-opab 5137 df-mpt 5158 df-id 5489 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-iota 6391 df-fun 6435 df-fv 6441 df-riota 7232 df-ov 7278 df-1st 7831 df-2nd 7832 |
This theorem is referenced by: mapdhcl 39741 mapdh6bN 39751 mapdh6cN 39752 mapdh6dN 39753 mapdh8 39802 |
Copyright terms: Public domain | W3C validator |