| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > mapdhval0 | Structured version Visualization version GIF version | ||
| Description: Lemmma for ~? mapdh . (Contributed by NM, 3-Apr-2015.) |
| Ref | Expression |
|---|---|
| mapdh.q | ⊢ 𝑄 = (0g‘𝐶) |
| mapdh.i | ⊢ 𝐼 = (𝑥 ∈ V ↦ if((2nd ‘𝑥) = 0 , 𝑄, (℩ℎ ∈ 𝐷 ((𝑀‘(𝑁‘{(2nd ‘𝑥)})) = (𝐽‘{ℎ}) ∧ (𝑀‘(𝑁‘{((1st ‘(1st ‘𝑥)) − (2nd ‘𝑥))})) = (𝐽‘{((2nd ‘(1st ‘𝑥))𝑅ℎ)}))))) |
| mapdh0.o | ⊢ 0 = (0g‘𝑈) |
| mapdh0.x | ⊢ (𝜑 → 𝑋 ∈ 𝐴) |
| mapdh0.f | ⊢ (𝜑 → 𝐹 ∈ 𝐵) |
| Ref | Expression |
|---|---|
| mapdhval0 | ⊢ (𝜑 → (𝐼‘〈𝑋, 𝐹, 0 〉) = 𝑄) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mapdh.q | . . 3 ⊢ 𝑄 = (0g‘𝐶) | |
| 2 | mapdh.i | . . 3 ⊢ 𝐼 = (𝑥 ∈ V ↦ if((2nd ‘𝑥) = 0 , 𝑄, (℩ℎ ∈ 𝐷 ((𝑀‘(𝑁‘{(2nd ‘𝑥)})) = (𝐽‘{ℎ}) ∧ (𝑀‘(𝑁‘{((1st ‘(1st ‘𝑥)) − (2nd ‘𝑥))})) = (𝐽‘{((2nd ‘(1st ‘𝑥))𝑅ℎ)}))))) | |
| 3 | mapdh0.x | . . 3 ⊢ (𝜑 → 𝑋 ∈ 𝐴) | |
| 4 | mapdh0.f | . . 3 ⊢ (𝜑 → 𝐹 ∈ 𝐵) | |
| 5 | mapdh0.o | . . . . 5 ⊢ 0 = (0g‘𝑈) | |
| 6 | 5 | fvexi 6901 | . . . 4 ⊢ 0 ∈ V |
| 7 | 6 | a1i 11 | . . 3 ⊢ (𝜑 → 0 ∈ V) |
| 8 | 1, 2, 3, 4, 7 | mapdhval 41667 | . 2 ⊢ (𝜑 → (𝐼‘〈𝑋, 𝐹, 0 〉) = if( 0 = 0 , 𝑄, (℩ℎ ∈ 𝐷 ((𝑀‘(𝑁‘{ 0 })) = (𝐽‘{ℎ}) ∧ (𝑀‘(𝑁‘{(𝑋 − 0 )})) = (𝐽‘{(𝐹𝑅ℎ)}))))) |
| 9 | eqid 2734 | . . 3 ⊢ 0 = 0 | |
| 10 | 9 | iftruei 4514 | . 2 ⊢ if( 0 = 0 , 𝑄, (℩ℎ ∈ 𝐷 ((𝑀‘(𝑁‘{ 0 })) = (𝐽‘{ℎ}) ∧ (𝑀‘(𝑁‘{(𝑋 − 0 )})) = (𝐽‘{(𝐹𝑅ℎ)})))) = 𝑄 |
| 11 | 8, 10 | eqtrdi 2785 | 1 ⊢ (𝜑 → (𝐼‘〈𝑋, 𝐹, 0 〉) = 𝑄) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1539 ∈ wcel 2107 Vcvv 3464 ifcif 4507 {csn 4608 〈cotp 4616 ↦ cmpt 5207 ‘cfv 6542 ℩crio 7370 (class class class)co 7414 1st c1st 7995 2nd c2nd 7996 0gc0g 17460 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-sep 5278 ax-nul 5288 ax-pr 5414 ax-un 7738 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-ral 3051 df-rex 3060 df-rab 3421 df-v 3466 df-dif 3936 df-un 3938 df-in 3940 df-ss 3950 df-nul 4316 df-if 4508 df-sn 4609 df-pr 4611 df-op 4615 df-ot 4617 df-uni 4890 df-br 5126 df-opab 5188 df-mpt 5208 df-id 5560 df-xp 5673 df-rel 5674 df-cnv 5675 df-co 5676 df-dm 5677 df-rn 5678 df-iota 6495 df-fun 6544 df-fv 6550 df-riota 7371 df-ov 7417 df-1st 7997 df-2nd 7998 |
| This theorem is referenced by: mapdhcl 41670 mapdh6bN 41680 mapdh6cN 41681 mapdh6dN 41682 mapdh8 41731 |
| Copyright terms: Public domain | W3C validator |