Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mapdhval0 Structured version   Visualization version   GIF version

Theorem mapdhval0 38969
Description: Lemmma for ~? mapdh . (Contributed by NM, 3-Apr-2015.)
Hypotheses
Ref Expression
mapdh.q 𝑄 = (0g𝐶)
mapdh.i 𝐼 = (𝑥 ∈ V ↦ if((2nd𝑥) = 0 , 𝑄, (𝐷 ((𝑀‘(𝑁‘{(2nd𝑥)})) = (𝐽‘{}) ∧ (𝑀‘(𝑁‘{((1st ‘(1st𝑥)) (2nd𝑥))})) = (𝐽‘{((2nd ‘(1st𝑥))𝑅)})))))
mapdh0.o 0 = (0g𝑈)
mapdh0.x (𝜑𝑋𝐴)
mapdh0.f (𝜑𝐹𝐵)
Assertion
Ref Expression
mapdhval0 (𝜑 → (𝐼‘⟨𝑋, 𝐹, 0 ⟩) = 𝑄)
Distinct variable groups:   𝑥,𝐷   𝑥,,𝐹   𝑥,𝐽   𝑥,𝑀   𝑥,𝑁   𝑥, 0   𝑥,𝑄   𝑥,𝑅   𝑥,   ,𝑋,𝑥   𝜑,   0 ,
Allowed substitution hints:   𝜑(𝑥)   𝐴(𝑥,)   𝐵(𝑥,)   𝐶(𝑥,)   𝐷()   𝑄()   𝑅()   𝑈(𝑥,)   𝐼(𝑥,)   𝐽()   𝑀()   ()   𝑁()

Proof of Theorem mapdhval0
StepHypRef Expression
1 mapdh.q . . 3 𝑄 = (0g𝐶)
2 mapdh.i . . 3 𝐼 = (𝑥 ∈ V ↦ if((2nd𝑥) = 0 , 𝑄, (𝐷 ((𝑀‘(𝑁‘{(2nd𝑥)})) = (𝐽‘{}) ∧ (𝑀‘(𝑁‘{((1st ‘(1st𝑥)) (2nd𝑥))})) = (𝐽‘{((2nd ‘(1st𝑥))𝑅)})))))
3 mapdh0.x . . 3 (𝜑𝑋𝐴)
4 mapdh0.f . . 3 (𝜑𝐹𝐵)
5 mapdh0.o . . . . 5 0 = (0g𝑈)
65fvexi 6675 . . . 4 0 ∈ V
76a1i 11 . . 3 (𝜑0 ∈ V)
81, 2, 3, 4, 7mapdhval 38968 . 2 (𝜑 → (𝐼‘⟨𝑋, 𝐹, 0 ⟩) = if( 0 = 0 , 𝑄, (𝐷 ((𝑀‘(𝑁‘{ 0 })) = (𝐽‘{}) ∧ (𝑀‘(𝑁‘{(𝑋 0 )})) = (𝐽‘{(𝐹𝑅)})))))
9 eqid 2824 . . 3 0 = 0
109iftruei 4457 . 2 if( 0 = 0 , 𝑄, (𝐷 ((𝑀‘(𝑁‘{ 0 })) = (𝐽‘{}) ∧ (𝑀‘(𝑁‘{(𝑋 0 )})) = (𝐽‘{(𝐹𝑅)})))) = 𝑄
118, 10syl6eq 2875 1 (𝜑 → (𝐼‘⟨𝑋, 𝐹, 0 ⟩) = 𝑄)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399   = wceq 1538  wcel 2115  Vcvv 3480  ifcif 4450  {csn 4550  cotp 4558  cmpt 5132  cfv 6343  crio 7106  (class class class)co 7149  1st c1st 7682  2nd c2nd 7683  0gc0g 16713
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2117  ax-9 2125  ax-10 2146  ax-11 2162  ax-12 2179  ax-ext 2796  ax-sep 5189  ax-nul 5196  ax-pow 5253  ax-pr 5317  ax-un 7455
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2071  df-mo 2624  df-eu 2655  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2964  df-ral 3138  df-rex 3139  df-rab 3142  df-v 3482  df-sbc 3759  df-dif 3922  df-un 3924  df-in 3926  df-ss 3936  df-nul 4277  df-if 4451  df-sn 4551  df-pr 4553  df-op 4557  df-ot 4559  df-uni 4825  df-br 5053  df-opab 5115  df-mpt 5133  df-id 5447  df-xp 5548  df-rel 5549  df-cnv 5550  df-co 5551  df-dm 5552  df-rn 5553  df-iota 6302  df-fun 6345  df-fv 6351  df-riota 7107  df-ov 7152  df-1st 7684  df-2nd 7685
This theorem is referenced by:  mapdhcl  38971  mapdh6bN  38981  mapdh6cN  38982  mapdh6dN  38983  mapdh8  39032
  Copyright terms: Public domain W3C validator