![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > mapdhval0 | Structured version Visualization version GIF version |
Description: Lemmma for ~? mapdh . (Contributed by NM, 3-Apr-2015.) |
Ref | Expression |
---|---|
mapdh.q | ⊢ 𝑄 = (0g‘𝐶) |
mapdh.i | ⊢ 𝐼 = (𝑥 ∈ V ↦ if((2nd ‘𝑥) = 0 , 𝑄, (℩ℎ ∈ 𝐷 ((𝑀‘(𝑁‘{(2nd ‘𝑥)})) = (𝐽‘{ℎ}) ∧ (𝑀‘(𝑁‘{((1st ‘(1st ‘𝑥)) − (2nd ‘𝑥))})) = (𝐽‘{((2nd ‘(1st ‘𝑥))𝑅ℎ)}))))) |
mapdh0.o | ⊢ 0 = (0g‘𝑈) |
mapdh0.x | ⊢ (𝜑 → 𝑋 ∈ 𝐴) |
mapdh0.f | ⊢ (𝜑 → 𝐹 ∈ 𝐵) |
Ref | Expression |
---|---|
mapdhval0 | ⊢ (𝜑 → (𝐼‘⟨𝑋, 𝐹, 0 ⟩) = 𝑄) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mapdh.q | . . 3 ⊢ 𝑄 = (0g‘𝐶) | |
2 | mapdh.i | . . 3 ⊢ 𝐼 = (𝑥 ∈ V ↦ if((2nd ‘𝑥) = 0 , 𝑄, (℩ℎ ∈ 𝐷 ((𝑀‘(𝑁‘{(2nd ‘𝑥)})) = (𝐽‘{ℎ}) ∧ (𝑀‘(𝑁‘{((1st ‘(1st ‘𝑥)) − (2nd ‘𝑥))})) = (𝐽‘{((2nd ‘(1st ‘𝑥))𝑅ℎ)}))))) | |
3 | mapdh0.x | . . 3 ⊢ (𝜑 → 𝑋 ∈ 𝐴) | |
4 | mapdh0.f | . . 3 ⊢ (𝜑 → 𝐹 ∈ 𝐵) | |
5 | mapdh0.o | . . . . 5 ⊢ 0 = (0g‘𝑈) | |
6 | 5 | fvexi 6905 | . . . 4 ⊢ 0 ∈ V |
7 | 6 | a1i 11 | . . 3 ⊢ (𝜑 → 0 ∈ V) |
8 | 1, 2, 3, 4, 7 | mapdhval 40590 | . 2 ⊢ (𝜑 → (𝐼‘⟨𝑋, 𝐹, 0 ⟩) = if( 0 = 0 , 𝑄, (℩ℎ ∈ 𝐷 ((𝑀‘(𝑁‘{ 0 })) = (𝐽‘{ℎ}) ∧ (𝑀‘(𝑁‘{(𝑋 − 0 )})) = (𝐽‘{(𝐹𝑅ℎ)}))))) |
9 | eqid 2732 | . . 3 ⊢ 0 = 0 | |
10 | 9 | iftruei 4535 | . 2 ⊢ if( 0 = 0 , 𝑄, (℩ℎ ∈ 𝐷 ((𝑀‘(𝑁‘{ 0 })) = (𝐽‘{ℎ}) ∧ (𝑀‘(𝑁‘{(𝑋 − 0 )})) = (𝐽‘{(𝐹𝑅ℎ)})))) = 𝑄 |
11 | 8, 10 | eqtrdi 2788 | 1 ⊢ (𝜑 → (𝐼‘⟨𝑋, 𝐹, 0 ⟩) = 𝑄) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1541 ∈ wcel 2106 Vcvv 3474 ifcif 4528 {csn 4628 ⟨cotp 4636 ↦ cmpt 5231 ‘cfv 6543 ℩crio 7363 (class class class)co 7408 1st c1st 7972 2nd c2nd 7973 0gc0g 17384 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-sep 5299 ax-nul 5306 ax-pr 5427 ax-un 7724 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-ral 3062 df-rex 3071 df-rab 3433 df-v 3476 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-sn 4629 df-pr 4631 df-op 4635 df-ot 4637 df-uni 4909 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5574 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-iota 6495 df-fun 6545 df-fv 6551 df-riota 7364 df-ov 7411 df-1st 7974 df-2nd 7975 |
This theorem is referenced by: mapdhcl 40593 mapdh6bN 40603 mapdh6cN 40604 mapdh6dN 40605 mapdh8 40654 |
Copyright terms: Public domain | W3C validator |