Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mapdhval0 Structured version   Visualization version   GIF version

Theorem mapdhval0 39739
Description: Lemmma for ~? mapdh . (Contributed by NM, 3-Apr-2015.)
Hypotheses
Ref Expression
mapdh.q 𝑄 = (0g𝐶)
mapdh.i 𝐼 = (𝑥 ∈ V ↦ if((2nd𝑥) = 0 , 𝑄, (𝐷 ((𝑀‘(𝑁‘{(2nd𝑥)})) = (𝐽‘{}) ∧ (𝑀‘(𝑁‘{((1st ‘(1st𝑥)) (2nd𝑥))})) = (𝐽‘{((2nd ‘(1st𝑥))𝑅)})))))
mapdh0.o 0 = (0g𝑈)
mapdh0.x (𝜑𝑋𝐴)
mapdh0.f (𝜑𝐹𝐵)
Assertion
Ref Expression
mapdhval0 (𝜑 → (𝐼‘⟨𝑋, 𝐹, 0 ⟩) = 𝑄)
Distinct variable groups:   𝑥,𝐷   𝑥,,𝐹   𝑥,𝐽   𝑥,𝑀   𝑥,𝑁   𝑥, 0   𝑥,𝑄   𝑥,𝑅   𝑥,   ,𝑋,𝑥   𝜑,   0 ,
Allowed substitution hints:   𝜑(𝑥)   𝐴(𝑥,)   𝐵(𝑥,)   𝐶(𝑥,)   𝐷()   𝑄()   𝑅()   𝑈(𝑥,)   𝐼(𝑥,)   𝐽()   𝑀()   ()   𝑁()

Proof of Theorem mapdhval0
StepHypRef Expression
1 mapdh.q . . 3 𝑄 = (0g𝐶)
2 mapdh.i . . 3 𝐼 = (𝑥 ∈ V ↦ if((2nd𝑥) = 0 , 𝑄, (𝐷 ((𝑀‘(𝑁‘{(2nd𝑥)})) = (𝐽‘{}) ∧ (𝑀‘(𝑁‘{((1st ‘(1st𝑥)) (2nd𝑥))})) = (𝐽‘{((2nd ‘(1st𝑥))𝑅)})))))
3 mapdh0.x . . 3 (𝜑𝑋𝐴)
4 mapdh0.f . . 3 (𝜑𝐹𝐵)
5 mapdh0.o . . . . 5 0 = (0g𝑈)
65fvexi 6788 . . . 4 0 ∈ V
76a1i 11 . . 3 (𝜑0 ∈ V)
81, 2, 3, 4, 7mapdhval 39738 . 2 (𝜑 → (𝐼‘⟨𝑋, 𝐹, 0 ⟩) = if( 0 = 0 , 𝑄, (𝐷 ((𝑀‘(𝑁‘{ 0 })) = (𝐽‘{}) ∧ (𝑀‘(𝑁‘{(𝑋 0 )})) = (𝐽‘{(𝐹𝑅)})))))
9 eqid 2738 . . 3 0 = 0
109iftruei 4466 . 2 if( 0 = 0 , 𝑄, (𝐷 ((𝑀‘(𝑁‘{ 0 })) = (𝐽‘{}) ∧ (𝑀‘(𝑁‘{(𝑋 0 )})) = (𝐽‘{(𝐹𝑅)})))) = 𝑄
118, 10eqtrdi 2794 1 (𝜑 → (𝐼‘⟨𝑋, 𝐹, 0 ⟩) = 𝑄)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1539  wcel 2106  Vcvv 3432  ifcif 4459  {csn 4561  cotp 4569  cmpt 5157  cfv 6433  crio 7231  (class class class)co 7275  1st c1st 7829  2nd c2nd 7830  0gc0g 17150
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pr 5352  ax-un 7588
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ral 3069  df-rex 3070  df-rab 3073  df-v 3434  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-sn 4562  df-pr 4564  df-op 4568  df-ot 4570  df-uni 4840  df-br 5075  df-opab 5137  df-mpt 5158  df-id 5489  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-iota 6391  df-fun 6435  df-fv 6441  df-riota 7232  df-ov 7278  df-1st 7831  df-2nd 7832
This theorem is referenced by:  mapdhcl  39741  mapdh6bN  39751  mapdh6cN  39752  mapdh6dN  39753  mapdh8  39802
  Copyright terms: Public domain W3C validator