Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mapdhval0 Structured version   Visualization version   GIF version

Theorem mapdhval0 41847
Description: Lemmma for ~? mapdh . (Contributed by NM, 3-Apr-2015.)
Hypotheses
Ref Expression
mapdh.q 𝑄 = (0g𝐶)
mapdh.i 𝐼 = (𝑥 ∈ V ↦ if((2nd𝑥) = 0 , 𝑄, (𝐷 ((𝑀‘(𝑁‘{(2nd𝑥)})) = (𝐽‘{}) ∧ (𝑀‘(𝑁‘{((1st ‘(1st𝑥)) (2nd𝑥))})) = (𝐽‘{((2nd ‘(1st𝑥))𝑅)})))))
mapdh0.o 0 = (0g𝑈)
mapdh0.x (𝜑𝑋𝐴)
mapdh0.f (𝜑𝐹𝐵)
Assertion
Ref Expression
mapdhval0 (𝜑 → (𝐼‘⟨𝑋, 𝐹, 0 ⟩) = 𝑄)
Distinct variable groups:   𝑥,𝐷   𝑥,,𝐹   𝑥,𝐽   𝑥,𝑀   𝑥,𝑁   𝑥, 0   𝑥,𝑄   𝑥,𝑅   𝑥,   ,𝑋,𝑥   𝜑,   0 ,
Allowed substitution hints:   𝜑(𝑥)   𝐴(𝑥,)   𝐵(𝑥,)   𝐶(𝑥,)   𝐷()   𝑄()   𝑅()   𝑈(𝑥,)   𝐼(𝑥,)   𝐽()   𝑀()   ()   𝑁()

Proof of Theorem mapdhval0
StepHypRef Expression
1 mapdh.q . . 3 𝑄 = (0g𝐶)
2 mapdh.i . . 3 𝐼 = (𝑥 ∈ V ↦ if((2nd𝑥) = 0 , 𝑄, (𝐷 ((𝑀‘(𝑁‘{(2nd𝑥)})) = (𝐽‘{}) ∧ (𝑀‘(𝑁‘{((1st ‘(1st𝑥)) (2nd𝑥))})) = (𝐽‘{((2nd ‘(1st𝑥))𝑅)})))))
3 mapdh0.x . . 3 (𝜑𝑋𝐴)
4 mapdh0.f . . 3 (𝜑𝐹𝐵)
5 mapdh0.o . . . . 5 0 = (0g𝑈)
65fvexi 6844 . . . 4 0 ∈ V
76a1i 11 . . 3 (𝜑0 ∈ V)
81, 2, 3, 4, 7mapdhval 41846 . 2 (𝜑 → (𝐼‘⟨𝑋, 𝐹, 0 ⟩) = if( 0 = 0 , 𝑄, (𝐷 ((𝑀‘(𝑁‘{ 0 })) = (𝐽‘{}) ∧ (𝑀‘(𝑁‘{(𝑋 0 )})) = (𝐽‘{(𝐹𝑅)})))))
9 eqid 2733 . . 3 0 = 0
109iftruei 4483 . 2 if( 0 = 0 , 𝑄, (𝐷 ((𝑀‘(𝑁‘{ 0 })) = (𝐽‘{}) ∧ (𝑀‘(𝑁‘{(𝑋 0 )})) = (𝐽‘{(𝐹𝑅)})))) = 𝑄
118, 10eqtrdi 2784 1 (𝜑 → (𝐼‘⟨𝑋, 𝐹, 0 ⟩) = 𝑄)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wcel 2113  Vcvv 3437  ifcif 4476  {csn 4577  cotp 4585  cmpt 5176  cfv 6488  crio 7310  (class class class)co 7354  1st c1st 7927  2nd c2nd 7928  0gc0g 17347
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-sep 5238  ax-nul 5248  ax-pr 5374  ax-un 7676
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-ral 3049  df-rex 3058  df-rab 3397  df-v 3439  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-nul 4283  df-if 4477  df-sn 4578  df-pr 4580  df-op 4584  df-ot 4586  df-uni 4861  df-br 5096  df-opab 5158  df-mpt 5177  df-id 5516  df-xp 5627  df-rel 5628  df-cnv 5629  df-co 5630  df-dm 5631  df-rn 5632  df-iota 6444  df-fun 6490  df-fv 6496  df-riota 7311  df-ov 7357  df-1st 7929  df-2nd 7930
This theorem is referenced by:  mapdhcl  41849  mapdh6bN  41859  mapdh6cN  41860  mapdh6dN  41861  mapdh8  41910
  Copyright terms: Public domain W3C validator