![]() |
Metamath
Proof Explorer Theorem List (p. 413 of 484) | < Previous Next > |
Bad symbols? Try the
GIF version. |
||
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
Color key: | ![]() (1-30784) |
![]() (30785-32307) |
![]() (32308-48350) |
Type | Label | Description |
---|---|---|
Statement | ||
Theorem | mapdcnv11N 41201 | The converse of the map defined by df-mapd 41167 is one-to-one. (Contributed by NM, 13-Mar-2015.) (New usage is discouraged.) |
β’ π» = (LHypβπΎ) & β’ π = ((mapdβπΎ)βπ) & β’ (π β (πΎ β HL β§ π β π»)) & β’ (π β π β ran π) & β’ (π β π β ran π) β β’ (π β ((β‘πβπ) = (β‘πβπ) β π = π)) | ||
Theorem | mapdcv 41202 | Covering property of the converse of the map defined by df-mapd 41167. (Contributed by NM, 14-Mar-2015.) |
β’ π» = (LHypβπΎ) & β’ π = ((mapdβπΎ)βπ) & β’ π = ((DVecHβπΎ)βπ) & β’ π = (LSubSpβπ) & β’ πΆ = ( βL βπ) & β’ π· = ((LCDualβπΎ)βπ) & β’ πΈ = ( βL βπ·) & β’ (π β (πΎ β HL β§ π β π»)) & β’ (π β π β π) & β’ (π β π β π) β β’ (π β (ππΆπ β (πβπ)πΈ(πβπ))) | ||
Theorem | mapdincl 41203 | Closure of dual subspace intersection for the map defined by df-mapd 41167. (Contributed by NM, 12-Apr-2015.) |
β’ π» = (LHypβπΎ) & β’ π = ((mapdβπΎ)βπ) & β’ π = ((DVecHβπΎ)βπ) & β’ πΆ = ((LCDualβπΎ)βπ) & β’ (π β (πΎ β HL β§ π β π»)) & β’ (π β π β ran π) & β’ (π β π β ran π) β β’ (π β (π β© π) β ran π) | ||
Theorem | mapdin 41204 | Subspace intersection is preserved by the map defined by df-mapd 41167. Part of property (e) in [Baer] p. 40. (Contributed by NM, 12-Apr-2015.) |
β’ π» = (LHypβπΎ) & β’ π = ((mapdβπΎ)βπ) & β’ π = ((DVecHβπΎ)βπ) & β’ π = (LSubSpβπ) & β’ (π β (πΎ β HL β§ π β π»)) & β’ (π β π β π) & β’ (π β π β π) β β’ (π β (πβ(π β© π)) = ((πβπ) β© (πβπ))) | ||
Theorem | mapdlsmcl 41205 | Closure of dual subspace sum for the map defined by df-mapd 41167. (Contributed by NM, 13-Mar-2015.) |
β’ π» = (LHypβπΎ) & β’ π = ((mapdβπΎ)βπ) & β’ π = ((DVecHβπΎ)βπ) & β’ πΆ = ((LCDualβπΎ)βπ) & β’ β = (LSSumβπΆ) & β’ (π β (πΎ β HL β§ π β π»)) & β’ (π β π β ran π) & β’ (π β π β ran π) β β’ (π β (π β π) β ran π) | ||
Theorem | mapdlsm 41206 | Subspace sum is preserved by the map defined by df-mapd 41167. Part of property (e) in [Baer] p. 40. (Contributed by NM, 13-Mar-2015.) |
β’ π» = (LHypβπΎ) & β’ π = ((mapdβπΎ)βπ) & β’ π = ((DVecHβπΎ)βπ) & β’ π = (LSubSpβπ) & β’ β = (LSSumβπ) & β’ πΆ = ((LCDualβπΎ)βπ) & β’ β = (LSSumβπΆ) & β’ (π β (πΎ β HL β§ π β π»)) & β’ (π β π β π) & β’ (π β π β π) β β’ (π β (πβ(π β π)) = ((πβπ) β (πβπ))) | ||
Theorem | mapd0 41207 | Projectivity map of the zero subspace. Part of property (f) in [Baer] p. 40. TODO: does proof need to be this long for this simple fact? (Contributed by NM, 15-Mar-2015.) |
β’ π» = (LHypβπΎ) & β’ π = ((mapdβπΎ)βπ) & β’ π = ((DVecHβπΎ)βπ) & β’ π = (0gβπ) & β’ πΆ = ((LCDualβπΎ)βπ) & β’ 0 = (0gβπΆ) & β’ (π β (πΎ β HL β§ π β π»)) β β’ (π β (πβ{π}) = { 0 }) | ||
Theorem | mapdcnvatN 41208 | Atoms are preserved by the map defined by df-mapd 41167. (Contributed by NM, 29-May-2015.) (New usage is discouraged.) |
β’ π» = (LHypβπΎ) & β’ π = ((mapdβπΎ)βπ) & β’ π = ((DVecHβπΎ)βπ) & β’ π΄ = (LSAtomsβπ) & β’ πΆ = ((LCDualβπΎ)βπ) & β’ π΅ = (LSAtomsβπΆ) & β’ (π β (πΎ β HL β§ π β π»)) & β’ (π β π β π΅) β β’ (π β (β‘πβπ) β π΄) | ||
Theorem | mapdat 41209 | Atoms are preserved by the map defined by df-mapd 41167. Property (g) in [Baer] p. 41. (Contributed by NM, 14-Mar-2015.) |
β’ π» = (LHypβπΎ) & β’ π = ((mapdβπΎ)βπ) & β’ π = ((DVecHβπΎ)βπ) & β’ π΄ = (LSAtomsβπ) & β’ πΆ = ((LCDualβπΎ)βπ) & β’ π΅ = (LSAtomsβπΆ) & β’ (π β (πΎ β HL β§ π β π»)) & β’ (π β π β π΄) β β’ (π β (πβπ) β π΅) | ||
Theorem | mapdspex 41210* | The map of a span equals the dual span of some vector (functional). (Contributed by NM, 15-Mar-2015.) |
β’ π» = (LHypβπΎ) & β’ π = ((mapdβπΎ)βπ) & β’ π = ((DVecHβπΎ)βπ) & β’ π = (Baseβπ) & β’ π = (LSpanβπ) & β’ πΆ = ((LCDualβπΎ)βπ) & β’ π΅ = (BaseβπΆ) & β’ π½ = (LSpanβπΆ) & β’ (π β (πΎ β HL β§ π β π»)) & β’ (π β π β π) β β’ (π β βπ β π΅ (πβ(πβ{π})) = (π½β{π})) | ||
Theorem | mapdn0 41211 | Transfer nonzero property from domain to range of projectivity mapd. (Contributed by NM, 12-Apr-2015.) |
β’ π» = (LHypβπΎ) & β’ π = ((mapdβπΎ)βπ) & β’ π = ((DVecHβπΎ)βπ) & β’ π = (Baseβπ) & β’ π = (LSpanβπ) & β’ πΆ = ((LCDualβπΎ)βπ) & β’ π· = (BaseβπΆ) & β’ π½ = (LSpanβπΆ) & β’ (π β (πΎ β HL β§ π β π»)) & β’ (π β πΉ β π·) & β’ (π β (πβ(πβ{π})) = (π½β{πΉ})) & β’ 0 = (0gβπ) & β’ π = (0gβπΆ) & β’ (π β π β (π β { 0 })) β β’ (π β πΉ β (π· β {π})) | ||
Theorem | mapdncol 41212 | Transfer non-colinearity from domain to range of projectivity mapd. (Contributed by NM, 11-Apr-2015.) |
β’ π» = (LHypβπΎ) & β’ π = ((mapdβπΎ)βπ) & β’ π = ((DVecHβπΎ)βπ) & β’ π = (Baseβπ) & β’ π = (LSpanβπ) & β’ πΆ = ((LCDualβπΎ)βπ) & β’ π· = (BaseβπΆ) & β’ π½ = (LSpanβπΆ) & β’ (π β (πΎ β HL β§ π β π»)) & β’ (π β πΉ β π·) & β’ (π β (πβ(πβ{π})) = (π½β{πΉ})) & β’ (π β π β π) & β’ (π β π β π) & β’ (π β πΊ β π·) & β’ (π β (πβ(πβ{π})) = (π½β{πΊ})) & β’ (π β (πβ{π}) β (πβ{π})) β β’ (π β (π½β{πΉ}) β (π½β{πΊ})) | ||
Theorem | mapdindp 41213 | Transfer (part of) vector independence condition from domain to range of projectivity mapd. (Contributed by NM, 11-Apr-2015.) |
β’ π» = (LHypβπΎ) & β’ π = ((mapdβπΎ)βπ) & β’ π = ((DVecHβπΎ)βπ) & β’ π = (Baseβπ) & β’ π = (LSpanβπ) & β’ πΆ = ((LCDualβπΎ)βπ) & β’ π· = (BaseβπΆ) & β’ π½ = (LSpanβπΆ) & β’ (π β (πΎ β HL β§ π β π»)) & β’ (π β πΉ β π·) & β’ (π β (πβ(πβ{π})) = (π½β{πΉ})) & β’ (π β π β π) & β’ (π β π β π) & β’ (π β πΊ β π·) & β’ (π β (πβ(πβ{π})) = (π½β{πΊ})) & β’ (π β π β π) & β’ (π β πΈ β π·) & β’ (π β (πβ(πβ{π})) = (π½β{πΈ})) & β’ (π β Β¬ π β (πβ{π, π})) β β’ (π β Β¬ πΉ β (π½β{πΊ, πΈ})) | ||
Theorem | mapdpglem1 41214 | Lemma for mapdpg 41248. Baer p. 44, last line: "(F(x-y))* <= (Fx)*+(Fy)*." (Contributed by NM, 15-Mar-2015.) |
β’ π» = (LHypβπΎ) & β’ π = ((mapdβπΎ)βπ) & β’ π = ((DVecHβπΎ)βπ) & β’ π = (Baseβπ) & β’ β = (-gβπ) & β’ π = (LSpanβπ) & β’ πΆ = ((LCDualβπΎ)βπ) & β’ (π β (πΎ β HL β§ π β π»)) & β’ (π β π β π) & β’ (π β π β π) & β’ β = (LSSumβπΆ) β β’ (π β (πβ(πβ{(π β π)})) β ((πβ(πβ{π})) β (πβ(πβ{π})))) | ||
Theorem | mapdpglem2 41215* | Lemma for mapdpg 41248. Baer p. 45, lines 1 and 2: "we have (F(x-y))* = Gt where t necessarily belongs to (Fx)*+(Fy)*." (We scope $d π‘π locally to avoid clashes with later substitutions into π.) (Contributed by NM, 15-Mar-2015.) |
β’ π» = (LHypβπΎ) & β’ π = ((mapdβπΎ)βπ) & β’ π = ((DVecHβπΎ)βπ) & β’ π = (Baseβπ) & β’ β = (-gβπ) & β’ π = (LSpanβπ) & β’ πΆ = ((LCDualβπΎ)βπ) & β’ (π β (πΎ β HL β§ π β π»)) & β’ (π β π β π) & β’ (π β π β π) & β’ β = (LSSumβπΆ) & β’ π½ = (LSpanβπΆ) β β’ (π β βπ‘ β ((πβ(πβ{π})) β (πβ(πβ{π})))(πβ(πβ{(π β π)})) = (π½β{π‘})) | ||
Theorem | mapdpglem2a 41216* | Lemma for mapdpg 41248. (Contributed by NM, 20-Mar-2015.) |
β’ π» = (LHypβπΎ) & β’ π = ((mapdβπΎ)βπ) & β’ π = ((DVecHβπΎ)βπ) & β’ π = (Baseβπ) & β’ β = (-gβπ) & β’ π = (LSpanβπ) & β’ πΆ = ((LCDualβπΎ)βπ) & β’ (π β (πΎ β HL β§ π β π»)) & β’ (π β π β π) & β’ (π β π β π) & β’ β = (LSSumβπΆ) & β’ π½ = (LSpanβπΆ) & β’ πΉ = (BaseβπΆ) & β’ (π β π‘ β ((πβ(πβ{π})) β (πβ(πβ{π})))) β β’ (π β π‘ β πΉ) | ||
Theorem | mapdpglem3 41217* | Lemma for mapdpg 41248. Baer p. 45, line 3: "infer ... the existence of a number g in G and of an element z in (Fy)* such that t = gx'-z." (We scope $d ππ€π§π locally to avoid clashes with later substitutions into π.) (Contributed by NM, 18-Mar-2015.) |
β’ π» = (LHypβπΎ) & β’ π = ((mapdβπΎ)βπ) & β’ π = ((DVecHβπΎ)βπ) & β’ π = (Baseβπ) & β’ β = (-gβπ) & β’ π = (LSpanβπ) & β’ πΆ = ((LCDualβπΎ)βπ) & β’ (π β (πΎ β HL β§ π β π»)) & β’ (π β π β π) & β’ (π β π β π) & β’ β = (LSSumβπΆ) & β’ π½ = (LSpanβπΆ) & β’ πΉ = (BaseβπΆ) & β’ (π β π‘ β ((πβ(πβ{π})) β (πβ(πβ{π})))) & β’ π΄ = (Scalarβπ) & β’ π΅ = (Baseβπ΄) & β’ Β· = ( Β·π βπΆ) & β’ π = (-gβπΆ) & β’ (π β πΊ β πΉ) & β’ (π β (πβ(πβ{π})) = (π½β{πΊ})) β β’ (π β βπ β π΅ βπ§ β (πβ(πβ{π}))π‘ = ((π Β· πΊ)π π§)) | ||
Theorem | mapdpglem4N 41218* | Lemma for mapdpg 41248. (Contributed by NM, 20-Mar-2015.) (New usage is discouraged.) |
β’ π» = (LHypβπΎ) & β’ π = ((mapdβπΎ)βπ) & β’ π = ((DVecHβπΎ)βπ) & β’ π = (Baseβπ) & β’ β = (-gβπ) & β’ π = (LSpanβπ) & β’ πΆ = ((LCDualβπΎ)βπ) & β’ (π β (πΎ β HL β§ π β π»)) & β’ (π β π β π) & β’ (π β π β π) & β’ β = (LSSumβπΆ) & β’ π½ = (LSpanβπΆ) & β’ πΉ = (BaseβπΆ) & β’ (π β π‘ β ((πβ(πβ{π})) β (πβ(πβ{π})))) & β’ π΄ = (Scalarβπ) & β’ π΅ = (Baseβπ΄) & β’ Β· = ( Β·π βπΆ) & β’ π = (-gβπΆ) & β’ (π β πΊ β πΉ) & β’ (π β (πβ(πβ{π})) = (π½β{πΊ})) & β’ π = (0gβπ) & β’ (π β (πβ{π}) β (πβ{π})) β β’ (π β (π β π) β π) | ||
Theorem | mapdpglem5N 41219* | Lemma for mapdpg 41248. (Contributed by NM, 20-Mar-2015.) (New usage is discouraged.) |
β’ π» = (LHypβπΎ) & β’ π = ((mapdβπΎ)βπ) & β’ π = ((DVecHβπΎ)βπ) & β’ π = (Baseβπ) & β’ β = (-gβπ) & β’ π = (LSpanβπ) & β’ πΆ = ((LCDualβπΎ)βπ) & β’ (π β (πΎ β HL β§ π β π»)) & β’ (π β π β π) & β’ (π β π β π) & β’ β = (LSSumβπΆ) & β’ π½ = (LSpanβπΆ) & β’ πΉ = (BaseβπΆ) & β’ (π β π‘ β ((πβ(πβ{π})) β (πβ(πβ{π})))) & β’ π΄ = (Scalarβπ) & β’ π΅ = (Baseβπ΄) & β’ Β· = ( Β·π βπΆ) & β’ π = (-gβπΆ) & β’ (π β πΊ β πΉ) & β’ (π β (πβ(πβ{π})) = (π½β{πΊ})) & β’ π = (0gβπ) & β’ (π β (πβ{π}) β (πβ{π})) & β’ (π β (πβ(πβ{(π β π)})) = (π½β{π‘})) β β’ (π β π‘ β (0gβπΆ)) | ||
Theorem | mapdpglem6 41220* | Lemma for mapdpg 41248. Baer p. 45, line 4: "If g were 0, then t would be in (Fy)*..." (Contributed by NM, 18-Mar-2015.) |
β’ π» = (LHypβπΎ) & β’ π = ((mapdβπΎ)βπ) & β’ π = ((DVecHβπΎ)βπ) & β’ π = (Baseβπ) & β’ β = (-gβπ) & β’ π = (LSpanβπ) & β’ πΆ = ((LCDualβπΎ)βπ) & β’ (π β (πΎ β HL β§ π β π»)) & β’ (π β π β π) & β’ (π β π β π) & β’ β = (LSSumβπΆ) & β’ π½ = (LSpanβπΆ) & β’ πΉ = (BaseβπΆ) & β’ (π β π‘ β ((πβ(πβ{π})) β (πβ(πβ{π})))) & β’ π΄ = (Scalarβπ) & β’ π΅ = (Baseβπ΄) & β’ Β· = ( Β·π βπΆ) & β’ π = (-gβπΆ) & β’ (π β πΊ β πΉ) & β’ (π β (πβ(πβ{π})) = (π½β{πΊ})) & β’ π = (0gβπ) & β’ (π β (πβ{π}) β (πβ{π})) & β’ (π β (πβ(πβ{(π β π)})) = (π½β{π‘})) & β’ 0 = (0gβπ΄) & β’ (π β π β π΅) & β’ (π β π§ β (πβ(πβ{π}))) & β’ (π β π‘ = ((π Β· πΊ)π π§)) & β’ (π β π β π) & β’ (π β π = 0 ) β β’ (π β π‘ β (πβ(πβ{π}))) | ||
Theorem | mapdpglem8 41221* | Lemma for mapdpg 41248. Baer p. 45, line 4: "...so that (F(x-y))* <= (Fy)*. This would imply that F(x-y) <= F(y)..." (Contributed by NM, 20-Mar-2015.) |
β’ π» = (LHypβπΎ) & β’ π = ((mapdβπΎ)βπ) & β’ π = ((DVecHβπΎ)βπ) & β’ π = (Baseβπ) & β’ β = (-gβπ) & β’ π = (LSpanβπ) & β’ πΆ = ((LCDualβπΎ)βπ) & β’ (π β (πΎ β HL β§ π β π»)) & β’ (π β π β π) & β’ (π β π β π) & β’ β = (LSSumβπΆ) & β’ π½ = (LSpanβπΆ) & β’ πΉ = (BaseβπΆ) & β’ (π β π‘ β ((πβ(πβ{π})) β (πβ(πβ{π})))) & β’ π΄ = (Scalarβπ) & β’ π΅ = (Baseβπ΄) & β’ Β· = ( Β·π βπΆ) & β’ π = (-gβπΆ) & β’ (π β πΊ β πΉ) & β’ (π β (πβ(πβ{π})) = (π½β{πΊ})) & β’ π = (0gβπ) & β’ (π β (πβ{π}) β (πβ{π})) & β’ (π β (πβ(πβ{(π β π)})) = (π½β{π‘})) & β’ 0 = (0gβπ΄) & β’ (π β π β π΅) & β’ (π β π§ β (πβ(πβ{π}))) & β’ (π β π‘ = ((π Β· πΊ)π π§)) & β’ (π β π β π) & β’ (π β π = 0 ) β β’ (π β (πβ{(π β π)}) β (πβ{π})) | ||
Theorem | mapdpglem9 41222* | Lemma for mapdpg 41248. Baer p. 45, line 4: "...so that x would consequently belong to Fy." (Contributed by NM, 20-Mar-2015.) |
β’ π» = (LHypβπΎ) & β’ π = ((mapdβπΎ)βπ) & β’ π = ((DVecHβπΎ)βπ) & β’ π = (Baseβπ) & β’ β = (-gβπ) & β’ π = (LSpanβπ) & β’ πΆ = ((LCDualβπΎ)βπ) & β’ (π β (πΎ β HL β§ π β π»)) & β’ (π β π β π) & β’ (π β π β π) & β’ β = (LSSumβπΆ) & β’ π½ = (LSpanβπΆ) & β’ πΉ = (BaseβπΆ) & β’ (π β π‘ β ((πβ(πβ{π})) β (πβ(πβ{π})))) & β’ π΄ = (Scalarβπ) & β’ π΅ = (Baseβπ΄) & β’ Β· = ( Β·π βπΆ) & β’ π = (-gβπΆ) & β’ (π β πΊ β πΉ) & β’ (π β (πβ(πβ{π})) = (π½β{πΊ})) & β’ π = (0gβπ) & β’ (π β (πβ{π}) β (πβ{π})) & β’ (π β (πβ(πβ{(π β π)})) = (π½β{π‘})) & β’ 0 = (0gβπ΄) & β’ (π β π β π΅) & β’ (π β π§ β (πβ(πβ{π}))) & β’ (π β π‘ = ((π Β· πΊ)π π§)) & β’ (π β π β π) & β’ (π β π = 0 ) β β’ (π β π β (πβ{π})) | ||
Theorem | mapdpglem10 41223* | Lemma for mapdpg 41248. Baer p. 45, line 6: "Hence Fx=Fy, an impossibility." (Contributed by NM, 20-Mar-2015.) |
β’ π» = (LHypβπΎ) & β’ π = ((mapdβπΎ)βπ) & β’ π = ((DVecHβπΎ)βπ) & β’ π = (Baseβπ) & β’ β = (-gβπ) & β’ π = (LSpanβπ) & β’ πΆ = ((LCDualβπΎ)βπ) & β’ (π β (πΎ β HL β§ π β π»)) & β’ (π β π β π) & β’ (π β π β π) & β’ β = (LSSumβπΆ) & β’ π½ = (LSpanβπΆ) & β’ πΉ = (BaseβπΆ) & β’ (π β π‘ β ((πβ(πβ{π})) β (πβ(πβ{π})))) & β’ π΄ = (Scalarβπ) & β’ π΅ = (Baseβπ΄) & β’ Β· = ( Β·π βπΆ) & β’ π = (-gβπΆ) & β’ (π β πΊ β πΉ) & β’ (π β (πβ(πβ{π})) = (π½β{πΊ})) & β’ π = (0gβπ) & β’ (π β (πβ{π}) β (πβ{π})) & β’ (π β (πβ(πβ{(π β π)})) = (π½β{π‘})) & β’ 0 = (0gβπ΄) & β’ (π β π β π΅) & β’ (π β π§ β (πβ(πβ{π}))) & β’ (π β π‘ = ((π Β· πΊ)π π§)) & β’ (π β π β π) & β’ (π β π = 0 ) β β’ (π β (πβ{π}) = (πβ{π})) | ||
Theorem | mapdpglem11 41224* | Lemma for mapdpg 41248. (Contributed by NM, 20-Mar-2015.) |
β’ π» = (LHypβπΎ) & β’ π = ((mapdβπΎ)βπ) & β’ π = ((DVecHβπΎ)βπ) & β’ π = (Baseβπ) & β’ β = (-gβπ) & β’ π = (LSpanβπ) & β’ πΆ = ((LCDualβπΎ)βπ) & β’ (π β (πΎ β HL β§ π β π»)) & β’ (π β π β π) & β’ (π β π β π) & β’ β = (LSSumβπΆ) & β’ π½ = (LSpanβπΆ) & β’ πΉ = (BaseβπΆ) & β’ (π β π‘ β ((πβ(πβ{π})) β (πβ(πβ{π})))) & β’ π΄ = (Scalarβπ) & β’ π΅ = (Baseβπ΄) & β’ Β· = ( Β·π βπΆ) & β’ π = (-gβπΆ) & β’ (π β πΊ β πΉ) & β’ (π β (πβ(πβ{π})) = (π½β{πΊ})) & β’ π = (0gβπ) & β’ (π β (πβ{π}) β (πβ{π})) & β’ (π β (πβ(πβ{(π β π)})) = (π½β{π‘})) & β’ 0 = (0gβπ΄) & β’ (π β π β π΅) & β’ (π β π§ β (πβ(πβ{π}))) & β’ (π β π‘ = ((π Β· πΊ)π π§)) & β’ (π β π β π) β β’ (π β π β 0 ) | ||
Theorem | mapdpglem12 41225* | Lemma for mapdpg 41248. TODO: Can some commonality with mapdpglem6 41220 through mapdpglem11 41224 be exploited? Also, some consolidation of small lemmas here could be done. (Contributed by NM, 18-Mar-2015.) |
β’ π» = (LHypβπΎ) & β’ π = ((mapdβπΎ)βπ) & β’ π = ((DVecHβπΎ)βπ) & β’ π = (Baseβπ) & β’ β = (-gβπ) & β’ π = (LSpanβπ) & β’ πΆ = ((LCDualβπΎ)βπ) & β’ (π β (πΎ β HL β§ π β π»)) & β’ (π β π β π) & β’ (π β π β π) & β’ β = (LSSumβπΆ) & β’ π½ = (LSpanβπΆ) & β’ πΉ = (BaseβπΆ) & β’ (π β π‘ β ((πβ(πβ{π})) β (πβ(πβ{π})))) & β’ π΄ = (Scalarβπ) & β’ π΅ = (Baseβπ΄) & β’ Β· = ( Β·π βπΆ) & β’ π = (-gβπΆ) & β’ (π β πΊ β πΉ) & β’ (π β (πβ(πβ{π})) = (π½β{πΊ})) & β’ π = (0gβπ) & β’ (π β (πβ{π}) β (πβ{π})) & β’ (π β (πβ(πβ{(π β π)})) = (π½β{π‘})) & β’ 0 = (0gβπ΄) & β’ (π β π β π΅) & β’ (π β π§ β (πβ(πβ{π}))) & β’ (π β π‘ = ((π Β· πΊ)π π§)) & β’ (π β π β π) & β’ (π β π β π) & β’ (π β π§ = (0gβπΆ)) β β’ (π β π‘ β (πβ(πβ{π}))) | ||
Theorem | mapdpglem13 41226* | Lemma for mapdpg 41248. (Contributed by NM, 20-Mar-2015.) |
β’ π» = (LHypβπΎ) & β’ π = ((mapdβπΎ)βπ) & β’ π = ((DVecHβπΎ)βπ) & β’ π = (Baseβπ) & β’ β = (-gβπ) & β’ π = (LSpanβπ) & β’ πΆ = ((LCDualβπΎ)βπ) & β’ (π β (πΎ β HL β§ π β π»)) & β’ (π β π β π) & β’ (π β π β π) & β’ β = (LSSumβπΆ) & β’ π½ = (LSpanβπΆ) & β’ πΉ = (BaseβπΆ) & β’ (π β π‘ β ((πβ(πβ{π})) β (πβ(πβ{π})))) & β’ π΄ = (Scalarβπ) & β’ π΅ = (Baseβπ΄) & β’ Β· = ( Β·π βπΆ) & β’ π = (-gβπΆ) & β’ (π β πΊ β πΉ) & β’ (π β (πβ(πβ{π})) = (π½β{πΊ})) & β’ π = (0gβπ) & β’ (π β (πβ{π}) β (πβ{π})) & β’ (π β (πβ(πβ{(π β π)})) = (π½β{π‘})) & β’ 0 = (0gβπ΄) & β’ (π β π β π΅) & β’ (π β π§ β (πβ(πβ{π}))) & β’ (π β π‘ = ((π Β· πΊ)π π§)) & β’ (π β π β π) & β’ (π β π β π) & β’ (π β π§ = (0gβπΆ)) β β’ (π β (πβ{(π β π)}) β (πβ{π})) | ||
Theorem | mapdpglem14 41227* | Lemma for mapdpg 41248. (Contributed by NM, 20-Mar-2015.) |
β’ π» = (LHypβπΎ) & β’ π = ((mapdβπΎ)βπ) & β’ π = ((DVecHβπΎ)βπ) & β’ π = (Baseβπ) & β’ β = (-gβπ) & β’ π = (LSpanβπ) & β’ πΆ = ((LCDualβπΎ)βπ) & β’ (π β (πΎ β HL β§ π β π»)) & β’ (π β π β π) & β’ (π β π β π) & β’ β = (LSSumβπΆ) & β’ π½ = (LSpanβπΆ) & β’ πΉ = (BaseβπΆ) & β’ (π β π‘ β ((πβ(πβ{π})) β (πβ(πβ{π})))) & β’ π΄ = (Scalarβπ) & β’ π΅ = (Baseβπ΄) & β’ Β· = ( Β·π βπΆ) & β’ π = (-gβπΆ) & β’ (π β πΊ β πΉ) & β’ (π β (πβ(πβ{π})) = (π½β{πΊ})) & β’ π = (0gβπ) & β’ (π β (πβ{π}) β (πβ{π})) & β’ (π β (πβ(πβ{(π β π)})) = (π½β{π‘})) & β’ 0 = (0gβπ΄) & β’ (π β π β π΅) & β’ (π β π§ β (πβ(πβ{π}))) & β’ (π β π‘ = ((π Β· πΊ)π π§)) & β’ (π β π β π) & β’ (π β π β π) & β’ (π β π§ = (0gβπΆ)) β β’ (π β π β (πβ{π})) | ||
Theorem | mapdpglem15 41228* | Lemma for mapdpg 41248. (Contributed by NM, 20-Mar-2015.) |
β’ π» = (LHypβπΎ) & β’ π = ((mapdβπΎ)βπ) & β’ π = ((DVecHβπΎ)βπ) & β’ π = (Baseβπ) & β’ β = (-gβπ) & β’ π = (LSpanβπ) & β’ πΆ = ((LCDualβπΎ)βπ) & β’ (π β (πΎ β HL β§ π β π»)) & β’ (π β π β π) & β’ (π β π β π) & β’ β = (LSSumβπΆ) & β’ π½ = (LSpanβπΆ) & β’ πΉ = (BaseβπΆ) & β’ (π β π‘ β ((πβ(πβ{π})) β (πβ(πβ{π})))) & β’ π΄ = (Scalarβπ) & β’ π΅ = (Baseβπ΄) & β’ Β· = ( Β·π βπΆ) & β’ π = (-gβπΆ) & β’ (π β πΊ β πΉ) & β’ (π β (πβ(πβ{π})) = (π½β{πΊ})) & β’ π = (0gβπ) & β’ (π β (πβ{π}) β (πβ{π})) & β’ (π β (πβ(πβ{(π β π)})) = (π½β{π‘})) & β’ 0 = (0gβπ΄) & β’ (π β π β π΅) & β’ (π β π§ β (πβ(πβ{π}))) & β’ (π β π‘ = ((π Β· πΊ)π π§)) & β’ (π β π β π) & β’ (π β π β π) & β’ (π β π§ = (0gβπΆ)) β β’ (π β (πβ{π}) = (πβ{π})) | ||
Theorem | mapdpglem16 41229* | Lemma for mapdpg 41248. Baer p. 45, line 7: "Likewise we see that z =/= 0." (Contributed by NM, 20-Mar-2015.) |
β’ π» = (LHypβπΎ) & β’ π = ((mapdβπΎ)βπ) & β’ π = ((DVecHβπΎ)βπ) & β’ π = (Baseβπ) & β’ β = (-gβπ) & β’ π = (LSpanβπ) & β’ πΆ = ((LCDualβπΎ)βπ) & β’ (π β (πΎ β HL β§ π β π»)) & β’ (π β π β π) & β’ (π β π β π) & β’ β = (LSSumβπΆ) & β’ π½ = (LSpanβπΆ) & β’ πΉ = (BaseβπΆ) & β’ (π β π‘ β ((πβ(πβ{π})) β (πβ(πβ{π})))) & β’ π΄ = (Scalarβπ) & β’ π΅ = (Baseβπ΄) & β’ Β· = ( Β·π βπΆ) & β’ π = (-gβπΆ) & β’ (π β πΊ β πΉ) & β’ (π β (πβ(πβ{π})) = (π½β{πΊ})) & β’ π = (0gβπ) & β’ (π β (πβ{π}) β (πβ{π})) & β’ (π β (πβ(πβ{(π β π)})) = (π½β{π‘})) & β’ 0 = (0gβπ΄) & β’ (π β π β π΅) & β’ (π β π§ β (πβ(πβ{π}))) & β’ (π β π‘ = ((π Β· πΊ)π π§)) & β’ (π β π β π) & β’ (π β π β π) β β’ (π β π§ β (0gβπΆ)) | ||
Theorem | mapdpglem17N 41230* | Lemma for mapdpg 41248. Baer p. 45, line 7: "Hence we may form y' = g^-1 z." (Contributed by NM, 20-Mar-2015.) (New usage is discouraged.) |
β’ π» = (LHypβπΎ) & β’ π = ((mapdβπΎ)βπ) & β’ π = ((DVecHβπΎ)βπ) & β’ π = (Baseβπ) & β’ β = (-gβπ) & β’ π = (LSpanβπ) & β’ πΆ = ((LCDualβπΎ)βπ) & β’ (π β (πΎ β HL β§ π β π»)) & β’ (π β π β π) & β’ (π β π β π) & β’ β = (LSSumβπΆ) & β’ π½ = (LSpanβπΆ) & β’ πΉ = (BaseβπΆ) & β’ (π β π‘ β ((πβ(πβ{π})) β (πβ(πβ{π})))) & β’ π΄ = (Scalarβπ) & β’ π΅ = (Baseβπ΄) & β’ Β· = ( Β·π βπΆ) & β’ π = (-gβπΆ) & β’ (π β πΊ β πΉ) & β’ (π β (πβ(πβ{π})) = (π½β{πΊ})) & β’ π = (0gβπ) & β’ (π β (πβ{π}) β (πβ{π})) & β’ (π β (πβ(πβ{(π β π)})) = (π½β{π‘})) & β’ 0 = (0gβπ΄) & β’ (π β π β π΅) & β’ (π β π§ β (πβ(πβ{π}))) & β’ (π β π‘ = ((π Β· πΊ)π π§)) & β’ (π β π β π) & β’ (π β π β π) & β’ πΈ = (((invrβπ΄)βπ) Β· π§) β β’ (π β πΈ β πΉ) | ||
Theorem | mapdpglem18 41231* | Lemma for mapdpg 41248. Baer p. 45, line 7: "Then y =/= 0..." (Contributed by NM, 20-Mar-2015.) |
β’ π» = (LHypβπΎ) & β’ π = ((mapdβπΎ)βπ) & β’ π = ((DVecHβπΎ)βπ) & β’ π = (Baseβπ) & β’ β = (-gβπ) & β’ π = (LSpanβπ) & β’ πΆ = ((LCDualβπΎ)βπ) & β’ (π β (πΎ β HL β§ π β π»)) & β’ (π β π β π) & β’ (π β π β π) & β’ β = (LSSumβπΆ) & β’ π½ = (LSpanβπΆ) & β’ πΉ = (BaseβπΆ) & β’ (π β π‘ β ((πβ(πβ{π})) β (πβ(πβ{π})))) & β’ π΄ = (Scalarβπ) & β’ π΅ = (Baseβπ΄) & β’ Β· = ( Β·π βπΆ) & β’ π = (-gβπΆ) & β’ (π β πΊ β πΉ) & β’ (π β (πβ(πβ{π})) = (π½β{πΊ})) & β’ π = (0gβπ) & β’ (π β (πβ{π}) β (πβ{π})) & β’ (π β (πβ(πβ{(π β π)})) = (π½β{π‘})) & β’ 0 = (0gβπ΄) & β’ (π β π β π΅) & β’ (π β π§ β (πβ(πβ{π}))) & β’ (π β π‘ = ((π Β· πΊ)π π§)) & β’ (π β π β π) & β’ (π β π β π) & β’ πΈ = (((invrβπ΄)βπ) Β· π§) β β’ (π β πΈ β (0gβπΆ)) | ||
Theorem | mapdpglem19 41232* | Lemma for mapdpg 41248. Baer p. 45, line 8: "...is in (Fy)*..." (Contributed by NM, 20-Mar-2015.) |
β’ π» = (LHypβπΎ) & β’ π = ((mapdβπΎ)βπ) & β’ π = ((DVecHβπΎ)βπ) & β’ π = (Baseβπ) & β’ β = (-gβπ) & β’ π = (LSpanβπ) & β’ πΆ = ((LCDualβπΎ)βπ) & β’ (π β (πΎ β HL β§ π β π»)) & β’ (π β π β π) & β’ (π β π β π) & β’ β = (LSSumβπΆ) & β’ π½ = (LSpanβπΆ) & β’ πΉ = (BaseβπΆ) & β’ (π β π‘ β ((πβ(πβ{π})) β (πβ(πβ{π})))) & β’ π΄ = (Scalarβπ) & β’ π΅ = (Baseβπ΄) & β’ Β· = ( Β·π βπΆ) & β’ π = (-gβπΆ) & β’ (π β πΊ β πΉ) & β’ (π β (πβ(πβ{π})) = (π½β{πΊ})) & β’ π = (0gβπ) & β’ (π β (πβ{π}) β (πβ{π})) & β’ (π β (πβ(πβ{(π β π)})) = (π½β{π‘})) & β’ 0 = (0gβπ΄) & β’ (π β π β π΅) & β’ (π β π§ β (πβ(πβ{π}))) & β’ (π β π‘ = ((π Β· πΊ)π π§)) & β’ (π β π β π) & β’ (π β π β π) & β’ πΈ = (((invrβπ΄)βπ) Β· π§) β β’ (π β πΈ β (πβ(πβ{π}))) | ||
Theorem | mapdpglem20 41233* | Lemma for mapdpg 41248. Baer p. 45, line 8: "...so that (Fy)*=Gy'." (Contributed by NM, 20-Mar-2015.) |
β’ π» = (LHypβπΎ) & β’ π = ((mapdβπΎ)βπ) & β’ π = ((DVecHβπΎ)βπ) & β’ π = (Baseβπ) & β’ β = (-gβπ) & β’ π = (LSpanβπ) & β’ πΆ = ((LCDualβπΎ)βπ) & β’ (π β (πΎ β HL β§ π β π»)) & β’ (π β π β π) & β’ (π β π β π) & β’ β = (LSSumβπΆ) & β’ π½ = (LSpanβπΆ) & β’ πΉ = (BaseβπΆ) & β’ (π β π‘ β ((πβ(πβ{π})) β (πβ(πβ{π})))) & β’ π΄ = (Scalarβπ) & β’ π΅ = (Baseβπ΄) & β’ Β· = ( Β·π βπΆ) & β’ π = (-gβπΆ) & β’ (π β πΊ β πΉ) & β’ (π β (πβ(πβ{π})) = (π½β{πΊ})) & β’ π = (0gβπ) & β’ (π β (πβ{π}) β (πβ{π})) & β’ (π β (πβ(πβ{(π β π)})) = (π½β{π‘})) & β’ 0 = (0gβπ΄) & β’ (π β π β π΅) & β’ (π β π§ β (πβ(πβ{π}))) & β’ (π β π‘ = ((π Β· πΊ)π π§)) & β’ (π β π β π) & β’ (π β π β π) & β’ πΈ = (((invrβπ΄)βπ) Β· π§) β β’ (π β (πβ(πβ{π})) = (π½β{πΈ})) | ||
Theorem | mapdpglem21 41234* | Lemma for mapdpg 41248. (Contributed by NM, 20-Mar-2015.) |
β’ π» = (LHypβπΎ) & β’ π = ((mapdβπΎ)βπ) & β’ π = ((DVecHβπΎ)βπ) & β’ π = (Baseβπ) & β’ β = (-gβπ) & β’ π = (LSpanβπ) & β’ πΆ = ((LCDualβπΎ)βπ) & β’ (π β (πΎ β HL β§ π β π»)) & β’ (π β π β π) & β’ (π β π β π) & β’ β = (LSSumβπΆ) & β’ π½ = (LSpanβπΆ) & β’ πΉ = (BaseβπΆ) & β’ (π β π‘ β ((πβ(πβ{π})) β (πβ(πβ{π})))) & β’ π΄ = (Scalarβπ) & β’ π΅ = (Baseβπ΄) & β’ Β· = ( Β·π βπΆ) & β’ π = (-gβπΆ) & β’ (π β πΊ β πΉ) & β’ (π β (πβ(πβ{π})) = (π½β{πΊ})) & β’ π = (0gβπ) & β’ (π β (πβ{π}) β (πβ{π})) & β’ (π β (πβ(πβ{(π β π)})) = (π½β{π‘})) & β’ 0 = (0gβπ΄) & β’ (π β π β π΅) & β’ (π β π§ β (πβ(πβ{π}))) & β’ (π β π‘ = ((π Β· πΊ)π π§)) & β’ (π β π β π) & β’ (π β π β π) & β’ πΈ = (((invrβπ΄)βπ) Β· π§) β β’ (π β (((invrβπ΄)βπ) Β· π‘) = (πΊπ πΈ)) | ||
Theorem | mapdpglem22 41235* | Lemma for mapdpg 41248. Baer p. 45, line 9: "(F(x-y))* = ... = G(x'-y')." (Contributed by NM, 20-Mar-2015.) |
β’ π» = (LHypβπΎ) & β’ π = ((mapdβπΎ)βπ) & β’ π = ((DVecHβπΎ)βπ) & β’ π = (Baseβπ) & β’ β = (-gβπ) & β’ π = (LSpanβπ) & β’ πΆ = ((LCDualβπΎ)βπ) & β’ (π β (πΎ β HL β§ π β π»)) & β’ (π β π β π) & β’ (π β π β π) & β’ β = (LSSumβπΆ) & β’ π½ = (LSpanβπΆ) & β’ πΉ = (BaseβπΆ) & β’ (π β π‘ β ((πβ(πβ{π})) β (πβ(πβ{π})))) & β’ π΄ = (Scalarβπ) & β’ π΅ = (Baseβπ΄) & β’ Β· = ( Β·π βπΆ) & β’ π = (-gβπΆ) & β’ (π β πΊ β πΉ) & β’ (π β (πβ(πβ{π})) = (π½β{πΊ})) & β’ π = (0gβπ) & β’ (π β (πβ{π}) β (πβ{π})) & β’ (π β (πβ(πβ{(π β π)})) = (π½β{π‘})) & β’ 0 = (0gβπ΄) & β’ (π β π β π΅) & β’ (π β π§ β (πβ(πβ{π}))) & β’ (π β π‘ = ((π Β· πΊ)π π§)) & β’ (π β π β π) & β’ (π β π β π) & β’ πΈ = (((invrβπ΄)βπ) Β· π§) β β’ (π β (πβ(πβ{(π β π)})) = (π½β{(πΊπ πΈ)})) | ||
Theorem | mapdpglem23 41236* | Lemma for mapdpg 41248. Baer p. 45, line 10: "and so y' meets all our requirements." Our β is Baer's y'. (Contributed by NM, 20-Mar-2015.) |
β’ π» = (LHypβπΎ) & β’ π = ((mapdβπΎ)βπ) & β’ π = ((DVecHβπΎ)βπ) & β’ π = (Baseβπ) & β’ β = (-gβπ) & β’ π = (LSpanβπ) & β’ πΆ = ((LCDualβπΎ)βπ) & β’ (π β (πΎ β HL β§ π β π»)) & β’ (π β π β π) & β’ (π β π β π) & β’ β = (LSSumβπΆ) & β’ π½ = (LSpanβπΆ) & β’ πΉ = (BaseβπΆ) & β’ (π β π‘ β ((πβ(πβ{π})) β (πβ(πβ{π})))) & β’ π΄ = (Scalarβπ) & β’ π΅ = (Baseβπ΄) & β’ Β· = ( Β·π βπΆ) & β’ π = (-gβπΆ) & β’ (π β πΊ β πΉ) & β’ (π β (πβ(πβ{π})) = (π½β{πΊ})) & β’ π = (0gβπ) & β’ (π β (πβ{π}) β (πβ{π})) & β’ (π β (πβ(πβ{(π β π)})) = (π½β{π‘})) & β’ 0 = (0gβπ΄) & β’ (π β π β π΅) & β’ (π β π§ β (πβ(πβ{π}))) & β’ (π β π‘ = ((π Β· πΊ)π π§)) & β’ (π β π β π) & β’ (π β π β π) & β’ πΈ = (((invrβπ΄)βπ) Β· π§) β β’ (π β ββ β πΉ ((πβ(πβ{π})) = (π½β{β}) β§ (πβ(πβ{(π β π)})) = (π½β{(πΊπ β)}))) | ||
Theorem | mapdpglem30a 41237 | Lemma for mapdpg 41248. (Contributed by NM, 22-Mar-2015.) |
β’ π» = (LHypβπΎ) & β’ π = ((mapdβπΎ)βπ) & β’ π = ((DVecHβπΎ)βπ) & β’ π = (Baseβπ) & β’ β = (-gβπ) & β’ 0 = (0gβπ) & β’ π = (LSpanβπ) & β’ πΆ = ((LCDualβπΎ)βπ) & β’ πΉ = (BaseβπΆ) & β’ π = (-gβπΆ) & β’ π½ = (LSpanβπΆ) & β’ (π β (πΎ β HL β§ π β π»)) & β’ (π β π β (π β { 0 })) & β’ (π β π β (π β { 0 })) & β’ (π β πΊ β πΉ) & β’ (π β (πβ{π}) β (πβ{π})) & β’ (π β (πβ(πβ{π})) = (π½β{πΊ})) β β’ (π β πΊ β (0gβπΆ)) | ||
Theorem | mapdpglem30b 41238 | Lemma for mapdpg 41248. (Contributed by NM, 22-Mar-2015.) |
β’ π» = (LHypβπΎ) & β’ π = ((mapdβπΎ)βπ) & β’ π = ((DVecHβπΎ)βπ) & β’ π = (Baseβπ) & β’ β = (-gβπ) & β’ 0 = (0gβπ) & β’ π = (LSpanβπ) & β’ πΆ = ((LCDualβπΎ)βπ) & β’ πΉ = (BaseβπΆ) & β’ π = (-gβπΆ) & β’ π½ = (LSpanβπΆ) & β’ (π β (πΎ β HL β§ π β π»)) & β’ (π β π β (π β { 0 })) & β’ (π β π β (π β { 0 })) & β’ (π β πΊ β πΉ) & β’ (π β (πβ{π}) β (πβ{π})) & β’ (π β (πβ(πβ{π})) = (π½β{πΊ})) & β’ (π β (β β πΉ β§ ((πβ(πβ{π})) = (π½β{β}) β§ (πβ(πβ{(π β π)})) = (π½β{(πΊπ β)})))) & β’ (π β (π β πΉ β§ ((πβ(πβ{π})) = (π½β{π}) β§ (πβ(πβ{(π β π)})) = (π½β{(πΊπ π)})))) β β’ (π β π β (0gβπΆ)) | ||
Theorem | mapdpglem25 41239 | Lemma for mapdpg 41248. Baer p. 45 line 12: "Then we have Gy' = Gy'' and G(x'-y') = G(x'-y'')." (Contributed by NM, 21-Mar-2015.) |
β’ π» = (LHypβπΎ) & β’ π = ((mapdβπΎ)βπ) & β’ π = ((DVecHβπΎ)βπ) & β’ π = (Baseβπ) & β’ β = (-gβπ) & β’ 0 = (0gβπ) & β’ π = (LSpanβπ) & β’ πΆ = ((LCDualβπΎ)βπ) & β’ πΉ = (BaseβπΆ) & β’ π = (-gβπΆ) & β’ π½ = (LSpanβπΆ) & β’ (π β (πΎ β HL β§ π β π»)) & β’ (π β π β (π β { 0 })) & β’ (π β π β (π β { 0 })) & β’ (π β πΊ β πΉ) & β’ (π β (πβ{π}) β (πβ{π})) & β’ (π β (πβ(πβ{π})) = (π½β{πΊ})) & β’ (π β (β β πΉ β§ ((πβ(πβ{π})) = (π½β{β}) β§ (πβ(πβ{(π β π)})) = (π½β{(πΊπ β)})))) & β’ (π β (π β πΉ β§ ((πβ(πβ{π})) = (π½β{π}) β§ (πβ(πβ{(π β π)})) = (π½β{(πΊπ π)})))) β β’ (π β ((π½β{β}) = (π½β{π}) β§ (π½β{(πΊπ β)}) = (π½β{(πΊπ π)}))) | ||
Theorem | mapdpglem26 41240* | Lemma for mapdpg 41248. Baer p. 45 line 14: "Consequently there exist numbers u,v in G neither of which is 0 such that y = uy'' and..." (We scope $d π’π locally to avoid clashes with later substitutions into π.) (Contributed by NM, 22-Mar-2015.) |
β’ π» = (LHypβπΎ) & β’ π = ((mapdβπΎ)βπ) & β’ π = ((DVecHβπΎ)βπ) & β’ π = (Baseβπ) & β’ β = (-gβπ) & β’ 0 = (0gβπ) & β’ π = (LSpanβπ) & β’ πΆ = ((LCDualβπΎ)βπ) & β’ πΉ = (BaseβπΆ) & β’ π = (-gβπΆ) & β’ π½ = (LSpanβπΆ) & β’ (π β (πΎ β HL β§ π β π»)) & β’ (π β π β (π β { 0 })) & β’ (π β π β (π β { 0 })) & β’ (π β πΊ β πΉ) & β’ (π β (πβ{π}) β (πβ{π})) & β’ (π β (πβ(πβ{π})) = (π½β{πΊ})) & β’ (π β (β β πΉ β§ ((πβ(πβ{π})) = (π½β{β}) β§ (πβ(πβ{(π β π)})) = (π½β{(πΊπ β)})))) & β’ (π β (π β πΉ β§ ((πβ(πβ{π})) = (π½β{π}) β§ (πβ(πβ{(π β π)})) = (π½β{(πΊπ π)})))) & β’ π΄ = (Scalarβπ) & β’ π΅ = (Baseβπ΄) & β’ Β· = ( Β·π βπΆ) & β’ π = (0gβπ΄) β β’ (π β βπ’ β (π΅ β {π})β = (π’ Β· π)) | ||
Theorem | mapdpglem27 41241* | Lemma for mapdpg 41248. Baer p. 45 line 16: "v(x'-y'') = x'-y'" (with equality swapped). (Contributed by NM, 22-Mar-2015.) |
β’ π» = (LHypβπΎ) & β’ π = ((mapdβπΎ)βπ) & β’ π = ((DVecHβπΎ)βπ) & β’ π = (Baseβπ) & β’ β = (-gβπ) & β’ 0 = (0gβπ) & β’ π = (LSpanβπ) & β’ πΆ = ((LCDualβπΎ)βπ) & β’ πΉ = (BaseβπΆ) & β’ π = (-gβπΆ) & β’ π½ = (LSpanβπΆ) & β’ (π β (πΎ β HL β§ π β π»)) & β’ (π β π β (π β { 0 })) & β’ (π β π β (π β { 0 })) & β’ (π β πΊ β πΉ) & β’ (π β (πβ{π}) β (πβ{π})) & β’ (π β (πβ(πβ{π})) = (π½β{πΊ})) & β’ (π β (β β πΉ β§ ((πβ(πβ{π})) = (π½β{β}) β§ (πβ(πβ{(π β π)})) = (π½β{(πΊπ β)})))) & β’ (π β (π β πΉ β§ ((πβ(πβ{π})) = (π½β{π}) β§ (πβ(πβ{(π β π)})) = (π½β{(πΊπ π)})))) & β’ π΄ = (Scalarβπ) & β’ π΅ = (Baseβπ΄) & β’ Β· = ( Β·π βπΆ) & β’ π = (0gβπ΄) β β’ (π β βπ£ β (π΅ β {π})(πΊπ β) = (π£ Β· (πΊπ π))) | ||
Theorem | mapdpglem29 41242* | Lemma for mapdpg 41248. Baer p. 45 line 16: "But Gx' and Gy'' are distinct points and so x' and y'' are independent elements in B. (Contributed by NM, 22-Mar-2015.) |
β’ π» = (LHypβπΎ) & β’ π = ((mapdβπΎ)βπ) & β’ π = ((DVecHβπΎ)βπ) & β’ π = (Baseβπ) & β’ β = (-gβπ) & β’ 0 = (0gβπ) & β’ π = (LSpanβπ) & β’ πΆ = ((LCDualβπΎ)βπ) & β’ πΉ = (BaseβπΆ) & β’ π = (-gβπΆ) & β’ π½ = (LSpanβπΆ) & β’ (π β (πΎ β HL β§ π β π»)) & β’ (π β π β (π β { 0 })) & β’ (π β π β (π β { 0 })) & β’ (π β πΊ β πΉ) & β’ (π β (πβ{π}) β (πβ{π})) & β’ (π β (πβ(πβ{π})) = (π½β{πΊ})) & β’ (π β (β β πΉ β§ ((πβ(πβ{π})) = (π½β{β}) β§ (πβ(πβ{(π β π)})) = (π½β{(πΊπ β)})))) & β’ (π β (π β πΉ β§ ((πβ(πβ{π})) = (π½β{π}) β§ (πβ(πβ{(π β π)})) = (π½β{(πΊπ π)})))) & β’ π΄ = (Scalarβπ) & β’ π΅ = (Baseβπ΄) & β’ Β· = ( Β·π βπΆ) & β’ π = (0gβπ΄) & β’ (π β π£ β π΅) & β’ (π β β = (π’ Β· π)) & β’ (π β (πΊπ β) = (π£ Β· (πΊπ π))) β β’ (π β (π½β{πΊ}) β (π½β{π})) | ||
Theorem | mapdpglem28 41243* | Lemma for mapdpg 41248. Baer p. 45 line 18: "vx'-vy'' = x'-uy''". (Contributed by NM, 22-Mar-2015.) |
β’ π» = (LHypβπΎ) & β’ π = ((mapdβπΎ)βπ) & β’ π = ((DVecHβπΎ)βπ) & β’ π = (Baseβπ) & β’ β = (-gβπ) & β’ 0 = (0gβπ) & β’ π = (LSpanβπ) & β’ πΆ = ((LCDualβπΎ)βπ) & β’ πΉ = (BaseβπΆ) & β’ π = (-gβπΆ) & β’ π½ = (LSpanβπΆ) & β’ (π β (πΎ β HL β§ π β π»)) & β’ (π β π β (π β { 0 })) & β’ (π β π β (π β { 0 })) & β’ (π β πΊ β πΉ) & β’ (π β (πβ{π}) β (πβ{π})) & β’ (π β (πβ(πβ{π})) = (π½β{πΊ})) & β’ (π β (β β πΉ β§ ((πβ(πβ{π})) = (π½β{β}) β§ (πβ(πβ{(π β π)})) = (π½β{(πΊπ β)})))) & β’ (π β (π β πΉ β§ ((πβ(πβ{π})) = (π½β{π}) β§ (πβ(πβ{(π β π)})) = (π½β{(πΊπ π)})))) & β’ π΄ = (Scalarβπ) & β’ π΅ = (Baseβπ΄) & β’ Β· = ( Β·π βπΆ) & β’ π = (0gβπ΄) & β’ (π β π£ β π΅) & β’ (π β β = (π’ Β· π)) & β’ (π β (πΊπ β) = (π£ Β· (πΊπ π))) β β’ (π β ((π£ Β· πΊ)π (π£ Β· π)) = (πΊπ (π’ Β· π))) | ||
Theorem | mapdpglem30 41244* | Lemma for mapdpg 41248. Baer p. 45 line 18: "Hence we deduce (from mapdpglem28 41243, using lvecindp2 21031) that v = 1 and v = u...". TODO: would it be shorter to have only the π£ = (1rβπ΄) part and use mapdpglem28.u2 in mapdpglem31 41245? (Contributed by NM, 22-Mar-2015.) |
β’ π» = (LHypβπΎ) & β’ π = ((mapdβπΎ)βπ) & β’ π = ((DVecHβπΎ)βπ) & β’ π = (Baseβπ) & β’ β = (-gβπ) & β’ 0 = (0gβπ) & β’ π = (LSpanβπ) & β’ πΆ = ((LCDualβπΎ)βπ) & β’ πΉ = (BaseβπΆ) & β’ π = (-gβπΆ) & β’ π½ = (LSpanβπΆ) & β’ (π β (πΎ β HL β§ π β π»)) & β’ (π β π β (π β { 0 })) & β’ (π β π β (π β { 0 })) & β’ (π β πΊ β πΉ) & β’ (π β (πβ{π}) β (πβ{π})) & β’ (π β (πβ(πβ{π})) = (π½β{πΊ})) & β’ (π β (β β πΉ β§ ((πβ(πβ{π})) = (π½β{β}) β§ (πβ(πβ{(π β π)})) = (π½β{(πΊπ β)})))) & β’ (π β (π β πΉ β§ ((πβ(πβ{π})) = (π½β{π}) β§ (πβ(πβ{(π β π)})) = (π½β{(πΊπ π)})))) & β’ π΄ = (Scalarβπ) & β’ π΅ = (Baseβπ΄) & β’ Β· = ( Β·π βπΆ) & β’ π = (0gβπ΄) & β’ (π β π£ β π΅) & β’ (π β β = (π’ Β· π)) & β’ (π β (πΊπ β) = (π£ Β· (πΊπ π))) & β’ (π β π’ β π΅) β β’ (π β (π£ = (1rβπ΄) β§ π£ = π’)) | ||
Theorem | mapdpglem31 41245* | Lemma for mapdpg 41248. Baer p. 45 line 19: "...and we have consequently that y' = y'', as we claimed." (Contributed by NM, 23-Mar-2015.) |
β’ π» = (LHypβπΎ) & β’ π = ((mapdβπΎ)βπ) & β’ π = ((DVecHβπΎ)βπ) & β’ π = (Baseβπ) & β’ β = (-gβπ) & β’ 0 = (0gβπ) & β’ π = (LSpanβπ) & β’ πΆ = ((LCDualβπΎ)βπ) & β’ πΉ = (BaseβπΆ) & β’ π = (-gβπΆ) & β’ π½ = (LSpanβπΆ) & β’ (π β (πΎ β HL β§ π β π»)) & β’ (π β π β (π β { 0 })) & β’ (π β π β (π β { 0 })) & β’ (π β πΊ β πΉ) & β’ (π β (πβ{π}) β (πβ{π})) & β’ (π β (πβ(πβ{π})) = (π½β{πΊ})) & β’ (π β (β β πΉ β§ ((πβ(πβ{π})) = (π½β{β}) β§ (πβ(πβ{(π β π)})) = (π½β{(πΊπ β)})))) & β’ (π β (π β πΉ β§ ((πβ(πβ{π})) = (π½β{π}) β§ (πβ(πβ{(π β π)})) = (π½β{(πΊπ π)})))) & β’ π΄ = (Scalarβπ) & β’ π΅ = (Baseβπ΄) & β’ Β· = ( Β·π βπΆ) & β’ π = (0gβπ΄) & β’ (π β π£ β π΅) & β’ (π β β = (π’ Β· π)) & β’ (π β (πΊπ β) = (π£ Β· (πΊπ π))) & β’ (π β π’ β π΅) β β’ (π β β = π) | ||
Theorem | mapdpglem24 41246* | Lemma for mapdpg 41248. Existence part - consolidate hypotheses in mapdpglem23 41236. (Contributed by NM, 21-Mar-2015.) |
β’ π» = (LHypβπΎ) & β’ π = ((mapdβπΎ)βπ) & β’ π = ((DVecHβπΎ)βπ) & β’ π = (Baseβπ) & β’ β = (-gβπ) & β’ 0 = (0gβπ) & β’ π = (LSpanβπ) & β’ πΆ = ((LCDualβπΎ)βπ) & β’ πΉ = (BaseβπΆ) & β’ π = (-gβπΆ) & β’ π½ = (LSpanβπΆ) & β’ (π β (πΎ β HL β§ π β π»)) & β’ (π β π β (π β { 0 })) & β’ (π β π β (π β { 0 })) & β’ (π β πΊ β πΉ) & β’ (π β (πβ{π}) β (πβ{π})) & β’ (π β (πβ(πβ{π})) = (π½β{πΊ})) β β’ (π β ββ β πΉ ((πβ(πβ{π})) = (π½β{β}) β§ (πβ(πβ{(π β π)})) = (π½β{(πΊπ β)}))) | ||
Theorem | mapdpglem32 41247* | Lemma for mapdpg 41248. Uniqueness part - consolidate hypotheses in mapdpglem31 41245. (Contributed by NM, 23-Mar-2015.) |
β’ π» = (LHypβπΎ) & β’ π = ((mapdβπΎ)βπ) & β’ π = ((DVecHβπΎ)βπ) & β’ π = (Baseβπ) & β’ β = (-gβπ) & β’ 0 = (0gβπ) & β’ π = (LSpanβπ) & β’ πΆ = ((LCDualβπΎ)βπ) & β’ πΉ = (BaseβπΆ) & β’ π = (-gβπΆ) & β’ π½ = (LSpanβπΆ) & β’ (π β (πΎ β HL β§ π β π»)) & β’ (π β π β (π β { 0 })) & β’ (π β π β (π β { 0 })) & β’ (π β πΊ β πΉ) & β’ (π β (πβ{π}) β (πβ{π})) & β’ (π β (πβ(πβ{π})) = (π½β{πΊ})) β β’ ((π β§ (β β πΉ β§ π β πΉ) β§ (((πβ(πβ{π})) = (π½β{β}) β§ (πβ(πβ{(π β π)})) = (π½β{(πΊπ β)})) β§ ((πβ(πβ{π})) = (π½β{π}) β§ (πβ(πβ{(π β π)})) = (π½β{(πΊπ π)})))) β β = π) | ||
Theorem | mapdpg 41248* | Part 1 of proof of the first fundamental theorem of projective geometry. Part (1) in [Baer] p. 44. Our notation corresponds to Baer's as follows: π for *, πβ{} for F(), π½β{} for G(), π for x, πΊ for x', π for y, β for y'. TODO: Rename variables per mapdhval 41266. (Contributed by NM, 22-Mar-2015.) |
β’ π» = (LHypβπΎ) & β’ π = ((mapdβπΎ)βπ) & β’ π = ((DVecHβπΎ)βπ) & β’ π = (Baseβπ) & β’ β = (-gβπ) & β’ 0 = (0gβπ) & β’ π = (LSpanβπ) & β’ πΆ = ((LCDualβπΎ)βπ) & β’ πΉ = (BaseβπΆ) & β’ π = (-gβπΆ) & β’ π½ = (LSpanβπΆ) & β’ (π β (πΎ β HL β§ π β π»)) & β’ (π β π β (π β { 0 })) & β’ (π β π β (π β { 0 })) & β’ (π β πΊ β πΉ) & β’ (π β (πβ{π}) β (πβ{π})) & β’ (π β (πβ(πβ{π})) = (π½β{πΊ})) β β’ (π β β!β β πΉ ((πβ(πβ{π})) = (π½β{β}) β§ (πβ(πβ{(π β π)})) = (π½β{(πΊπ β)}))) | ||
Theorem | baerlem3lem1 41249 | Lemma for baerlem3 41255. (Contributed by NM, 9-Apr-2015.) |
β’ π = (Baseβπ) & β’ β = (-gβπ) & β’ 0 = (0gβπ) & β’ β = (LSSumβπ) & β’ π = (LSpanβπ) & β’ (π β π β LVec) & β’ (π β π β π) & β’ (π β Β¬ π β (πβ{π, π})) & β’ (π β (πβ{π}) β (πβ{π})) & β’ (π β π β (π β { 0 })) & β’ (π β π β (π β { 0 })) & β’ + = (+gβπ) & β’ Β· = ( Β·π βπ) & β’ π = (Scalarβπ) & β’ π΅ = (Baseβπ ) & ⒠⨣ = (+gβπ ) & β’ πΏ = (-gβπ ) & β’ π = (0gβπ ) & β’ πΌ = (invgβπ ) & β’ (π β π β π΅) & β’ (π β π β π΅) & β’ (π β π β π΅) & β’ (π β π β π΅) & β’ (π β π = ((π Β· π) + (π Β· π))) & β’ (π β π = ((π Β· (π β π)) + (π Β· (π β π)))) β β’ (π β π = (π Β· (π β π))) | ||
Theorem | baerlem5alem1 41250 | Lemma for baerlem5a 41256. (Contributed by NM, 13-Apr-2015.) |
β’ π = (Baseβπ) & β’ β = (-gβπ) & β’ 0 = (0gβπ) & β’ β = (LSSumβπ) & β’ π = (LSpanβπ) & β’ (π β π β LVec) & β’ (π β π β π) & β’ (π β Β¬ π β (πβ{π, π})) & β’ (π β (πβ{π}) β (πβ{π})) & β’ (π β π β (π β { 0 })) & β’ (π β π β (π β { 0 })) & β’ + = (+gβπ) & β’ Β· = ( Β·π βπ) & β’ π = (Scalarβπ) & β’ π΅ = (Baseβπ ) & ⒠⨣ = (+gβπ ) & β’ πΏ = (-gβπ ) & β’ π = (0gβπ ) & β’ πΌ = (invgβπ ) & β’ (π β π β π΅) & β’ (π β π β π΅) & β’ (π β π β π΅) & β’ (π β π β π΅) & β’ (π β π = ((π Β· (π β π)) + (π Β· π))) & β’ (π β π = ((π Β· (π β π)) + (π Β· π))) β β’ (π β π = (π Β· (π β (π + π)))) | ||
Theorem | baerlem5blem1 41251 | Lemma for baerlem5b 41257. (Contributed by NM, 9-Apr-2015.) |
β’ π = (Baseβπ) & β’ β = (-gβπ) & β’ 0 = (0gβπ) & β’ β = (LSSumβπ) & β’ π = (LSpanβπ) & β’ (π β π β LVec) & β’ (π β π β π) & β’ (π β Β¬ π β (πβ{π, π})) & β’ (π β (πβ{π}) β (πβ{π})) & β’ (π β π β (π β { 0 })) & β’ (π β π β (π β { 0 })) & β’ + = (+gβπ) & β’ Β· = ( Β·π βπ) & β’ π = (Scalarβπ) & β’ π΅ = (Baseβπ ) & ⒠⨣ = (+gβπ ) & β’ πΏ = (-gβπ ) & β’ π = (0gβπ ) & β’ πΌ = (invgβπ ) & β’ (π β π β π΅) & β’ (π β π β π΅) & β’ (π β π β π΅) & β’ (π β π β π΅) & β’ (π β π = ((π Β· π) + (π Β· π))) & β’ (π β π = ((π Β· (π β (π + π))) + (π Β· π))) β β’ (π β π = ((πΌβπ) Β· (π + π))) | ||
Theorem | baerlem3lem2 41252 | Lemma for baerlem3 41255. (Contributed by NM, 9-Apr-2015.) |
β’ π = (Baseβπ) & β’ β = (-gβπ) & β’ 0 = (0gβπ) & β’ β = (LSSumβπ) & β’ π = (LSpanβπ) & β’ (π β π β LVec) & β’ (π β π β π) & β’ (π β Β¬ π β (πβ{π, π})) & β’ (π β (πβ{π}) β (πβ{π})) & β’ (π β π β (π β { 0 })) & β’ (π β π β (π β { 0 })) & β’ + = (+gβπ) & β’ Β· = ( Β·π βπ) & β’ π = (Scalarβπ) & β’ π΅ = (Baseβπ ) & ⒠⨣ = (+gβπ ) & β’ πΏ = (-gβπ ) & β’ π = (0gβπ ) & β’ πΌ = (invgβπ ) β β’ (π β (πβ{(π β π)}) = (((πβ{π}) β (πβ{π})) β© ((πβ{(π β π)}) β (πβ{(π β π)})))) | ||
Theorem | baerlem5alem2 41253 | Lemma for baerlem5a 41256. (Contributed by NM, 9-Apr-2015.) |
β’ π = (Baseβπ) & β’ β = (-gβπ) & β’ 0 = (0gβπ) & β’ β = (LSSumβπ) & β’ π = (LSpanβπ) & β’ (π β π β LVec) & β’ (π β π β π) & β’ (π β Β¬ π β (πβ{π, π})) & β’ (π β (πβ{π}) β (πβ{π})) & β’ (π β π β (π β { 0 })) & β’ (π β π β (π β { 0 })) & β’ + = (+gβπ) & β’ Β· = ( Β·π βπ) & β’ π = (Scalarβπ) & β’ π΅ = (Baseβπ ) & ⒠⨣ = (+gβπ ) & β’ πΏ = (-gβπ ) & β’ π = (0gβπ ) & β’ πΌ = (invgβπ ) β β’ (π β (πβ{(π β (π + π))}) = (((πβ{(π β π)}) β (πβ{π})) β© ((πβ{(π β π)}) β (πβ{π})))) | ||
Theorem | baerlem5blem2 41254 | Lemma for baerlem5b 41257. (Contributed by NM, 13-Apr-2015.) |
β’ π = (Baseβπ) & β’ β = (-gβπ) & β’ 0 = (0gβπ) & β’ β = (LSSumβπ) & β’ π = (LSpanβπ) & β’ (π β π β LVec) & β’ (π β π β π) & β’ (π β Β¬ π β (πβ{π, π})) & β’ (π β (πβ{π}) β (πβ{π})) & β’ (π β π β (π β { 0 })) & β’ (π β π β (π β { 0 })) & β’ + = (+gβπ) & β’ Β· = ( Β·π βπ) & β’ π = (Scalarβπ) & β’ π΅ = (Baseβπ ) & ⒠⨣ = (+gβπ ) & β’ πΏ = (-gβπ ) & β’ π = (0gβπ ) & β’ πΌ = (invgβπ ) β β’ (π β (πβ{(π + π)}) = (((πβ{π}) β (πβ{π})) β© ((πβ{(π β (π + π))}) β (πβ{π})))) | ||
Theorem | baerlem3 41255 | An equality that holds when π, π, π are independent (non-colinear) vectors. Part (3) in [Baer] p. 45. TODO fix ref. (Contributed by NM, 9-Apr-2015.) |
β’ π = (Baseβπ) & β’ β = (-gβπ) & β’ 0 = (0gβπ) & β’ β = (LSSumβπ) & β’ π = (LSpanβπ) & β’ (π β π β LVec) & β’ (π β π β π) & β’ (π β Β¬ π β (πβ{π, π})) & β’ (π β (πβ{π}) β (πβ{π})) & β’ (π β π β (π β { 0 })) & β’ (π β π β (π β { 0 })) β β’ (π β (πβ{(π β π)}) = (((πβ{π}) β (πβ{π})) β© ((πβ{(π β π)}) β (πβ{(π β π)})))) | ||
Theorem | baerlem5a 41256 | An equality that holds when π, π, π are independent (non-colinear) vectors. First equation of part (5) in [Baer] p. 46. (Contributed by NM, 10-Apr-2015.) |
β’ π = (Baseβπ) & β’ β = (-gβπ) & β’ 0 = (0gβπ) & β’ β = (LSSumβπ) & β’ π = (LSpanβπ) & β’ (π β π β LVec) & β’ (π β π β π) & β’ (π β Β¬ π β (πβ{π, π})) & β’ (π β (πβ{π}) β (πβ{π})) & β’ (π β π β (π β { 0 })) & β’ (π β π β (π β { 0 })) & β’ + = (+gβπ) β β’ (π β (πβ{(π β (π + π))}) = (((πβ{(π β π)}) β (πβ{π})) β© ((πβ{(π β π)}) β (πβ{π})))) | ||
Theorem | baerlem5b 41257 | An equality that holds when π, π, π are independent (non-colinear) vectors. Second equation of part (5) in [Baer] p. 46. (Contributed by NM, 13-Apr-2015.) |
β’ π = (Baseβπ) & β’ β = (-gβπ) & β’ 0 = (0gβπ) & β’ β = (LSSumβπ) & β’ π = (LSpanβπ) & β’ (π β π β LVec) & β’ (π β π β π) & β’ (π β Β¬ π β (πβ{π, π})) & β’ (π β (πβ{π}) β (πβ{π})) & β’ (π β π β (π β { 0 })) & β’ (π β π β (π β { 0 })) & β’ + = (+gβπ) β β’ (π β (πβ{(π + π)}) = (((πβ{π}) β (πβ{π})) β© ((πβ{(π β (π + π))}) β (πβ{π})))) | ||
Theorem | baerlem5amN 41258 | An equality that holds when π, π, π are independent (non-colinear) vectors. Subtraction version of first equation of part (5) in [Baer] p. 46. TODO: This is the subtraction version, may not be needed. TODO: delete if baerlem5abmN 41260 is used. (Contributed by NM, 24-May-2015.) (New usage is discouraged.) |
β’ π = (Baseβπ) & β’ β = (-gβπ) & β’ 0 = (0gβπ) & β’ β = (LSSumβπ) & β’ π = (LSpanβπ) & β’ (π β π β LVec) & β’ (π β π β π) & β’ (π β Β¬ π β (πβ{π, π})) & β’ (π β (πβ{π}) β (πβ{π})) & β’ (π β π β (π β { 0 })) & β’ (π β π β (π β { 0 })) & β’ + = (+gβπ) β β’ (π β (πβ{(π β (π β π))}) = (((πβ{(π β π)}) β (πβ{π})) β© ((πβ{(π + π)}) β (πβ{π})))) | ||
Theorem | baerlem5bmN 41259 | An equality that holds when π, π, π are independent (non-colinear) vectors. Subtraction version of second equation of part (5) in [Baer] p. 46. TODO: This is the subtraction version, may not be needed. TODO: delete if baerlem5abmN 41260 is used. (Contributed by NM, 24-May-2015.) (New usage is discouraged.) |
β’ π = (Baseβπ) & β’ β = (-gβπ) & β’ 0 = (0gβπ) & β’ β = (LSSumβπ) & β’ π = (LSpanβπ) & β’ (π β π β LVec) & β’ (π β π β π) & β’ (π β Β¬ π β (πβ{π, π})) & β’ (π β (πβ{π}) β (πβ{π})) & β’ (π β π β (π β { 0 })) & β’ (π β π β (π β { 0 })) & β’ + = (+gβπ) β β’ (π β (πβ{(π β π)}) = (((πβ{π}) β (πβ{π})) β© ((πβ{(π β (π β π))}) β (πβ{π})))) | ||
Theorem | baerlem5abmN 41260 | An equality that holds when π, π, π are independent (non-colinear) vectors. Subtraction versions of first and second equations of part (5) in [Baer] p. 46, conjoined to share commonality in their proofs. TODO: Delete if not needed. (Contributed by NM, 24-May-2015.) (New usage is discouraged.) |
β’ π = (Baseβπ) & β’ β = (-gβπ) & β’ 0 = (0gβπ) & β’ β = (LSSumβπ) & β’ π = (LSpanβπ) & β’ (π β π β LVec) & β’ (π β π β π) & β’ (π β Β¬ π β (πβ{π, π})) & β’ (π β (πβ{π}) β (πβ{π})) & β’ (π β π β (π β { 0 })) & β’ (π β π β (π β { 0 })) & β’ + = (+gβπ) β β’ (π β ((πβ{(π β (π β π))}) = (((πβ{(π β π)}) β (πβ{π})) β© ((πβ{(π + π)}) β (πβ{π}))) β§ (πβ{(π β π)}) = (((πβ{π}) β (πβ{π})) β© ((πβ{(π β (π β π))}) β (πβ{π}))))) | ||
Theorem | mapdindp0 41261 | Vector independence lemma. (Contributed by NM, 29-Apr-2015.) |
β’ π = (Baseβπ) & β’ + = (+gβπ) & β’ 0 = (0gβπ) & β’ π = (LSpanβπ) & β’ (π β π β LVec) & β’ (π β π β (π β { 0 })) & β’ (π β π β (π β { 0 })) & β’ (π β π β (π β { 0 })) & β’ (π β π€ β (π β { 0 })) & β’ (π β (πβ{π}) = (πβ{π})) & β’ (π β (πβ{π}) β (πβ{π})) & β’ (π β Β¬ π€ β (πβ{π, π})) & β’ (π β (π + π) β 0 ) β β’ (π β (πβ{(π + π)}) = (πβ{π})) | ||
Theorem | mapdindp1 41262 | Vector independence lemma. (Contributed by NM, 1-May-2015.) |
β’ π = (Baseβπ) & β’ + = (+gβπ) & β’ 0 = (0gβπ) & β’ π = (LSpanβπ) & β’ (π β π β LVec) & β’ (π β π β (π β { 0 })) & β’ (π β π β (π β { 0 })) & β’ (π β π β (π β { 0 })) & β’ (π β π€ β (π β { 0 })) & β’ (π β (πβ{π}) = (πβ{π})) & β’ (π β (πβ{π}) β (πβ{π})) & β’ (π β Β¬ π€ β (πβ{π, π})) β β’ (π β (πβ{π}) β (πβ{(π + π)})) | ||
Theorem | mapdindp2 41263 | Vector independence lemma. (Contributed by NM, 1-May-2015.) |
β’ π = (Baseβπ) & β’ + = (+gβπ) & β’ 0 = (0gβπ) & β’ π = (LSpanβπ) & β’ (π β π β LVec) & β’ (π β π β (π β { 0 })) & β’ (π β π β (π β { 0 })) & β’ (π β π β (π β { 0 })) & β’ (π β π€ β (π β { 0 })) & β’ (π β (πβ{π}) = (πβ{π})) & β’ (π β (πβ{π}) β (πβ{π})) & β’ (π β Β¬ π€ β (πβ{π, π})) β β’ (π β Β¬ π€ β (πβ{π, (π + π)})) | ||
Theorem | mapdindp3 41264 | Vector independence lemma. (Contributed by NM, 29-Apr-2015.) |
β’ π = (Baseβπ) & β’ + = (+gβπ) & β’ 0 = (0gβπ) & β’ π = (LSpanβπ) & β’ (π β π β LVec) & β’ (π β π β (π β { 0 })) & β’ (π β π β (π β { 0 })) & β’ (π β π β (π β { 0 })) & β’ (π β π€ β (π β { 0 })) & β’ (π β (πβ{π}) = (πβ{π})) & β’ (π β (πβ{π}) β (πβ{π})) & β’ (π β Β¬ π€ β (πβ{π, π})) β β’ (π β (πβ{π}) β (πβ{(π€ + π)})) | ||
Theorem | mapdindp4 41265 | Vector independence lemma. (Contributed by NM, 29-Apr-2015.) |
β’ π = (Baseβπ) & β’ + = (+gβπ) & β’ 0 = (0gβπ) & β’ π = (LSpanβπ) & β’ (π β π β LVec) & β’ (π β π β (π β { 0 })) & β’ (π β π β (π β { 0 })) & β’ (π β π β (π β { 0 })) & β’ (π β π€ β (π β { 0 })) & β’ (π β (πβ{π}) = (πβ{π})) & β’ (π β (πβ{π}) β (πβ{π})) & β’ (π β Β¬ π€ β (πβ{π, π})) β β’ (π β Β¬ π β (πβ{π, (π€ + π)})) | ||
Theorem | mapdhval 41266* | Lemmma for ~? mapdh . (Contributed by NM, 3-Apr-2015.) (Revised by Mario Carneiro, 6-May-2015.) |
β’ π = (0gβπΆ) & β’ πΌ = (π₯ β V β¦ if((2nd βπ₯) = 0 , π, (β©β β π· ((πβ(πβ{(2nd βπ₯)})) = (π½β{β}) β§ (πβ(πβ{((1st β(1st βπ₯)) β (2nd βπ₯))})) = (π½β{((2nd β(1st βπ₯))π β)}))))) & β’ (π β π β π΄) & β’ (π β πΉ β π΅) & β’ (π β π β πΈ) β β’ (π β (πΌββ¨π, πΉ, πβ©) = if(π = 0 , π, (β©β β π· ((πβ(πβ{π})) = (π½β{β}) β§ (πβ(πβ{(π β π)})) = (π½β{(πΉπ β)}))))) | ||
Theorem | mapdhval0 41267* | Lemmma for ~? mapdh . (Contributed by NM, 3-Apr-2015.) |
β’ π = (0gβπΆ) & β’ πΌ = (π₯ β V β¦ if((2nd βπ₯) = 0 , π, (β©β β π· ((πβ(πβ{(2nd βπ₯)})) = (π½β{β}) β§ (πβ(πβ{((1st β(1st βπ₯)) β (2nd βπ₯))})) = (π½β{((2nd β(1st βπ₯))π β)}))))) & β’ 0 = (0gβπ) & β’ (π β π β π΄) & β’ (π β πΉ β π΅) β β’ (π β (πΌββ¨π, πΉ, 0 β©) = π) | ||
Theorem | mapdhval2 41268* | Lemmma for ~? mapdh . (Contributed by NM, 3-Apr-2015.) |
β’ π = (0gβπΆ) & β’ πΌ = (π₯ β V β¦ if((2nd βπ₯) = 0 , π, (β©β β π· ((πβ(πβ{(2nd βπ₯)})) = (π½β{β}) β§ (πβ(πβ{((1st β(1st βπ₯)) β (2nd βπ₯))})) = (π½β{((2nd β(1st βπ₯))π β)}))))) & β’ (π β π β π΄) & β’ (π β πΉ β π΅) & β’ (π β π β (π β { 0 })) β β’ (π β (πΌββ¨π, πΉ, πβ©) = (β©β β π· ((πβ(πβ{π})) = (π½β{β}) β§ (πβ(πβ{(π β π)})) = (π½β{(πΉπ β)})))) | ||
Theorem | mapdhcl 41269* | Lemmma for ~? mapdh . (Contributed by NM, 3-Apr-2015.) |
β’ π = (0gβπΆ) & β’ πΌ = (π₯ β V β¦ if((2nd βπ₯) = 0 , π, (β©β β π· ((πβ(πβ{(2nd βπ₯)})) = (π½β{β}) β§ (πβ(πβ{((1st β(1st βπ₯)) β (2nd βπ₯))})) = (π½β{((2nd β(1st βπ₯))π β)}))))) & β’ π» = (LHypβπΎ) & β’ π = ((mapdβπΎ)βπ) & β’ π = ((DVecHβπΎ)βπ) & β’ π = (Baseβπ) & β’ β = (-gβπ) & β’ 0 = (0gβπ) & β’ π = (LSpanβπ) & β’ πΆ = ((LCDualβπΎ)βπ) & β’ π· = (BaseβπΆ) & β’ π = (-gβπΆ) & β’ π½ = (LSpanβπΆ) & β’ (π β (πΎ β HL β§ π β π»)) & β’ (π β πΉ β π·) & β’ (π β (πβ(πβ{π})) = (π½β{πΉ})) & β’ (π β π β (π β { 0 })) & β’ (π β π β π) & β’ (π β (πβ{π}) β (πβ{π})) β β’ (π β (πΌββ¨π, πΉ, πβ©) β π·) | ||
Theorem | mapdheq 41270* | Lemmma for ~? mapdh . The defining equation for h(x,x',y)=y' in part (2) in [Baer] p. 45 line 24. (Contributed by NM, 4-Apr-2015.) |
β’ π = (0gβπΆ) & β’ πΌ = (π₯ β V β¦ if((2nd βπ₯) = 0 , π, (β©β β π· ((πβ(πβ{(2nd βπ₯)})) = (π½β{β}) β§ (πβ(πβ{((1st β(1st βπ₯)) β (2nd βπ₯))})) = (π½β{((2nd β(1st βπ₯))π β)}))))) & β’ π» = (LHypβπΎ) & β’ π = ((mapdβπΎ)βπ) & β’ π = ((DVecHβπΎ)βπ) & β’ π = (Baseβπ) & β’ β = (-gβπ) & β’ 0 = (0gβπ) & β’ π = (LSpanβπ) & β’ πΆ = ((LCDualβπΎ)βπ) & β’ π· = (BaseβπΆ) & β’ π = (-gβπΆ) & β’ π½ = (LSpanβπΆ) & β’ (π β (πΎ β HL β§ π β π»)) & β’ (π β πΉ β π·) & β’ (π β (πβ(πβ{π})) = (π½β{πΉ})) & β’ (π β π β (π β { 0 })) & β’ (π β π β (π β { 0 })) & β’ (π β πΊ β π·) & β’ (π β (πβ{π}) β (πβ{π})) β β’ (π β ((πΌββ¨π, πΉ, πβ©) = πΊ β ((πβ(πβ{π})) = (π½β{πΊ}) β§ (πβ(πβ{(π β π)})) = (π½β{(πΉπ πΊ)})))) | ||
Theorem | mapdheq2 41271* | Lemmma for ~? mapdh . One direction of part (2) in [Baer] p. 45. (Contributed by NM, 4-Apr-2015.) |
β’ π = (0gβπΆ) & β’ πΌ = (π₯ β V β¦ if((2nd βπ₯) = 0 , π, (β©β β π· ((πβ(πβ{(2nd βπ₯)})) = (π½β{β}) β§ (πβ(πβ{((1st β(1st βπ₯)) β (2nd βπ₯))})) = (π½β{((2nd β(1st βπ₯))π β)}))))) & β’ π» = (LHypβπΎ) & β’ π = ((mapdβπΎ)βπ) & β’ π = ((DVecHβπΎ)βπ) & β’ π = (Baseβπ) & β’ β = (-gβπ) & β’ 0 = (0gβπ) & β’ π = (LSpanβπ) & β’ πΆ = ((LCDualβπΎ)βπ) & β’ π· = (BaseβπΆ) & β’ π = (-gβπΆ) & β’ π½ = (LSpanβπΆ) & β’ (π β (πΎ β HL β§ π β π»)) & β’ (π β πΉ β π·) & β’ (π β (πβ(πβ{π})) = (π½β{πΉ})) & β’ (π β π β (π β { 0 })) & β’ (π β π β (π β { 0 })) & β’ (π β πΊ β π·) & β’ (π β (πβ{π}) β (πβ{π})) β β’ (π β ((πΌββ¨π, πΉ, πβ©) = πΊ β (πΌββ¨π, πΊ, πβ©) = πΉ)) | ||
Theorem | mapdheq2biN 41272* | Lemmma for ~? mapdh . Part (2) in [Baer] p. 45. The bidirectional version of mapdheq2 41271 seems to require an additional hypothesis not mentioned in Baer. TODO fix ref. TODO: We probably don't need this; delete if never used. (Contributed by NM, 4-Apr-2015.) (New usage is discouraged.) |
β’ π = (0gβπΆ) & β’ πΌ = (π₯ β V β¦ if((2nd βπ₯) = 0 , π, (β©β β π· ((πβ(πβ{(2nd βπ₯)})) = (π½β{β}) β§ (πβ(πβ{((1st β(1st βπ₯)) β (2nd βπ₯))})) = (π½β{((2nd β(1st βπ₯))π β)}))))) & β’ π» = (LHypβπΎ) & β’ π = ((mapdβπΎ)βπ) & β’ π = ((DVecHβπΎ)βπ) & β’ π = (Baseβπ) & β’ β = (-gβπ) & β’ 0 = (0gβπ) & β’ π = (LSpanβπ) & β’ πΆ = ((LCDualβπΎ)βπ) & β’ π· = (BaseβπΆ) & β’ π = (-gβπΆ) & β’ π½ = (LSpanβπΆ) & β’ (π β (πΎ β HL β§ π β π»)) & β’ (π β πΉ β π·) & β’ (π β (πβ(πβ{π})) = (π½β{πΉ})) & β’ (π β π β (π β { 0 })) & β’ (π β π β (π β { 0 })) & β’ (π β πΊ β π·) & β’ (π β (πβ{π}) β (πβ{π})) & β’ (π β (πβ(πβ{π})) = (π½β{πΊ})) β β’ (π β ((πΌββ¨π, πΉ, πβ©) = πΊ β (πΌββ¨π, πΊ, πβ©) = πΉ)) | ||
Theorem | mapdheq4lem 41273* | Lemma for mapdheq4 41274. Part (4) in [Baer] p. 46. (Contributed by NM, 12-Apr-2015.) |
β’ π = (0gβπΆ) & β’ πΌ = (π₯ β V β¦ if((2nd βπ₯) = 0 , π, (β©β β π· ((πβ(πβ{(2nd βπ₯)})) = (π½β{β}) β§ (πβ(πβ{((1st β(1st βπ₯)) β (2nd βπ₯))})) = (π½β{((2nd β(1st βπ₯))π β)}))))) & β’ π» = (LHypβπΎ) & β’ π = ((mapdβπΎ)βπ) & β’ π = ((DVecHβπΎ)βπ) & β’ π = (Baseβπ) & β’ β = (-gβπ) & β’ 0 = (0gβπ) & β’ π = (LSpanβπ) & β’ πΆ = ((LCDualβπΎ)βπ) & β’ π· = (BaseβπΆ) & β’ π = (-gβπΆ) & β’ π½ = (LSpanβπΆ) & β’ (π β (πΎ β HL β§ π β π»)) & β’ (π β πΉ β π·) & β’ (π β (πβ(πβ{π})) = (π½β{πΉ})) & β’ (π β π β (π β { 0 })) & β’ (π β π β (π β { 0 })) & β’ (π β π β (π β { 0 })) & β’ (π β Β¬ π β (πβ{π, π})) & β’ (π β (πβ{π}) β (πβ{π})) & β’ (π β (πΌββ¨π, πΉ, πβ©) = πΊ) & β’ (π β (πΌββ¨π, πΉ, πβ©) = πΈ) β β’ (π β (πβ(πβ{(π β π)})) = (π½β{(πΊπ πΈ)})) | ||
Theorem | mapdheq4 41274* | Lemma for ~? mapdh . Part (4) in [Baer] p. 46. (Contributed by NM, 12-Apr-2015.) |
β’ π = (0gβπΆ) & β’ πΌ = (π₯ β V β¦ if((2nd βπ₯) = 0 , π, (β©β β π· ((πβ(πβ{(2nd βπ₯)})) = (π½β{β}) β§ (πβ(πβ{((1st β(1st βπ₯)) β (2nd βπ₯))})) = (π½β{((2nd β(1st βπ₯))π β)}))))) & β’ π» = (LHypβπΎ) & β’ π = ((mapdβπΎ)βπ) & β’ π = ((DVecHβπΎ)βπ) & β’ π = (Baseβπ) & β’ β = (-gβπ) & β’ 0 = (0gβπ) & β’ π = (LSpanβπ) & β’ πΆ = ((LCDualβπΎ)βπ) & β’ π· = (BaseβπΆ) & β’ π = (-gβπΆ) & β’ π½ = (LSpanβπΆ) & β’ (π β (πΎ β HL β§ π β π»)) & β’ (π β πΉ β π·) & β’ (π β (πβ(πβ{π})) = (π½β{πΉ})) & β’ (π β π β (π β { 0 })) & β’ (π β π β (π β { 0 })) & β’ (π β π β (π β { 0 })) & β’ (π β Β¬ π β (πβ{π, π})) & β’ (π β (πβ{π}) β (πβ{π})) & β’ (π β (πΌββ¨π, πΉ, πβ©) = πΊ) & β’ (π β (πΌββ¨π, πΉ, πβ©) = πΈ) β β’ (π β (πΌββ¨π, πΊ, πβ©) = πΈ) | ||
Theorem | mapdh6lem1N 41275* | Lemma for mapdh6N 41289. Part (6) in [Baer] p. 47, lines 16-18. (Contributed by NM, 13-Apr-2015.) (New usage is discouraged.) |
β’ π = (0gβπΆ) & β’ πΌ = (π₯ β V β¦ if((2nd βπ₯) = 0 , π, (β©β β π· ((πβ(πβ{(2nd βπ₯)})) = (π½β{β}) β§ (πβ(πβ{((1st β(1st βπ₯)) β (2nd βπ₯))})) = (π½β{((2nd β(1st βπ₯))π β)}))))) & β’ π» = (LHypβπΎ) & β’ π = ((mapdβπΎ)βπ) & β’ π = ((DVecHβπΎ)βπ) & β’ π = (Baseβπ) & β’ β = (-gβπ) & β’ 0 = (0gβπ) & β’ π = (LSpanβπ) & β’ πΆ = ((LCDualβπΎ)βπ) & β’ π· = (BaseβπΆ) & β’ π = (-gβπΆ) & β’ π½ = (LSpanβπΆ) & β’ (π β (πΎ β HL β§ π β π»)) & β’ (π β πΉ β π·) & β’ (π β (πβ(πβ{π})) = (π½β{πΉ})) & β’ (π β π β (π β { 0 })) & β’ + = (+gβπ) & β’ β = (+gβπΆ) & β’ (π β π β (π β { 0 })) & β’ (π β π β (π β { 0 })) & β’ (π β Β¬ π β (πβ{π, π})) & β’ (π β (πβ{π}) β (πβ{π})) & β’ (π β (πΌββ¨π, πΉ, πβ©) = πΊ) & β’ (π β (πΌββ¨π, πΉ, πβ©) = πΈ) β β’ (π β (πβ(πβ{(π β (π + π))})) = (π½β{(πΉπ (πΊ β πΈ))})) | ||
Theorem | mapdh6lem2N 41276* | Lemma for mapdh6N 41289. Part (6) in [Baer] p. 47, lines 20-22. (Contributed by NM, 13-Apr-2015.) (New usage is discouraged.) |
β’ π = (0gβπΆ) & β’ πΌ = (π₯ β V β¦ if((2nd βπ₯) = 0 , π, (β©β β π· ((πβ(πβ{(2nd βπ₯)})) = (π½β{β}) β§ (πβ(πβ{((1st β(1st βπ₯)) β (2nd βπ₯))})) = (π½β{((2nd β(1st βπ₯))π β)}))))) & β’ π» = (LHypβπΎ) & β’ π = ((mapdβπΎ)βπ) & β’ π = ((DVecHβπΎ)βπ) & β’ π = (Baseβπ) & β’ β = (-gβπ) & β’ 0 = (0gβπ) & β’ π = (LSpanβπ) & β’ πΆ = ((LCDualβπΎ)βπ) & β’ π· = (BaseβπΆ) & β’ π = (-gβπΆ) & β’ π½ = (LSpanβπΆ) & β’ (π β (πΎ β HL β§ π β π»)) & β’ (π β πΉ β π·) & β’ (π β (πβ(πβ{π})) = (π½β{πΉ})) & β’ (π β π β (π β { 0 })) & β’ + = (+gβπ) & β’ β = (+gβπΆ) & β’ (π β π β (π β { 0 })) & β’ (π β π β (π β { 0 })) & β’ (π β Β¬ π β (πβ{π, π})) & β’ (π β (πβ{π}) β (πβ{π})) & β’ (π β (πΌββ¨π, πΉ, πβ©) = πΊ) & β’ (π β (πΌββ¨π, πΉ, πβ©) = πΈ) β β’ (π β (πβ(πβ{(π + π)})) = (π½β{(πΊ β πΈ)})) | ||
Theorem | mapdh6aN 41277* | Lemma for mapdh6N 41289. Part (6) in [Baer] p. 47, case 1. (Contributed by NM, 23-Apr-2015.) (New usage is discouraged.) |
β’ π = (0gβπΆ) & β’ πΌ = (π₯ β V β¦ if((2nd βπ₯) = 0 , π, (β©β β π· ((πβ(πβ{(2nd βπ₯)})) = (π½β{β}) β§ (πβ(πβ{((1st β(1st βπ₯)) β (2nd βπ₯))})) = (π½β{((2nd β(1st βπ₯))π β)}))))) & β’ π» = (LHypβπΎ) & β’ π = ((mapdβπΎ)βπ) & β’ π = ((DVecHβπΎ)βπ) & β’ π = (Baseβπ) & β’ β = (-gβπ) & β’ 0 = (0gβπ) & β’ π = (LSpanβπ) & β’ πΆ = ((LCDualβπΎ)βπ) & β’ π· = (BaseβπΆ) & β’ π = (-gβπΆ) & β’ π½ = (LSpanβπΆ) & β’ (π β (πΎ β HL β§ π β π»)) & β’ (π β πΉ β π·) & β’ (π β (πβ(πβ{π})) = (π½β{πΉ})) & β’ (π β π β (π β { 0 })) & β’ + = (+gβπ) & β’ β = (+gβπΆ) & β’ (π β π β (π β { 0 })) & β’ (π β π β (π β { 0 })) & β’ (π β Β¬ π β (πβ{π, π})) & β’ (π β (πβ{π}) β (πβ{π})) & β’ (π β (πΌββ¨π, πΉ, πβ©) = πΊ) & β’ (π β (πΌββ¨π, πΉ, πβ©) = πΈ) β β’ (π β (πΌββ¨π, πΉ, (π + π)β©) = ((πΌββ¨π, πΉ, πβ©) β (πΌββ¨π, πΉ, πβ©))) | ||
Theorem | mapdh6b0N 41278* | Lemmma for mapdh6N 41289. (Contributed by NM, 23-Apr-2015.) (New usage is discouraged.) |
β’ π = (0gβπΆ) & β’ πΌ = (π₯ β V β¦ if((2nd βπ₯) = 0 , π, (β©β β π· ((πβ(πβ{(2nd βπ₯)})) = (π½β{β}) β§ (πβ(πβ{((1st β(1st βπ₯)) β (2nd βπ₯))})) = (π½β{((2nd β(1st βπ₯))π β)}))))) & β’ π» = (LHypβπΎ) & β’ π = ((mapdβπΎ)βπ) & β’ π = ((DVecHβπΎ)βπ) & β’ π = (Baseβπ) & β’ β = (-gβπ) & β’ 0 = (0gβπ) & β’ π = (LSpanβπ) & β’ πΆ = ((LCDualβπΎ)βπ) & β’ π· = (BaseβπΆ) & β’ π = (-gβπΆ) & β’ π½ = (LSpanβπΆ) & β’ (π β (πΎ β HL β§ π β π»)) & β’ (π β πΉ β π·) & β’ (π β (πβ(πβ{π})) = (π½β{πΉ})) & β’ (π β π β (π β { 0 })) & β’ + = (+gβπ) & β’ β = (+gβπΆ) & β’ (π β π β π) & β’ (π β π β π) & β’ (π β ((πβ{π}) β© (πβ{π, π})) = { 0 }) β β’ (π β Β¬ π β (πβ{π, π})) | ||
Theorem | mapdh6bN 41279* | Lemmma for mapdh6N 41289. (Contributed by NM, 24-Apr-2015.) (New usage is discouraged.) |
β’ π = (0gβπΆ) & β’ πΌ = (π₯ β V β¦ if((2nd βπ₯) = 0 , π, (β©β β π· ((πβ(πβ{(2nd βπ₯)})) = (π½β{β}) β§ (πβ(πβ{((1st β(1st βπ₯)) β (2nd βπ₯))})) = (π½β{((2nd β(1st βπ₯))π β)}))))) & β’ π» = (LHypβπΎ) & β’ π = ((mapdβπΎ)βπ) & β’ π = ((DVecHβπΎ)βπ) & β’ π = (Baseβπ) & β’ β = (-gβπ) & β’ 0 = (0gβπ) & β’ π = (LSpanβπ) & β’ πΆ = ((LCDualβπΎ)βπ) & β’ π· = (BaseβπΆ) & β’ π = (-gβπΆ) & β’ π½ = (LSpanβπΆ) & β’ (π β (πΎ β HL β§ π β π»)) & β’ (π β πΉ β π·) & β’ (π β (πβ(πβ{π})) = (π½β{πΉ})) & β’ (π β π β (π β { 0 })) & β’ + = (+gβπ) & β’ β = (+gβπΆ) & β’ (π β π = 0 ) & β’ (π β π β π) & β’ (π β Β¬ π β (πβ{π, π})) β β’ (π β (πΌββ¨π, πΉ, (π + π)β©) = ((πΌββ¨π, πΉ, πβ©) β (πΌββ¨π, πΉ, πβ©))) | ||
Theorem | mapdh6cN 41280* | Lemmma for mapdh6N 41289. (Contributed by NM, 24-Apr-2015.) (New usage is discouraged.) |
β’ π = (0gβπΆ) & β’ πΌ = (π₯ β V β¦ if((2nd βπ₯) = 0 , π, (β©β β π· ((πβ(πβ{(2nd βπ₯)})) = (π½β{β}) β§ (πβ(πβ{((1st β(1st βπ₯)) β (2nd βπ₯))})) = (π½β{((2nd β(1st βπ₯))π β)}))))) & β’ π» = (LHypβπΎ) & β’ π = ((mapdβπΎ)βπ) & β’ π = ((DVecHβπΎ)βπ) & β’ π = (Baseβπ) & β’ β = (-gβπ) & β’ 0 = (0gβπ) & β’ π = (LSpanβπ) & β’ πΆ = ((LCDualβπΎ)βπ) & β’ π· = (BaseβπΆ) & β’ π = (-gβπΆ) & β’ π½ = (LSpanβπΆ) & β’ (π β (πΎ β HL β§ π β π»)) & β’ (π β πΉ β π·) & β’ (π β (πβ(πβ{π})) = (π½β{πΉ})) & β’ (π β π β (π β { 0 })) & β’ + = (+gβπ) & β’ β = (+gβπΆ) & β’ (π β π β π) & β’ (π β π = 0 ) & β’ (π β Β¬ π β (πβ{π, π})) β β’ (π β (πΌββ¨π, πΉ, (π + π)β©) = ((πΌββ¨π, πΉ, πβ©) β (πΌββ¨π, πΉ, πβ©))) | ||
Theorem | mapdh6dN 41281* | Lemmma for mapdh6N 41289. (Contributed by NM, 1-May-2015.) (New usage is discouraged.) |
β’ π = (0gβπΆ) & β’ πΌ = (π₯ β V β¦ if((2nd βπ₯) = 0 , π, (β©β β π· ((πβ(πβ{(2nd βπ₯)})) = (π½β{β}) β§ (πβ(πβ{((1st β(1st βπ₯)) β (2nd βπ₯))})) = (π½β{((2nd β(1st βπ₯))π β)}))))) & β’ π» = (LHypβπΎ) & β’ π = ((mapdβπΎ)βπ) & β’ π = ((DVecHβπΎ)βπ) & β’ π = (Baseβπ) & β’ β = (-gβπ) & β’ 0 = (0gβπ) & β’ π = (LSpanβπ) & β’ πΆ = ((LCDualβπΎ)βπ) & β’ π· = (BaseβπΆ) & β’ π = (-gβπΆ) & β’ π½ = (LSpanβπΆ) & β’ (π β (πΎ β HL β§ π β π»)) & β’ (π β πΉ β π·) & β’ (π β (πβ(πβ{π})) = (π½β{πΉ})) & β’ (π β π β (π β { 0 })) & β’ + = (+gβπ) & β’ β = (+gβπΆ) & β’ (π β Β¬ π β (πβ{π, π})) & β’ (π β (πβ{π}) = (πβ{π})) & β’ (π β π β (π β { 0 })) & β’ (π β π β (π β { 0 })) & β’ (π β π€ β (π β { 0 })) & β’ (π β Β¬ π€ β (πβ{π, π})) β β’ (π β (πΌββ¨π, πΉ, (π€ + (π + π))β©) = ((πΌββ¨π, πΉ, π€β©) β (πΌββ¨π, πΉ, (π + π)β©))) | ||
Theorem | mapdh6eN 41282* | Lemmma for mapdh6N 41289. Part (6) in [Baer] p. 47 line 38. (Contributed by NM, 1-May-2015.) (New usage is discouraged.) |
β’ π = (0gβπΆ) & β’ πΌ = (π₯ β V β¦ if((2nd βπ₯) = 0 , π, (β©β β π· ((πβ(πβ{(2nd βπ₯)})) = (π½β{β}) β§ (πβ(πβ{((1st β(1st βπ₯)) β (2nd βπ₯))})) = (π½β{((2nd β(1st βπ₯))π β)}))))) & β’ π» = (LHypβπΎ) & β’ π = ((mapdβπΎ)βπ) & β’ π = ((DVecHβπΎ)βπ) & β’ π = (Baseβπ) & β’ β = (-gβπ) & β’ 0 = (0gβπ) & β’ π = (LSpanβπ) & β’ πΆ = ((LCDualβπΎ)βπ) & β’ π· = (BaseβπΆ) & β’ π = (-gβπΆ) & β’ π½ = (LSpanβπΆ) & β’ (π β (πΎ β HL β§ π β π»)) & β’ (π β πΉ β π·) & β’ (π β (πβ(πβ{π})) = (π½β{πΉ})) & β’ (π β π β (π β { 0 })) & β’ + = (+gβπ) & β’ β = (+gβπΆ) & β’ (π β Β¬ π β (πβ{π, π})) & β’ (π β (πβ{π}) = (πβ{π})) & β’ (π β π β (π β { 0 })) & β’ (π β π β (π β { 0 })) & β’ (π β π€ β (π β { 0 })) & β’ (π β Β¬ π€ β (πβ{π, π})) β β’ (π β (πΌββ¨π, πΉ, ((π€ + π) + π)β©) = ((πΌββ¨π, πΉ, (π€ + π)β©) β (πΌββ¨π, πΉ, πβ©))) | ||
Theorem | mapdh6fN 41283* | Lemmma for mapdh6N 41289. Part (6) in [Baer] p. 47 line 38. (Contributed by NM, 1-May-2015.) (New usage is discouraged.) |
β’ π = (0gβπΆ) & β’ πΌ = (π₯ β V β¦ if((2nd βπ₯) = 0 , π, (β©β β π· ((πβ(πβ{(2nd βπ₯)})) = (π½β{β}) β§ (πβ(πβ{((1st β(1st βπ₯)) β (2nd βπ₯))})) = (π½β{((2nd β(1st βπ₯))π β)}))))) & β’ π» = (LHypβπΎ) & β’ π = ((mapdβπΎ)βπ) & β’ π = ((DVecHβπΎ)βπ) & β’ π = (Baseβπ) & β’ β = (-gβπ) & β’ 0 = (0gβπ) & β’ π = (LSpanβπ) & β’ πΆ = ((LCDualβπΎ)βπ) & β’ π· = (BaseβπΆ) & β’ π = (-gβπΆ) & β’ π½ = (LSpanβπΆ) & β’ (π β (πΎ β HL β§ π β π»)) & β’ (π β πΉ β π·) & β’ (π β (πβ(πβ{π})) = (π½β{πΉ})) & β’ (π β π β (π β { 0 })) & β’ + = (+gβπ) & β’ β = (+gβπΆ) & β’ (π β Β¬ π β (πβ{π, π})) & β’ (π β (πβ{π}) = (πβ{π})) & β’ (π β π β (π β { 0 })) & β’ (π β π β (π β { 0 })) & β’ (π β π€ β (π β { 0 })) & β’ (π β Β¬ π€ β (πβ{π, π})) β β’ (π β (πΌββ¨π, πΉ, (π€ + π)β©) = ((πΌββ¨π, πΉ, π€β©) β (πΌββ¨π, πΉ, πβ©))) | ||
Theorem | mapdh6gN 41284* | Lemmma for mapdh6N 41289. Part (6) of [Baer] p. 47 line 39. (Contributed by NM, 1-May-2015.) (New usage is discouraged.) |
β’ π = (0gβπΆ) & β’ πΌ = (π₯ β V β¦ if((2nd βπ₯) = 0 , π, (β©β β π· ((πβ(πβ{(2nd βπ₯)})) = (π½β{β}) β§ (πβ(πβ{((1st β(1st βπ₯)) β (2nd βπ₯))})) = (π½β{((2nd β(1st βπ₯))π β)}))))) & β’ π» = (LHypβπΎ) & β’ π = ((mapdβπΎ)βπ) & β’ π = ((DVecHβπΎ)βπ) & β’ π = (Baseβπ) & β’ β = (-gβπ) & β’ 0 = (0gβπ) & β’ π = (LSpanβπ) & β’ πΆ = ((LCDualβπΎ)βπ) & β’ π· = (BaseβπΆ) & β’ π = (-gβπΆ) & β’ π½ = (LSpanβπΆ) & β’ (π β (πΎ β HL β§ π β π»)) & β’ (π β πΉ β π·) & β’ (π β (πβ(πβ{π})) = (π½β{πΉ})) & β’ (π β π β (π β { 0 })) & β’ + = (+gβπ) & β’ β = (+gβπΆ) & β’ (π β Β¬ π β (πβ{π, π})) & β’ (π β (πβ{π}) = (πβ{π})) & β’ (π β π β (π β { 0 })) & β’ (π β π β (π β { 0 })) & β’ (π β π€ β (π β { 0 })) & β’ (π β Β¬ π€ β (πβ{π, π})) β β’ (π β ((πΌββ¨π, πΉ, π€β©) β (πΌββ¨π, πΉ, (π + π)β©)) = (((πΌββ¨π, πΉ, π€β©) β (πΌββ¨π, πΉ, πβ©)) β (πΌββ¨π, πΉ, πβ©))) | ||
Theorem | mapdh6hN 41285* | Lemmma for mapdh6N 41289. Part (6) of [Baer] p. 48 line 2. (Contributed by NM, 1-May-2015.) (New usage is discouraged.) |
β’ π = (0gβπΆ) & β’ πΌ = (π₯ β V β¦ if((2nd βπ₯) = 0 , π, (β©β β π· ((πβ(πβ{(2nd βπ₯)})) = (π½β{β}) β§ (πβ(πβ{((1st β(1st βπ₯)) β (2nd βπ₯))})) = (π½β{((2nd β(1st βπ₯))π β)}))))) & β’ π» = (LHypβπΎ) & β’ π = ((mapdβπΎ)βπ) & β’ π = ((DVecHβπΎ)βπ) & β’ π = (Baseβπ) & β’ β = (-gβπ) & β’ 0 = (0gβπ) & β’ π = (LSpanβπ) & β’ πΆ = ((LCDualβπΎ)βπ) & β’ π· = (BaseβπΆ) & β’ π = (-gβπΆ) & β’ π½ = (LSpanβπΆ) & β’ (π β (πΎ β HL β§ π β π»)) & β’ (π β πΉ β π·) & β’ (π β (πβ(πβ{π})) = (π½β{πΉ})) & β’ (π β π β (π β { 0 })) & β’ + = (+gβπ) & β’ β = (+gβπΆ) & β’ (π β Β¬ π β (πβ{π, π})) & β’ (π β (πβ{π}) = (πβ{π})) & β’ (π β π β (π β { 0 })) & β’ (π β π β (π β { 0 })) & β’ (π β π€ β (π β { 0 })) & β’ (π β Β¬ π€ β (πβ{π, π})) β β’ (π β (πΌββ¨π, πΉ, (π + π)β©) = ((πΌββ¨π, πΉ, πβ©) β (πΌββ¨π, πΉ, πβ©))) | ||
Theorem | mapdh6iN 41286* | Lemmma for mapdh6N 41289. Eliminate auxiliary vector π€. (Contributed by NM, 1-May-2015.) (New usage is discouraged.) |
β’ π = (0gβπΆ) & β’ πΌ = (π₯ β V β¦ if((2nd βπ₯) = 0 , π, (β©β β π· ((πβ(πβ{(2nd βπ₯)})) = (π½β{β}) β§ (πβ(πβ{((1st β(1st βπ₯)) β (2nd βπ₯))})) = (π½β{((2nd β(1st βπ₯))π β)}))))) & β’ π» = (LHypβπΎ) & β’ π = ((mapdβπΎ)βπ) & β’ π = ((DVecHβπΎ)βπ) & β’ π = (Baseβπ) & β’ β = (-gβπ) & β’ 0 = (0gβπ) & β’ π = (LSpanβπ) & β’ πΆ = ((LCDualβπΎ)βπ) & β’ π· = (BaseβπΆ) & β’ π = (-gβπΆ) & β’ π½ = (LSpanβπΆ) & β’ (π β (πΎ β HL β§ π β π»)) & β’ (π β πΉ β π·) & β’ (π β (πβ(πβ{π})) = (π½β{πΉ})) & β’ (π β π β (π β { 0 })) & β’ + = (+gβπ) & β’ β = (+gβπΆ) & β’ (π β Β¬ π β (πβ{π, π})) & β’ (π β π β (π β { 0 })) & β’ (π β π β (π β { 0 })) & β’ (π β (πβ{π}) = (πβ{π})) β β’ (π β (πΌββ¨π, πΉ, (π + π)β©) = ((πΌββ¨π, πΉ, πβ©) β (πΌββ¨π, πΉ, πβ©))) | ||
Theorem | mapdh6jN 41287* | Lemmma for mapdh6N 41289. Eliminate (πβ{π}) = (πβ{π}) hypothesis. (Contributed by NM, 1-May-2015.) (New usage is discouraged.) |
β’ π = (0gβπΆ) & β’ πΌ = (π₯ β V β¦ if((2nd βπ₯) = 0 , π, (β©β β π· ((πβ(πβ{(2nd βπ₯)})) = (π½β{β}) β§ (πβ(πβ{((1st β(1st βπ₯)) β (2nd βπ₯))})) = (π½β{((2nd β(1st βπ₯))π β)}))))) & β’ π» = (LHypβπΎ) & β’ π = ((mapdβπΎ)βπ) & β’ π = ((DVecHβπΎ)βπ) & β’ π = (Baseβπ) & β’ β = (-gβπ) & β’ 0 = (0gβπ) & β’ π = (LSpanβπ) & β’ πΆ = ((LCDualβπΎ)βπ) & β’ π· = (BaseβπΆ) & β’ π = (-gβπΆ) & β’ π½ = (LSpanβπΆ) & β’ (π β (πΎ β HL β§ π β π»)) & β’ (π β πΉ β π·) & β’ (π β (πβ(πβ{π})) = (π½β{πΉ})) & β’ (π β π β (π β { 0 })) & β’ + = (+gβπ) & β’ β = (+gβπΆ) & β’ (π β Β¬ π β (πβ{π, π})) & β’ (π β π β (π β { 0 })) & β’ (π β π β (π β { 0 })) β β’ (π β (πΌββ¨π, πΉ, (π + π)β©) = ((πΌββ¨π, πΉ, πβ©) β (πΌββ¨π, πΉ, πβ©))) | ||
Theorem | mapdh6kN 41288* | Lemmma for mapdh6N 41289. Eliminate nonzero vector requirement. (Contributed by NM, 1-May-2015.) (New usage is discouraged.) |
β’ π = (0gβπΆ) & β’ πΌ = (π₯ β V β¦ if((2nd βπ₯) = 0 , π, (β©β β π· ((πβ(πβ{(2nd βπ₯)})) = (π½β{β}) β§ (πβ(πβ{((1st β(1st βπ₯)) β (2nd βπ₯))})) = (π½β{((2nd β(1st βπ₯))π β)}))))) & β’ π» = (LHypβπΎ) & β’ π = ((mapdβπΎ)βπ) & β’ π = ((DVecHβπΎ)βπ) & β’ π = (Baseβπ) & β’ β = (-gβπ) & β’ 0 = (0gβπ) & β’ π = (LSpanβπ) & β’ πΆ = ((LCDualβπΎ)βπ) & β’ π· = (BaseβπΆ) & β’ π = (-gβπΆ) & β’ π½ = (LSpanβπΆ) & β’ (π β (πΎ β HL β§ π β π»)) & β’ (π β πΉ β π·) & β’ (π β (πβ(πβ{π})) = (π½β{πΉ})) & β’ (π β π β (π β { 0 })) & β’ + = (+gβπ) & β’ β = (+gβπΆ) & β’ (π β π β π) & β’ (π β π β π) & β’ (π β Β¬ π β (πβ{π, π})) β β’ (π β (πΌββ¨π, πΉ, (π + π)β©) = ((πΌββ¨π, πΉ, πβ©) β (πΌββ¨π, πΉ, πβ©))) | ||
Theorem | mapdh6N 41289* | Part (6) of [Baer] p. 47 line 6. Note that we use Β¬ π β (πβ{π, π}) which is equivalent to Baer's "Fx β© (Fy + Fz)" by lspdisjb 21018. TODO: If disjoint variable conditions with πΌ and π become a problem later, use cbv* theorems on πΌ variables here to get rid of them. Maybe reorder hypotheses in lemmas to the more consistent order of this theorem, so they can be shared with this theorem. TODO: may be deleted (with its lemmas), if not needed, in view of hdmap1l6 41363. (Contributed by NM, 1-May-2015.) (New usage is discouraged.) |
β’ π» = (LHypβπΎ) & β’ π = ((DVecHβπΎ)βπ) & β’ π = (Baseβπ) & β’ + = (+gβπ) & β’ β = (-gβπ) & β’ 0 = (0gβπ) & β’ π = (LSpanβπ) & β’ πΆ = ((LCDualβπΎ)βπ) & β’ π· = (BaseβπΆ) & β’ β = (+gβπΆ) & β’ π = (-gβπΆ) & β’ π = (0gβπΆ) & β’ π½ = (LSpanβπΆ) & β’ π = ((mapdβπΎ)βπ) & β’ πΌ = (π₯ β V β¦ if((2nd βπ₯) = 0 , π, (β©β β π· ((πβ(πβ{(2nd βπ₯)})) = (π½β{β}) β§ (πβ(πβ{((1st β(1st βπ₯)) β (2nd βπ₯))})) = (π½β{((2nd β(1st βπ₯))π β)}))))) & β’ (π β (πΎ β HL β§ π β π»)) & β’ (π β πΉ β π·) & β’ (π β π β (π β { 0 })) & β’ (π β π β π) & β’ (π β π β π) & β’ (π β Β¬ π β (πβ{π, π})) & β’ (π β (πβ(πβ{π})) = (π½β{πΉ})) β β’ (π β (πΌββ¨π, πΉ, (π + π)β©) = ((πΌββ¨π, πΉ, πβ©) β (πΌββ¨π, πΉ, πβ©))) | ||
Theorem | mapdh7eN 41290* | Part (7) of [Baer] p. 48 line 10 (5 of 6 cases). (Note: 1 of 6 and 2 of 6 are hypotheses a and b.) (Contributed by NM, 2-May-2015.) (New usage is discouraged.) |
β’ π» = (LHypβπΎ) & β’ π = ((DVecHβπΎ)βπ) & β’ π = (Baseβπ) & β’ β = (-gβπ) & β’ 0 = (0gβπ) & β’ π = (LSpanβπ) & β’ πΆ = ((LCDualβπΎ)βπ) & β’ π· = (BaseβπΆ) & β’ π = (-gβπΆ) & β’ π = (0gβπΆ) & β’ π½ = (LSpanβπΆ) & β’ π = ((mapdβπΎ)βπ) & β’ πΌ = (π₯ β V β¦ if((2nd βπ₯) = 0 , π, (β©β β π· ((πβ(πβ{(2nd βπ₯)})) = (π½β{β}) β§ (πβ(πβ{((1st β(1st βπ₯)) β (2nd βπ₯))})) = (π½β{((2nd β(1st βπ₯))π β)}))))) & β’ (π β (πΎ β HL β§ π β π»)) & β’ (π β πΉ β π·) & β’ (π β (πβ(πβ{π’})) = (π½β{πΉ})) & β’ (π β π’ β (π β { 0 })) & β’ (π β π£ β (π β { 0 })) & β’ (π β π€ β (π β { 0 })) & β’ (π β (πβ{π’}) β (πβ{π£})) & β’ (π β Β¬ π€ β (πβ{π’, π£})) & β’ (π β (πΌββ¨π’, πΉ, π€β©) = πΈ) β β’ (π β (πΌββ¨π€, πΈ, π’β©) = πΉ) | ||
Theorem | mapdh7cN 41291* | Part (7) of [Baer] p. 48 line 10 (3 of 6 cases). (Contributed by NM, 2-May-2015.) (New usage is discouraged.) |
β’ π» = (LHypβπΎ) & β’ π = ((DVecHβπΎ)βπ) & β’ π = (Baseβπ) & β’ β = (-gβπ) & β’ 0 = (0gβπ) & β’ π = (LSpanβπ) & β’ πΆ = ((LCDualβπΎ)βπ) & β’ π· = (BaseβπΆ) & β’ π = (-gβπΆ) & β’ π = (0gβπΆ) & β’ π½ = (LSpanβπΆ) & β’ π = ((mapdβπΎ)βπ) & β’ πΌ = (π₯ β V β¦ if((2nd βπ₯) = 0 , π, (β©β β π· ((πβ(πβ{(2nd βπ₯)})) = (π½β{β}) β§ (πβ(πβ{((1st β(1st βπ₯)) β (2nd βπ₯))})) = (π½β{((2nd β(1st βπ₯))π β)}))))) & β’ (π β (πΎ β HL β§ π β π»)) & β’ (π β πΉ β π·) & β’ (π β (πβ(πβ{π’})) = (π½β{πΉ})) & β’ (π β π’ β (π β { 0 })) & β’ (π β π£ β (π β { 0 })) & β’ (π β π€ β (π β { 0 })) & β’ (π β (πβ{π’}) β (πβ{π£})) & β’ (π β Β¬ π€ β (πβ{π’, π£})) & β’ (π β (πΌββ¨π’, πΉ, π£β©) = πΊ) β β’ (π β (πΌββ¨π£, πΊ, π’β©) = πΉ) | ||
Theorem | mapdh7dN 41292* | Part (7) of [Baer] p. 48 line 10 (4 of 6 cases). (Contributed by NM, 2-May-2015.) (New usage is discouraged.) |
β’ π» = (LHypβπΎ) & β’ π = ((DVecHβπΎ)βπ) & β’ π = (Baseβπ) & β’ β = (-gβπ) & β’ 0 = (0gβπ) & β’ π = (LSpanβπ) & β’ πΆ = ((LCDualβπΎ)βπ) & β’ π· = (BaseβπΆ) & β’ π = (-gβπΆ) & β’ π = (0gβπΆ) & β’ π½ = (LSpanβπΆ) & β’ π = ((mapdβπΎ)βπ) & β’ πΌ = (π₯ β V β¦ if((2nd βπ₯) = 0 , π, (β©β β π· ((πβ(πβ{(2nd βπ₯)})) = (π½β{β}) β§ (πβ(πβ{((1st β(1st βπ₯)) β (2nd βπ₯))})) = (π½β{((2nd β(1st βπ₯))π β)}))))) & β’ (π β (πΎ β HL β§ π β π»)) & β’ (π β πΉ β π·) & β’ (π β (πβ(πβ{π’})) = (π½β{πΉ})) & β’ (π β π’ β (π β { 0 })) & β’ (π β π£ β (π β { 0 })) & β’ (π β π€ β (π β { 0 })) & β’ (π β (πβ{π’}) β (πβ{π£})) & β’ (π β Β¬ π€ β (πβ{π’, π£})) & β’ (π β (πΌββ¨π’, πΉ, π£β©) = πΊ) & β’ (π β (πΌββ¨π’, πΉ, π€β©) = πΈ) β β’ (π β (πΌββ¨π£, πΊ, π€β©) = πΈ) | ||
Theorem | mapdh7fN 41293* | Part (7) of [Baer] p. 48 line 10 (6 of 6 cases). (Contributed by NM, 2-May-2015.) (New usage is discouraged.) |
β’ π» = (LHypβπΎ) & β’ π = ((DVecHβπΎ)βπ) & β’ π = (Baseβπ) & β’ β = (-gβπ) & β’ 0 = (0gβπ) & β’ π = (LSpanβπ) & β’ πΆ = ((LCDualβπΎ)βπ) & β’ π· = (BaseβπΆ) & β’ π = (-gβπΆ) & β’ π = (0gβπΆ) & β’ π½ = (LSpanβπΆ) & β’ π = ((mapdβπΎ)βπ) & β’ πΌ = (π₯ β V β¦ if((2nd βπ₯) = 0 , π, (β©β β π· ((πβ(πβ{(2nd βπ₯)})) = (π½β{β}) β§ (πβ(πβ{((1st β(1st βπ₯)) β (2nd βπ₯))})) = (π½β{((2nd β(1st βπ₯))π β)}))))) & β’ (π β (πΎ β HL β§ π β π»)) & β’ (π β πΉ β π·) & β’ (π β (πβ(πβ{π’})) = (π½β{πΉ})) & β’ (π β π’ β (π β { 0 })) & β’ (π β π£ β (π β { 0 })) & β’ (π β π€ β (π β { 0 })) & β’ (π β (πβ{π’}) β (πβ{π£})) & β’ (π β Β¬ π€ β (πβ{π’, π£})) & β’ (π β (πΌββ¨π’, πΉ, π£β©) = πΊ) & β’ (π β (πΌββ¨π’, πΉ, π€β©) = πΈ) β β’ (π β (πΌββ¨π€, πΈ, π£β©) = πΊ) | ||
Theorem | mapdh75e 41294* | Part (7) of [Baer] p. 48 line 10 (5 of 6 cases). π, π, π are Baer's u, v, w. (Note: Cases 1 of 6 and 2 of 6 are hypotheses mapdh75b here and mapdh75a in mapdh75cN 41295.) (Contributed by NM, 2-May-2015.) |
β’ π» = (LHypβπΎ) & β’ π = ((DVecHβπΎ)βπ) & β’ π = (Baseβπ) & β’ β = (-gβπ) & β’ 0 = (0gβπ) & β’ π = (LSpanβπ) & β’ πΆ = ((LCDualβπΎ)βπ) & β’ π· = (BaseβπΆ) & β’ π = (-gβπΆ) & β’ π = (0gβπΆ) & β’ π½ = (LSpanβπΆ) & β’ π = ((mapdβπΎ)βπ) & β’ πΌ = (π₯ β V β¦ if((2nd βπ₯) = 0 , π, (β©β β π· ((πβ(πβ{(2nd βπ₯)})) = (π½β{β}) β§ (πβ(πβ{((1st β(1st βπ₯)) β (2nd βπ₯))})) = (π½β{((2nd β(1st βπ₯))π β)}))))) & β’ (π β (πΎ β HL β§ π β π»)) & β’ (π β πΉ β π·) & β’ (π β (πβ(πβ{π})) = (π½β{πΉ})) & β’ (π β (πΌββ¨π, πΉ, πβ©) = πΈ) & β’ (π β (πβ{π}) β (πβ{π})) & β’ (π β π β (π β { 0 })) & β’ (π β π β (π β { 0 })) β β’ (π β (πΌββ¨π, πΈ, πβ©) = πΉ) | ||
Theorem | mapdh75cN 41295* | Part (7) of [Baer] p. 48 line 10 (3 of 6 cases). (Contributed by NM, 2-May-2015.) (New usage is discouraged.) |
β’ π» = (LHypβπΎ) & β’ π = ((DVecHβπΎ)βπ) & β’ π = (Baseβπ) & β’ β = (-gβπ) & β’ 0 = (0gβπ) & β’ π = (LSpanβπ) & β’ πΆ = ((LCDualβπΎ)βπ) & β’ π· = (BaseβπΆ) & β’ π = (-gβπΆ) & β’ π = (0gβπΆ) & β’ π½ = (LSpanβπΆ) & β’ π = ((mapdβπΎ)βπ) & β’ πΌ = (π₯ β V β¦ if((2nd βπ₯) = 0 , π, (β©β β π· ((πβ(πβ{(2nd βπ₯)})) = (π½β{β}) β§ (πβ(πβ{((1st β(1st βπ₯)) β (2nd βπ₯))})) = (π½β{((2nd β(1st βπ₯))π β)}))))) & β’ (π β (πΎ β HL β§ π β π»)) & β’ (π β πΉ β π·) & β’ (π β (πβ(πβ{π})) = (π½β{πΉ})) & β’ (π β (πΌββ¨π, πΉ, πβ©) = πΊ) & β’ (π β (πβ{π}) β (πβ{π})) & β’ (π β π β (π β { 0 })) & β’ (π β π β (π β { 0 })) β β’ (π β (πΌββ¨π, πΊ, πβ©) = πΉ) | ||
Theorem | mapdh75d 41296* | Part (7) of [Baer] p. 48 line 10 (4 of 6 cases). (Contributed by NM, 2-May-2015.) |
β’ π» = (LHypβπΎ) & β’ π = ((DVecHβπΎ)βπ) & β’ π = (Baseβπ) & β’ β = (-gβπ) & β’ 0 = (0gβπ) & β’ π = (LSpanβπ) & β’ πΆ = ((LCDualβπΎ)βπ) & β’ π· = (BaseβπΆ) & β’ π = (-gβπΆ) & β’ π = (0gβπΆ) & β’ π½ = (LSpanβπΆ) & β’ π = ((mapdβπΎ)βπ) & β’ πΌ = (π₯ β V β¦ if((2nd βπ₯) = 0 , π, (β©β β π· ((πβ(πβ{(2nd βπ₯)})) = (π½β{β}) β§ (πβ(πβ{((1st β(1st βπ₯)) β (2nd βπ₯))})) = (π½β{((2nd β(1st βπ₯))π β)}))))) & β’ (π β (πΎ β HL β§ π β π»)) & β’ (π β πΉ β π·) & β’ (π β (πβ(πβ{π})) = (π½β{πΉ})) & β’ (π β (πΌββ¨π, πΉ, πβ©) = πΊ) & β’ (π β (πΌββ¨π, πΉ, πβ©) = πΈ) & β’ (π β (πβ{π}) β (πβ{π})) & β’ (π β Β¬ π β (πβ{π, π})) & β’ (π β π β (π β { 0 })) & β’ (π β π β (π β { 0 })) & β’ (π β π β (π β { 0 })) β β’ (π β (πΌββ¨π, πΊ, πβ©) = πΈ) | ||
Theorem | mapdh75fN 41297* | Part (7) of [Baer] p. 48 line 10 (6 of 6 cases). (Contributed by NM, 2-May-2015.) (New usage is discouraged.) |
β’ π» = (LHypβπΎ) & β’ π = ((DVecHβπΎ)βπ) & β’ π = (Baseβπ) & β’ β = (-gβπ) & β’ 0 = (0gβπ) & β’ π = (LSpanβπ) & β’ πΆ = ((LCDualβπΎ)βπ) & β’ π· = (BaseβπΆ) & β’ π = (-gβπΆ) & β’ π = (0gβπΆ) & β’ π½ = (LSpanβπΆ) & β’ π = ((mapdβπΎ)βπ) & β’ πΌ = (π₯ β V β¦ if((2nd βπ₯) = 0 , π, (β©β β π· ((πβ(πβ{(2nd βπ₯)})) = (π½β{β}) β§ (πβ(πβ{((1st β(1st βπ₯)) β (2nd βπ₯))})) = (π½β{((2nd β(1st βπ₯))π β)}))))) & β’ (π β (πΎ β HL β§ π β π»)) & β’ (π β πΉ β π·) & β’ (π β (πβ(πβ{π})) = (π½β{πΉ})) & β’ (π β (πΌββ¨π, πΉ, πβ©) = πΊ) & β’ (π β (πΌββ¨π, πΉ, πβ©) = πΈ) & β’ (π β (πβ{π}) β (πβ{π})) & β’ (π β Β¬ π β (πβ{π, π})) & β’ (π β π β (π β { 0 })) & β’ (π β π β (π β { 0 })) & β’ (π β π β (π β { 0 })) β β’ (π β (πΌββ¨π, πΈ, πβ©) = πΊ) | ||
Syntax | chvm 41298 | Extend class notation with vector to dual map. |
class HVMap | ||
Definition | df-hvmap 41299* | Extend class notation with a map from each nonzero vector π₯ to a unique nonzero functional in the closed kernel dual space. (We could extend it to include the zero vector, but that is unnecessary for our purposes.) TODO: This pattern is used several times earlier, e.g., lcf1o 41093, dochfl1 41018- should we update those to use this definition? (Contributed by NM, 23-Mar-2015.) |
β’ HVMap = (π β V β¦ (π€ β (LHypβπ) β¦ (π₯ β ((Baseβ((DVecHβπ)βπ€)) β {(0gβ((DVecHβπ)βπ€))}) β¦ (π£ β (Baseβ((DVecHβπ)βπ€)) β¦ (β©π β (Baseβ(Scalarβ((DVecHβπ)βπ€)))βπ‘ β (((ocHβπ)βπ€)β{π₯})π£ = (π‘(+gβ((DVecHβπ)βπ€))(π( Β·π β((DVecHβπ)βπ€))π₯))))))) | ||
Theorem | hvmapffval 41300* | Map from nonzero vectors to nonzero functionals in the closed kernel dual space. (Contributed by NM, 23-Mar-2015.) |
β’ π» = (LHypβπΎ) β β’ (πΎ β π β (HVMapβπΎ) = (π€ β π» β¦ (π₯ β ((Baseβ((DVecHβπΎ)βπ€)) β {(0gβ((DVecHβπΎ)βπ€))}) β¦ (π£ β (Baseβ((DVecHβπΎ)βπ€)) β¦ (β©π β (Baseβ(Scalarβ((DVecHβπΎ)βπ€)))βπ‘ β (((ocHβπΎ)βπ€)β{π₯})π£ = (π‘(+gβ((DVecHβπΎ)βπ€))(π( Β·π β((DVecHβπΎ)βπ€))π₯))))))) |
< Previous Next > |
Copyright terms: Public domain | < Previous Next > |