Home | Metamath
Proof Explorer Theorem List (p. 413 of 464) | < Previous Next > |
Bad symbols? Try the
GIF version. |
||
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
Color key: | Metamath Proof Explorer
(1-29181) |
Hilbert Space Explorer
(29182-30704) |
Users' Mathboxes
(30705-46395) |
Type | Label | Description |
---|---|---|
Statement | ||
Theorem | relexpiidm 41201 | Any power of any restriction of the identity relation is itself. (Contributed by RP, 12-Jun-2020.) |
⊢ ((𝐴 ∈ 𝑉 ∧ 𝑁 ∈ ℕ0) → (( I ↾ 𝐴)↑𝑟𝑁) = ( I ↾ 𝐴)) | ||
Theorem | relexpss1d 41202 | The relational power of a subset is a subset. (Contributed by RP, 17-Jun-2020.) |
⊢ (𝜑 → 𝐴 ⊆ 𝐵) & ⊢ (𝜑 → 𝐵 ∈ V) & ⊢ (𝜑 → 𝑁 ∈ ℕ0) ⇒ ⊢ (𝜑 → (𝐴↑𝑟𝑁) ⊆ (𝐵↑𝑟𝑁)) | ||
Theorem | comptiunov2i 41203* | The composition two indexed unions is sometimes a similar indexed union. (Contributed by RP, 10-Jun-2020.) |
⊢ 𝑋 = (𝑎 ∈ V ↦ ∪ 𝑖 ∈ 𝐼 (𝑎 ↑ 𝑖)) & ⊢ 𝑌 = (𝑏 ∈ V ↦ ∪ 𝑗 ∈ 𝐽 (𝑏 ↑ 𝑗)) & ⊢ 𝑍 = (𝑐 ∈ V ↦ ∪ 𝑘 ∈ 𝐾 (𝑐 ↑ 𝑘)) & ⊢ 𝐼 ∈ V & ⊢ 𝐽 ∈ V & ⊢ 𝐾 = (𝐼 ∪ 𝐽) & ⊢ ∪ 𝑘 ∈ 𝐼 (𝑑 ↑ 𝑘) ⊆ ∪ 𝑖 ∈ 𝐼 (∪ 𝑗 ∈ 𝐽 (𝑑 ↑ 𝑗) ↑ 𝑖) & ⊢ ∪ 𝑘 ∈ 𝐽 (𝑑 ↑ 𝑘) ⊆ ∪ 𝑖 ∈ 𝐼 (∪ 𝑗 ∈ 𝐽 (𝑑 ↑ 𝑗) ↑ 𝑖) & ⊢ ∪ 𝑖 ∈ 𝐼 (∪ 𝑗 ∈ 𝐽 (𝑑 ↑ 𝑗) ↑ 𝑖) ⊆ ∪ 𝑘 ∈ (𝐼 ∪ 𝐽)(𝑑 ↑ 𝑘) ⇒ ⊢ (𝑋 ∘ 𝑌) = 𝑍 | ||
Theorem | corclrcl 41204 | The reflexive closure is idempotent. (Contributed by RP, 13-Jun-2020.) |
⊢ (r* ∘ r*) = r* | ||
Theorem | iunrelexpmin1 41205* | The indexed union of relation exponentiation over the natural numbers is the minimum transitive relation that includes the relation. (Contributed by RP, 4-Jun-2020.) |
⊢ 𝐶 = (𝑟 ∈ V ↦ ∪ 𝑛 ∈ 𝑁 (𝑟↑𝑟𝑛)) ⇒ ⊢ ((𝑅 ∈ 𝑉 ∧ 𝑁 = ℕ) → ∀𝑠((𝑅 ⊆ 𝑠 ∧ (𝑠 ∘ 𝑠) ⊆ 𝑠) → (𝐶‘𝑅) ⊆ 𝑠)) | ||
Theorem | relexpmulnn 41206 | With exponents limited to the counting numbers, the composition of powers of a relation is the relation raised to the product of exponents. (Contributed by RP, 13-Jun-2020.) |
⊢ (((𝑅 ∈ 𝑉 ∧ 𝐼 = (𝐽 · 𝐾)) ∧ (𝐽 ∈ ℕ ∧ 𝐾 ∈ ℕ)) → ((𝑅↑𝑟𝐽)↑𝑟𝐾) = (𝑅↑𝑟𝐼)) | ||
Theorem | relexpmulg 41207 | With ordered exponents, the composition of powers of a relation is the relation raised to the product of exponents. (Contributed by RP, 13-Jun-2020.) |
⊢ (((𝑅 ∈ 𝑉 ∧ 𝐼 = (𝐽 · 𝐾) ∧ (𝐼 = 0 → 𝐽 ≤ 𝐾)) ∧ (𝐽 ∈ ℕ0 ∧ 𝐾 ∈ ℕ0)) → ((𝑅↑𝑟𝐽)↑𝑟𝐾) = (𝑅↑𝑟𝐼)) | ||
Theorem | trclrelexplem 41208* | The union of relational powers to positive multiples of 𝑁 is a subset to the transitive closure raised to the power of 𝑁. (Contributed by RP, 15-Jun-2020.) |
⊢ (𝑁 ∈ ℕ → ∪ 𝑘 ∈ ℕ ((𝐷↑𝑟𝑘)↑𝑟𝑁) ⊆ (∪ 𝑗 ∈ ℕ (𝐷↑𝑟𝑗)↑𝑟𝑁)) | ||
Theorem | iunrelexpmin2 41209* | The indexed union of relation exponentiation over the natural numbers (including zero) is the minimum reflexive-transitive relation that includes the relation. (Contributed by RP, 4-Jun-2020.) |
⊢ 𝐶 = (𝑟 ∈ V ↦ ∪ 𝑛 ∈ 𝑁 (𝑟↑𝑟𝑛)) ⇒ ⊢ ((𝑅 ∈ 𝑉 ∧ 𝑁 = ℕ0) → ∀𝑠((( I ↾ (dom 𝑅 ∪ ran 𝑅)) ⊆ 𝑠 ∧ 𝑅 ⊆ 𝑠 ∧ (𝑠 ∘ 𝑠) ⊆ 𝑠) → (𝐶‘𝑅) ⊆ 𝑠)) | ||
Theorem | relexp01min 41210 | With exponents limited to 0 and 1, the composition of powers of a relation is the relation raised to the minimum of exponents. (Contributed by RP, 12-Jun-2020.) |
⊢ (((𝑅 ∈ 𝑉 ∧ 𝐼 = if(𝐽 < 𝐾, 𝐽, 𝐾)) ∧ (𝐽 ∈ {0, 1} ∧ 𝐾 ∈ {0, 1})) → ((𝑅↑𝑟𝐽)↑𝑟𝐾) = (𝑅↑𝑟𝐼)) | ||
Theorem | relexp1idm 41211 | Repeated raising a relation to the first power is idempotent. (Contributed by RP, 12-Jun-2020.) |
⊢ (𝑅 ∈ 𝑉 → ((𝑅↑𝑟1)↑𝑟1) = (𝑅↑𝑟1)) | ||
Theorem | relexp0idm 41212 | Repeated raising a relation to the zeroth power is idempotent. (Contributed by RP, 12-Jun-2020.) |
⊢ (𝑅 ∈ 𝑉 → ((𝑅↑𝑟0)↑𝑟0) = (𝑅↑𝑟0)) | ||
Theorem | relexp0a 41213 | Absorbtion law for zeroth power of a relation. (Contributed by RP, 17-Jun-2020.) |
⊢ ((𝐴 ∈ 𝑉 ∧ 𝑁 ∈ ℕ0) → ((𝐴↑𝑟𝑁)↑𝑟0) ⊆ (𝐴↑𝑟0)) | ||
Theorem | relexpxpmin 41214 | The composition of powers of a Cartesian product of non-disjoint sets is the Cartesian product raised to the minimum exponent. (Contributed by RP, 13-Jun-2020.) |
⊢ (((𝐴 ∈ 𝑈 ∧ 𝐵 ∈ 𝑉 ∧ (𝐴 ∩ 𝐵) ≠ ∅) ∧ (𝐼 = if(𝐽 < 𝐾, 𝐽, 𝐾) ∧ 𝐽 ∈ ℕ0 ∧ 𝐾 ∈ ℕ0)) → (((𝐴 × 𝐵)↑𝑟𝐽)↑𝑟𝐾) = ((𝐴 × 𝐵)↑𝑟𝐼)) | ||
Theorem | relexpaddss 41215 | The composition of two powers of a relation is a subset of the relation raised to the sum of those exponents. This is equality where 𝑅 is a relation as shown by relexpaddd 14693 or when the sum of the powers isn't 1 as shown by relexpaddg 14692. (Contributed by RP, 3-Jun-2020.) |
⊢ ((𝑁 ∈ ℕ0 ∧ 𝑀 ∈ ℕ0 ∧ 𝑅 ∈ 𝑉) → ((𝑅↑𝑟𝑁) ∘ (𝑅↑𝑟𝑀)) ⊆ (𝑅↑𝑟(𝑁 + 𝑀))) | ||
Theorem | iunrelexpuztr 41216* | The indexed union of relation exponentiation over upper integers is a transive relation. Generalized from rtrclreclem3 14699. (Contributed by RP, 4-Jun-2020.) |
⊢ 𝐶 = (𝑟 ∈ V ↦ ∪ 𝑛 ∈ 𝑁 (𝑟↑𝑟𝑛)) ⇒ ⊢ ((𝑅 ∈ 𝑉 ∧ 𝑁 = (ℤ≥‘𝑀) ∧ 𝑀 ∈ ℕ0) → ((𝐶‘𝑅) ∘ (𝐶‘𝑅)) ⊆ (𝐶‘𝑅)) | ||
Theorem | dftrcl3 41217* | Transitive closure of a relation, expressed as indexed union of powers of relations. (Contributed by RP, 5-Jun-2020.) |
⊢ t+ = (𝑟 ∈ V ↦ ∪ 𝑛 ∈ ℕ (𝑟↑𝑟𝑛)) | ||
Theorem | brfvtrcld 41218* | If two elements are connected by the transitive closure of a relation, then they are connected via 𝑛 instances the relation, for some counting number 𝑛. (Contributed by RP, 22-Jul-2020.) |
⊢ (𝜑 → 𝑅 ∈ V) ⇒ ⊢ (𝜑 → (𝐴(t+‘𝑅)𝐵 ↔ ∃𝑛 ∈ ℕ 𝐴(𝑅↑𝑟𝑛)𝐵)) | ||
Theorem | fvtrcllb1d 41219 | A set is a subset of its image under the transitive closure. (Contributed by RP, 22-Jul-2020.) |
⊢ (𝜑 → 𝑅 ∈ V) ⇒ ⊢ (𝜑 → 𝑅 ⊆ (t+‘𝑅)) | ||
Theorem | trclfvcom 41220 | The transitive closure of a relation commutes with the relation. (Contributed by RP, 18-Jul-2020.) |
⊢ (𝑅 ∈ 𝑉 → ((t+‘𝑅) ∘ 𝑅) = (𝑅 ∘ (t+‘𝑅))) | ||
Theorem | cnvtrclfv 41221 | The converse of the transitive closure is equal to the transitive closure of the converse relation. (Contributed by RP, 19-Jul-2020.) |
⊢ (𝑅 ∈ 𝑉 → ◡(t+‘𝑅) = (t+‘◡𝑅)) | ||
Theorem | cotrcltrcl 41222 | The transitive closure is idempotent. (Contributed by RP, 16-Jun-2020.) |
⊢ (t+ ∘ t+) = t+ | ||
Theorem | trclimalb2 41223 | Lower bound for image under a transitive closure. (Contributed by RP, 1-Jul-2020.) |
⊢ ((𝑅 ∈ 𝑉 ∧ (𝑅 “ (𝐴 ∪ 𝐵)) ⊆ 𝐵) → ((t+‘𝑅) “ 𝐴) ⊆ 𝐵) | ||
Theorem | brtrclfv2 41224* | Two ways to indicate two elements are related by the transitive closure of a relation. (Contributed by RP, 1-Jul-2020.) |
⊢ ((𝑋 ∈ 𝑈 ∧ 𝑌 ∈ 𝑉 ∧ 𝑅 ∈ 𝑊) → (𝑋(t+‘𝑅)𝑌 ↔ 𝑌 ∈ ∩ {𝑓 ∣ (𝑅 “ ({𝑋} ∪ 𝑓)) ⊆ 𝑓})) | ||
Theorem | trclfvdecomr 41225 | The transitive closure of a relation may be decomposed into a union of the relation and the composition of the relation with its transitive closure. (Contributed by RP, 18-Jul-2020.) |
⊢ (𝑅 ∈ 𝑉 → (t+‘𝑅) = (𝑅 ∪ ((t+‘𝑅) ∘ 𝑅))) | ||
Theorem | trclfvdecoml 41226 | The transitive closure of a relation may be decomposed into a union of the relation and the composition of the relation with its transitive closure. (Contributed by RP, 18-Jul-2020.) |
⊢ (𝑅 ∈ 𝑉 → (t+‘𝑅) = (𝑅 ∪ (𝑅 ∘ (t+‘𝑅)))) | ||
Theorem | dmtrclfvRP 41227 | The domain of the transitive closure is equal to the domain of the relation. (Contributed by RP, 18-Jul-2020.) (Proof modification is discouraged.) |
⊢ (𝑅 ∈ 𝑉 → dom (t+‘𝑅) = dom 𝑅) | ||
Theorem | rntrclfvRP 41228 | The range of the transitive closure is equal to the range of the relation. (Contributed by RP, 19-Jul-2020.) (Proof modification is discouraged.) |
⊢ (𝑅 ∈ 𝑉 → ran (t+‘𝑅) = ran 𝑅) | ||
Theorem | rntrclfv 41229 | The range of the transitive closure is equal to the range of the relation. (Contributed by RP, 18-Jul-2020.) (Proof modification is discouraged.) |
⊢ (𝑅 ∈ 𝑉 → ran (t+‘𝑅) = ran 𝑅) | ||
Theorem | dfrtrcl3 41230* | Reflexive-transitive closure of a relation, expressed as indexed union of powers of relations. Generalized from dfrtrcl2 14701. (Contributed by RP, 5-Jun-2020.) |
⊢ t* = (𝑟 ∈ V ↦ ∪ 𝑛 ∈ ℕ0 (𝑟↑𝑟𝑛)) | ||
Theorem | brfvrtrcld 41231* | If two elements are connected by the reflexive-transitive closure of a relation, then they are connected via 𝑛 instances the relation, for some natural number 𝑛. Similar of dfrtrclrec2 14697. (Contributed by RP, 22-Jul-2020.) |
⊢ (𝜑 → 𝑅 ∈ V) ⇒ ⊢ (𝜑 → (𝐴(t*‘𝑅)𝐵 ↔ ∃𝑛 ∈ ℕ0 𝐴(𝑅↑𝑟𝑛)𝐵)) | ||
Theorem | fvrtrcllb0d 41232 | A restriction of the identity relation is a subset of the reflexive-transitive closure of a set. (Contributed by RP, 22-Jul-2020.) |
⊢ (𝜑 → 𝑅 ∈ V) ⇒ ⊢ (𝜑 → ( I ↾ (dom 𝑅 ∪ ran 𝑅)) ⊆ (t*‘𝑅)) | ||
Theorem | fvrtrcllb0da 41233 | A restriction of the identity relation is a subset of the reflexive-transitive closure of a relation. (Contributed by RP, 22-Jul-2020.) |
⊢ (𝜑 → Rel 𝑅) & ⊢ (𝜑 → 𝑅 ∈ V) ⇒ ⊢ (𝜑 → ( I ↾ ∪ ∪ 𝑅) ⊆ (t*‘𝑅)) | ||
Theorem | fvrtrcllb1d 41234 | A set is a subset of its image under the reflexive-transitive closure. (Contributed by RP, 22-Jul-2020.) |
⊢ (𝜑 → 𝑅 ∈ V) ⇒ ⊢ (𝜑 → 𝑅 ⊆ (t*‘𝑅)) | ||
Theorem | dfrtrcl4 41235 | Reflexive-transitive closure of a relation, expressed as the union of the zeroth power and the transitive closure. (Contributed by RP, 5-Jun-2020.) |
⊢ t* = (𝑟 ∈ V ↦ ((𝑟↑𝑟0) ∪ (t+‘𝑟))) | ||
Theorem | corcltrcl 41236 | The composition of the reflexive and transitive closures is the reflexive-transitive closure. (Contributed by RP, 17-Jun-2020.) |
⊢ (r* ∘ t+) = t* | ||
Theorem | cortrcltrcl 41237 | Composition with the reflexive-transitive closure absorbs the transitive closure. (Contributed by RP, 13-Jun-2020.) |
⊢ (t* ∘ t+) = t* | ||
Theorem | corclrtrcl 41238 | Composition with the reflexive-transitive closure absorbs the reflexive closure. (Contributed by RP, 13-Jun-2020.) |
⊢ (r* ∘ t*) = t* | ||
Theorem | cotrclrcl 41239 | The composition of the reflexive and transitive closures is the reflexive-transitive closure. (Contributed by RP, 21-Jun-2020.) |
⊢ (t+ ∘ r*) = t* | ||
Theorem | cortrclrcl 41240 | Composition with the reflexive-transitive closure absorbs the reflexive closure. (Contributed by RP, 13-Jun-2020.) |
⊢ (t* ∘ r*) = t* | ||
Theorem | cotrclrtrcl 41241 | Composition with the reflexive-transitive closure absorbs the transitive closure. (Contributed by RP, 13-Jun-2020.) |
⊢ (t+ ∘ t*) = t* | ||
Theorem | cortrclrtrcl 41242 | The reflexive-transitive closure is idempotent. (Contributed by RP, 13-Jun-2020.) |
⊢ (t* ∘ t*) = t* | ||
Theorems inspired by Begriffsschrift without restricting form and content to closely parallel those in [Frege1879]. | ||
Theorem | frege77d 41243 | If the images of both {𝐴} and 𝑈 are subsets of 𝑈 and 𝐵 follows 𝐴 in the transitive closure of 𝑅, then 𝐵 is an element of 𝑈. Similar to Proposition 77 of [Frege1879] p. 62. Compare with frege77 41437. (Contributed by RP, 15-Jul-2020.) |
⊢ (𝜑 → 𝑅 ∈ V) & ⊢ (𝜑 → 𝐴 ∈ V) & ⊢ (𝜑 → 𝐵 ∈ V) & ⊢ (𝜑 → 𝐴(t+‘𝑅)𝐵) & ⊢ (𝜑 → (𝑅 “ 𝑈) ⊆ 𝑈) & ⊢ (𝜑 → (𝑅 “ {𝐴}) ⊆ 𝑈) ⇒ ⊢ (𝜑 → 𝐵 ∈ 𝑈) | ||
Theorem | frege81d 41244 | If the image of 𝑈 is a subset 𝑈, 𝐴 is an element of 𝑈 and 𝐵 follows 𝐴 in the transitive closure of 𝑅, then 𝐵 is an element of 𝑈. Similar to Proposition 81 of [Frege1879] p. 63. Compare with frege81 41441. (Contributed by RP, 15-Jul-2020.) |
⊢ (𝜑 → 𝑅 ∈ V) & ⊢ (𝜑 → 𝐴 ∈ 𝑈) & ⊢ (𝜑 → 𝐵 ∈ V) & ⊢ (𝜑 → 𝐴(t+‘𝑅)𝐵) & ⊢ (𝜑 → (𝑅 “ 𝑈) ⊆ 𝑈) ⇒ ⊢ (𝜑 → 𝐵 ∈ 𝑈) | ||
Theorem | frege83d 41245 | If the image of the union of 𝑈 and 𝑉 is a subset of the union of 𝑈 and 𝑉, 𝐴 is an element of 𝑈 and 𝐵 follows 𝐴 in the transitive closure of 𝑅, then 𝐵 is an element of the union of 𝑈 and 𝑉. Similar to Proposition 83 of [Frege1879] p. 65. Compare with frege83 41443. (Contributed by RP, 15-Jul-2020.) |
⊢ (𝜑 → 𝑅 ∈ V) & ⊢ (𝜑 → 𝐴 ∈ 𝑈) & ⊢ (𝜑 → 𝐵 ∈ V) & ⊢ (𝜑 → 𝐴(t+‘𝑅)𝐵) & ⊢ (𝜑 → (𝑅 “ (𝑈 ∪ 𝑉)) ⊆ (𝑈 ∪ 𝑉)) ⇒ ⊢ (𝜑 → 𝐵 ∈ (𝑈 ∪ 𝑉)) | ||
Theorem | frege96d 41246 | If 𝐶 follows 𝐴 in the transitive closure of 𝑅 and 𝐵 follows 𝐶 in 𝑅, then 𝐵 follows 𝐴 in the transitive closure of 𝑅. Similar to Proposition 96 of [Frege1879] p. 71. Compare with frege96 41456. (Contributed by RP, 15-Jul-2020.) |
⊢ (𝜑 → 𝑅 ∈ V) & ⊢ (𝜑 → 𝐴 ∈ V) & ⊢ (𝜑 → 𝐵 ∈ V) & ⊢ (𝜑 → 𝐶 ∈ V) & ⊢ (𝜑 → 𝐴(t+‘𝑅)𝐶) & ⊢ (𝜑 → 𝐶𝑅𝐵) ⇒ ⊢ (𝜑 → 𝐴(t+‘𝑅)𝐵) | ||
Theorem | frege87d 41247 | If the images of both {𝐴} and 𝑈 are subsets of 𝑈 and 𝐶 follows 𝐴 in the transitive closure of 𝑅 and 𝐵 follows 𝐶 in 𝑅, then 𝐵 is an element of 𝑈. Similar to Proposition 87 of [Frege1879] p. 66. Compare with frege87 41447. (Contributed by RP, 15-Jul-2020.) |
⊢ (𝜑 → 𝑅 ∈ V) & ⊢ (𝜑 → 𝐴 ∈ V) & ⊢ (𝜑 → 𝐵 ∈ V) & ⊢ (𝜑 → 𝐶 ∈ V) & ⊢ (𝜑 → 𝐴(t+‘𝑅)𝐶) & ⊢ (𝜑 → 𝐶𝑅𝐵) & ⊢ (𝜑 → (𝑅 “ {𝐴}) ⊆ 𝑈) & ⊢ (𝜑 → (𝑅 “ 𝑈) ⊆ 𝑈) ⇒ ⊢ (𝜑 → 𝐵 ∈ 𝑈) | ||
Theorem | frege91d 41248 | If 𝐵 follows 𝐴 in 𝑅 then 𝐵 follows 𝐴 in the transitive closure of 𝑅. Similar to Proposition 91 of [Frege1879] p. 68. Comparw with frege91 41451. (Contributed by RP, 15-Jul-2020.) |
⊢ (𝜑 → 𝑅 ∈ V) & ⊢ (𝜑 → 𝐴𝑅𝐵) ⇒ ⊢ (𝜑 → 𝐴(t+‘𝑅)𝐵) | ||
Theorem | frege97d 41249 | If 𝐴 contains all elements after those in 𝑈 in the transitive closure of 𝑅, then the image under 𝑅 of 𝐴 is a subclass of 𝐴. Similar to Proposition 97 of [Frege1879] p. 71. Compare with frege97 41457. (Contributed by RP, 15-Jul-2020.) |
⊢ (𝜑 → 𝑅 ∈ V) & ⊢ (𝜑 → 𝐴 = ((t+‘𝑅) “ 𝑈)) ⇒ ⊢ (𝜑 → (𝑅 “ 𝐴) ⊆ 𝐴) | ||
Theorem | frege98d 41250 | If 𝐶 follows 𝐴 and 𝐵 follows 𝐶 in the transitive closure of 𝑅, then 𝐵 follows 𝐴 in the transitive closure of 𝑅. Similar to Proposition 98 of [Frege1879] p. 71. Compare with frege98 41458. (Contributed by RP, 15-Jul-2020.) |
⊢ (𝜑 → 𝐴 ∈ V) & ⊢ (𝜑 → 𝐵 ∈ V) & ⊢ (𝜑 → 𝐶 ∈ V) & ⊢ (𝜑 → 𝐴(t+‘𝑅)𝐶) & ⊢ (𝜑 → 𝐶(t+‘𝑅)𝐵) ⇒ ⊢ (𝜑 → 𝐴(t+‘𝑅)𝐵) | ||
Theorem | frege102d 41251 | If either 𝐴 and 𝐶 are the same or 𝐶 follows 𝐴 in the transitive closure of 𝑅 and 𝐵 is the successor to 𝐶, then 𝐵 follows 𝐴 in the transitive closure of 𝑅. Similar to Proposition 102 of [Frege1879] p. 72. Compare with frege102 41462. (Contributed by RP, 15-Jul-2020.) |
⊢ (𝜑 → 𝑅 ∈ V) & ⊢ (𝜑 → 𝐴 ∈ V) & ⊢ (𝜑 → 𝐵 ∈ V) & ⊢ (𝜑 → 𝐶 ∈ V) & ⊢ (𝜑 → (𝐴(t+‘𝑅)𝐶 ∨ 𝐴 = 𝐶)) & ⊢ (𝜑 → 𝐶𝑅𝐵) ⇒ ⊢ (𝜑 → 𝐴(t+‘𝑅)𝐵) | ||
Theorem | frege106d 41252 | If 𝐵 follows 𝐴 in 𝑅, then either 𝐴 and 𝐵 are the same or 𝐵 follows 𝐴 in 𝑅. Similar to Proposition 106 of [Frege1879] p. 73. Compare with frege106 41466. (Contributed by RP, 15-Jul-2020.) |
⊢ (𝜑 → 𝐴𝑅𝐵) ⇒ ⊢ (𝜑 → (𝐴𝑅𝐵 ∨ 𝐴 = 𝐵)) | ||
Theorem | frege108d 41253 | If either 𝐴 and 𝐶 are the same or 𝐶 follows 𝐴 in the transitive closure of 𝑅 and 𝐵 is the successor to 𝐶, then either 𝐴 and 𝐵 are the same or 𝐵 follows 𝐴 in the transitive closure of 𝑅. Similar to Proposition 108 of [Frege1879] p. 74. Compare with frege108 41468. (Contributed by RP, 15-Jul-2020.) |
⊢ (𝜑 → 𝑅 ∈ V) & ⊢ (𝜑 → 𝐴 ∈ V) & ⊢ (𝜑 → 𝐵 ∈ V) & ⊢ (𝜑 → 𝐶 ∈ V) & ⊢ (𝜑 → (𝐴(t+‘𝑅)𝐶 ∨ 𝐴 = 𝐶)) & ⊢ (𝜑 → 𝐶𝑅𝐵) ⇒ ⊢ (𝜑 → (𝐴(t+‘𝑅)𝐵 ∨ 𝐴 = 𝐵)) | ||
Theorem | frege109d 41254 | If 𝐴 contains all elements of 𝑈 and all elements after those in 𝑈 in the transitive closure of 𝑅, then the image under 𝑅 of 𝐴 is a subclass of 𝐴. Similar to Proposition 109 of [Frege1879] p. 74. Compare with frege109 41469. (Contributed by RP, 15-Jul-2020.) |
⊢ (𝜑 → 𝑅 ∈ V) & ⊢ (𝜑 → 𝐴 = (𝑈 ∪ ((t+‘𝑅) “ 𝑈))) ⇒ ⊢ (𝜑 → (𝑅 “ 𝐴) ⊆ 𝐴) | ||
Theorem | frege114d 41255 | If either 𝑅 relates 𝐴 and 𝐵 or 𝐴 and 𝐵 are the same, then either 𝐴 and 𝐵 are the same, 𝑅 relates 𝐴 and 𝐵, 𝑅 relates 𝐵 and 𝐴. Similar to Proposition 114 of [Frege1879] p. 76. Compare with frege114 41474. (Contributed by RP, 15-Jul-2020.) |
⊢ (𝜑 → (𝐴𝑅𝐵 ∨ 𝐴 = 𝐵)) ⇒ ⊢ (𝜑 → (𝐴𝑅𝐵 ∨ 𝐴 = 𝐵 ∨ 𝐵𝑅𝐴)) | ||
Theorem | frege111d 41256 | If either 𝐴 and 𝐶 are the same or 𝐶 follows 𝐴 in the transitive closure of 𝑅 and 𝐵 is the successor to 𝐶, then either 𝐴 and 𝐵 are the same or 𝐴 follows 𝐵 or 𝐵 and 𝐴 in the transitive closure of 𝑅. Similar to Proposition 111 of [Frege1879] p. 75. Compare with frege111 41471. (Contributed by RP, 15-Jul-2020.) |
⊢ (𝜑 → 𝑅 ∈ V) & ⊢ (𝜑 → 𝐴 ∈ V) & ⊢ (𝜑 → 𝐵 ∈ V) & ⊢ (𝜑 → 𝐶 ∈ V) & ⊢ (𝜑 → (𝐴(t+‘𝑅)𝐶 ∨ 𝐴 = 𝐶)) & ⊢ (𝜑 → 𝐶𝑅𝐵) ⇒ ⊢ (𝜑 → (𝐴(t+‘𝑅)𝐵 ∨ 𝐴 = 𝐵 ∨ 𝐵(t+‘𝑅)𝐴)) | ||
Theorem | frege122d 41257 | If 𝐹 is a function, 𝐴 is the successor of 𝑋, and 𝐵 is the successor of 𝑋, then 𝐴 and 𝐵 are the same (or 𝐵 follows 𝐴 in the transitive closure of 𝐹). Similar to Proposition 122 of [Frege1879] p. 79. Compare with frege122 41482. (Contributed by RP, 15-Jul-2020.) |
⊢ (𝜑 → 𝐴 = (𝐹‘𝑋)) & ⊢ (𝜑 → 𝐵 = (𝐹‘𝑋)) ⇒ ⊢ (𝜑 → (𝐴(t+‘𝐹)𝐵 ∨ 𝐴 = 𝐵)) | ||
Theorem | frege124d 41258 | If 𝐹 is a function, 𝐴 is the successor of 𝑋, and 𝐵 follows 𝑋 in the transitive closure of 𝐹, then 𝐴 and 𝐵 are the same or 𝐵 follows 𝐴 in the transitive closure of 𝐹. Similar to Proposition 124 of [Frege1879] p. 80. Compare with frege124 41484. (Contributed by RP, 16-Jul-2020.) |
⊢ (𝜑 → 𝐹 ∈ V) & ⊢ (𝜑 → 𝑋 ∈ dom 𝐹) & ⊢ (𝜑 → 𝐴 = (𝐹‘𝑋)) & ⊢ (𝜑 → 𝑋(t+‘𝐹)𝐵) & ⊢ (𝜑 → Fun 𝐹) ⇒ ⊢ (𝜑 → (𝐴(t+‘𝐹)𝐵 ∨ 𝐴 = 𝐵)) | ||
Theorem | frege126d 41259 | If 𝐹 is a function, 𝐴 is the successor of 𝑋, and 𝐵 follows 𝑋 in the transitive closure of 𝐹, then (for distinct 𝐴 and 𝐵) either 𝐴 follows 𝐵 or 𝐵 follows 𝐴 in the transitive closure of 𝐹. Similar to Proposition 126 of [Frege1879] p. 81. Compare with frege126 41486. (Contributed by RP, 16-Jul-2020.) |
⊢ (𝜑 → 𝐹 ∈ V) & ⊢ (𝜑 → 𝑋 ∈ dom 𝐹) & ⊢ (𝜑 → 𝐴 = (𝐹‘𝑋)) & ⊢ (𝜑 → 𝑋(t+‘𝐹)𝐵) & ⊢ (𝜑 → Fun 𝐹) ⇒ ⊢ (𝜑 → (𝐴(t+‘𝐹)𝐵 ∨ 𝐴 = 𝐵 ∨ 𝐵(t+‘𝐹)𝐴)) | ||
Theorem | frege129d 41260 | If 𝐹 is a function and (for distinct 𝐴 and 𝐵) either 𝐴 follows 𝐵 or 𝐵 follows 𝐴 in the transitive closure of 𝐹, the successor of 𝐴 is either 𝐵 or it follows 𝐵 or it comes before 𝐵 in the transitive closure of 𝐹. Similar to Proposition 129 of [Frege1879] p. 83. Comparw with frege129 41489. (Contributed by RP, 16-Jul-2020.) |
⊢ (𝜑 → 𝐹 ∈ V) & ⊢ (𝜑 → 𝐴 ∈ dom 𝐹) & ⊢ (𝜑 → 𝐶 = (𝐹‘𝐴)) & ⊢ (𝜑 → (𝐴(t+‘𝐹)𝐵 ∨ 𝐴 = 𝐵 ∨ 𝐵(t+‘𝐹)𝐴)) & ⊢ (𝜑 → Fun 𝐹) ⇒ ⊢ (𝜑 → (𝐵(t+‘𝐹)𝐶 ∨ 𝐵 = 𝐶 ∨ 𝐶(t+‘𝐹)𝐵)) | ||
Theorem | frege131d 41261 | If 𝐹 is a function and 𝐴 contains all elements of 𝑈 and all elements before or after those elements of 𝑈 in the transitive closure of 𝐹, then the image under 𝐹 of 𝐴 is a subclass of 𝐴. Similar to Proposition 131 of [Frege1879] p. 85. Compare with frege131 41491. (Contributed by RP, 17-Jul-2020.) |
⊢ (𝜑 → 𝐹 ∈ V) & ⊢ (𝜑 → 𝐴 = (𝑈 ∪ ((◡(t+‘𝐹) “ 𝑈) ∪ ((t+‘𝐹) “ 𝑈)))) & ⊢ (𝜑 → Fun 𝐹) ⇒ ⊢ (𝜑 → (𝐹 “ 𝐴) ⊆ 𝐴) | ||
Theorem | frege133d 41262 | If 𝐹 is a function and 𝐴 and 𝐵 both follow 𝑋 in the transitive closure of 𝐹, then (for distinct 𝐴 and 𝐵) either 𝐴 follows 𝐵 or 𝐵 follows 𝐴 in the transitive closure of 𝐹 (or both if it loops). Similar to Proposition 133 of [Frege1879] p. 86. Compare with frege133 41493. (Contributed by RP, 18-Jul-2020.) |
⊢ (𝜑 → 𝐹 ∈ V) & ⊢ (𝜑 → 𝑋(t+‘𝐹)𝐴) & ⊢ (𝜑 → 𝑋(t+‘𝐹)𝐵) & ⊢ (𝜑 → Fun 𝐹) ⇒ ⊢ (𝜑 → (𝐴(t+‘𝐹)𝐵 ∨ 𝐴 = 𝐵 ∨ 𝐵(t+‘𝐹)𝐴)) | ||
In 1879, Frege introduced notation for documenting formal reasoning about propositions (and classes) which covered elements of propositional logic, predicate calculus and reasoning about relations. However, due to the pitfalls of naive set theory, adapting this work for inclusion in set.mm required dividing statements about propositions from those about classes and identifying when a restriction to sets is required. For an overview comparing the details of Frege's two-dimensional notation and that used in set.mm, see mmfrege.html. See ru 3710 for discussion of an example of a class that is not a set. Numbered propositions from [Frege1879]. ax-frege1 41287, ax-frege2 41288, ax-frege8 41306, ax-frege28 41327, ax-frege31 41331, ax-frege41 41342, frege52 (see ax-frege52a 41354, frege52b 41386, and ax-frege52c 41385 for translations), frege54 (see ax-frege54a 41359, frege54b 41390 and ax-frege54c 41389 for translations) and frege58 (see ax-frege58a 41372, ax-frege58b 41398 and frege58c 41418 for translations) are considered "core" or axioms. However, at least ax-frege8 41306 can be derived from ax-frege1 41287 and ax-frege2 41288, see axfrege8 41304. Frege introduced implication, negation and the universal quantifier as primitives and did not in the numbered propositions use other logical connectives other than equivalence introduced in ax-frege52a 41354, frege52b 41386, and ax-frege52c 41385. In dffrege69 41429, Frege introduced 𝑅 hereditary 𝐴 to say that relation 𝑅, when restricted to operate on elements of class 𝐴, will only have elements of class 𝐴 in its domain; see df-he 41270 for a definition in terms of image and subset. In dffrege76 41436, Frege introduced notation for the concept of two sets related by the transitive closure of a relation, for which we write 𝑋(t+‘𝑅)𝑌, which requires 𝑅 to also be a set. In dffrege99 41459, Frege introduced notation for the concept of two sets either identical or related by the transitive closure of a relation, for which we write 𝑋((t+‘𝑅) ∪ I )𝑌, which is a superclass of sets related by the reflexive-transitive relation 𝑋(t*‘𝑅)𝑌. Finally, in dffrege115 41475, Frege introduced notation for the concept of a relation having the property elements in its domain pair up with only one element each in its range, for which we write Fun ◡◡𝑅 (to ignore any non-relational content of the class 𝑅). Frege did this without the expressing concept of a relation (or its transitive closure) as a class, and needed to invent conventions for discussing indeterminate propositions with two slots free and how to recognize which of the slots was domain and which was range. See mmfrege.html 41475 for details. English translations for specific propositions lifted in part from a translation by Stefan Bauer-Mengelberg as reprinted in From Frege to Goedel: A Source Book in Mathematical Logic, 1879-1931. An attempt to align these propositions in the larger set.mm database has also been made. See frege77d 41243 for an example. | ||
Section 2 introduces the turnstile ⊢ which turns an idea which may be true 𝜑 into an assertion that it does hold true ⊢ 𝜑. Section 5 introduces implication, (𝜑 → 𝜓). Section 6 introduces the single rule of interference relied upon, modus ponens ax-mp 5. Section 7 introduces negation and with in synonyms for or (¬ 𝜑 → 𝜓), and ¬ (𝜑 → ¬ 𝜓), and two for exclusive-or corresponding to df-or 844, df-an 396, dfxor4 41263, dfxor5 41264. Section 8 introduces the problematic notation for identity of conceptual content which must be separated into cases for biconditional (𝜑 ↔ 𝜓) or class equality 𝐴 = 𝐵 in this adaptation. Section 10 introduces "truth functions" for one or two variables in equally troubling notation, as the arguments may be understood to be logical predicates or collections. Here f(𝜑) is interpreted to mean if-(𝜑, 𝜓, 𝜒) where the content of the "function" is specified by the latter two argments or logical equivalent, while g(𝐴) is read as 𝐴 ∈ 𝐺 and h(𝐴, 𝐵) as 𝐴𝐻𝐵. This necessarily introduces a need for set theory as both 𝐴 ∈ 𝐺 and 𝐴𝐻𝐵 cannot hold unless 𝐴 is a set. (Also 𝐵.) Section 11 introduces notation for generality, but there is no standard notation for generality when the variable is a proposition because it was realized after Frege that the universe of all possible propositions includes paradoxical constructions leading to the failure of naive set theory. So adopting f(𝜑) as if-(𝜑, 𝜓, 𝜒) would result in the translation of ∀𝜑 f (𝜑) as (𝜓 ∧ 𝜒). For collections, we must generalize over set variables or run into the same problems; this leads to ∀𝐴 g(𝐴) being translated as ∀𝑎𝑎 ∈ 𝐺 and so forth. Under this interpreation the text of section 11 gives us sp 2178 (or simpl 482 and simpr 484 and anifp 1068 in the propositional case) and statements similar to cbvalivw 2011, ax-gen 1799, alrimiv 1931, and alrimdv 1933. These last four introduce a generality and have no useful definition in terms of propositional variables. Section 12 introduces some combinations of primitive symbols and their human language counterparts. Using class notation, these can also be expressed without dummy variables. All are A, ∀𝑥𝑥 ∈ 𝐴, ¬ ∃𝑥¬ 𝑥 ∈ 𝐴 alex 1829, 𝐴 = V eqv 3431; Some are not B, ¬ ∀𝑥𝑥 ∈ 𝐵, ∃𝑥¬ 𝑥 ∈ 𝐵 exnal 1830, 𝐵 ⊊ V pssv 4377, 𝐵 ≠ V nev 41267; There are no C, ∀𝑥¬ 𝑥 ∈ 𝐶, ¬ ∃𝑥𝑥 ∈ 𝐶 alnex 1785, 𝐶 = ∅ eq0 4274; There exist D, ¬ ∀𝑥¬ 𝑥 ∈ 𝐷, ∃𝑥𝑥 ∈ 𝐷 df-ex 1784, ∅ ⊊ 𝐷 0pss 4375, 𝐷 ≠ ∅ n0 4277. Notation for relations between expressions also can be written in various ways. All E are P, ∀𝑥(𝑥 ∈ 𝐸 → 𝑥 ∈ 𝑃), ¬ ∃𝑥(𝑥 ∈ 𝐸 ∧ ¬ 𝑥 ∈ 𝑃) dfss6 3906, 𝐸 = (𝐸 ∩ 𝑃) df-ss 3900, 𝐸 ⊆ 𝑃 dfss2 3903; No F are P, ∀𝑥(𝑥 ∈ 𝐹 → ¬ 𝑥 ∈ 𝑃), ¬ ∃𝑥(𝑥 ∈ 𝐹 ∧ 𝑥 ∈ 𝑃) alinexa 1846, (𝐹 ∩ 𝑃) = ∅ disj1 4381; Some G are not P, ¬ ∀𝑥(𝑥 ∈ 𝐺 → 𝑥 ∈ 𝑃), ∃𝑥(𝑥 ∈ 𝐺 ∧ ¬ 𝑥 ∈ 𝑃) exanali 1863, (𝐺 ∩ 𝑃) ⊊ 𝐺 nssinpss 4187, ¬ 𝐺 ⊆ 𝑃 nss 3979; Some H are P, ¬ ∀𝑥(𝑥 ∈ 𝐻 → ¬ 𝑥 ∈ 𝑃), ∃𝑥(𝑥 ∈ 𝐻 ∧ 𝑥 ∈ 𝑃) exnalimn 1847, ∅ ⊊ (𝐻 ∩ 𝑃) 0pssin 41268, (𝐻 ∩ 𝑃) ≠ ∅ ndisj 4298. | ||
Theorem | dfxor4 41263 | Express exclusive-or in terms of implication and negation. Statement in [Frege1879] p. 12. (Contributed by RP, 14-Apr-2020.) |
⊢ ((𝜑 ⊻ 𝜓) ↔ ¬ ((¬ 𝜑 → 𝜓) → ¬ (𝜑 → ¬ 𝜓))) | ||
Theorem | dfxor5 41264 | Express exclusive-or in terms of implication and negation. Statement in [Frege1879] p. 12. (Contributed by RP, 14-Apr-2020.) |
⊢ ((𝜑 ⊻ 𝜓) ↔ ¬ ((𝜑 → ¬ 𝜓) → ¬ (¬ 𝜑 → 𝜓))) | ||
Theorem | df3or2 41265 | Express triple-or in terms of implication and negation. Statement in [Frege1879] p. 11. (Contributed by RP, 25-Jul-2020.) |
⊢ ((𝜑 ∨ 𝜓 ∨ 𝜒) ↔ (¬ 𝜑 → (¬ 𝜓 → 𝜒))) | ||
Theorem | df3an2 41266 | Express triple-and in terms of implication and negation. Statement in [Frege1879] p. 12. (Contributed by RP, 25-Jul-2020.) |
⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) ↔ ¬ (𝜑 → (𝜓 → ¬ 𝜒))) | ||
Theorem | nev 41267* | Express that not every set is in a class. (Contributed by RP, 16-Apr-2020.) |
⊢ (𝐴 ≠ V ↔ ¬ ∀𝑥 𝑥 ∈ 𝐴) | ||
Theorem | 0pssin 41268* | Express that an intersection is not empty. (Contributed by RP, 16-Apr-2020.) |
⊢ (∅ ⊊ (𝐴 ∩ 𝐵) ↔ ∃𝑥(𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵)) | ||
The statement 𝑅 hereditary 𝐴 means relation 𝑅 is hereditary (in the sense of Frege) in the class 𝐴 or (𝑅 “ 𝐴) ⊆ 𝐴. The former is only a slight reduction in the number of symbols, but this reduces the number of floating hypotheses needed to be checked. As Frege was not using the language of classes or sets, this naturally differs from the set-theoretic notion that a set is hereditary in a property: that all of its elements have a property and all of their elements have the property and so-on. | ||
Syntax | whe 41269 | The property of relation 𝑅 being hereditary in class 𝐴. |
wff 𝑅 hereditary 𝐴 | ||
Definition | df-he 41270 | The property of relation 𝑅 being hereditary in class 𝐴. (Contributed by RP, 27-Mar-2020.) |
⊢ (𝑅 hereditary 𝐴 ↔ (𝑅 “ 𝐴) ⊆ 𝐴) | ||
Theorem | dfhe2 41271 | The property of relation 𝑅 being hereditary in class 𝐴. (Contributed by RP, 27-Mar-2020.) |
⊢ (𝑅 hereditary 𝐴 ↔ (𝑅 ↾ 𝐴) ⊆ (𝐴 × 𝐴)) | ||
Theorem | dfhe3 41272* | The property of relation 𝑅 being hereditary in class 𝐴. (Contributed by RP, 27-Mar-2020.) |
⊢ (𝑅 hereditary 𝐴 ↔ ∀𝑥(𝑥 ∈ 𝐴 → ∀𝑦(𝑥𝑅𝑦 → 𝑦 ∈ 𝐴))) | ||
Theorem | heeq12 41273 | Equality law for relations being herditary over a class. (Contributed by RP, 27-Mar-2020.) |
⊢ ((𝑅 = 𝑆 ∧ 𝐴 = 𝐵) → (𝑅 hereditary 𝐴 ↔ 𝑆 hereditary 𝐵)) | ||
Theorem | heeq1 41274 | Equality law for relations being herditary over a class. (Contributed by RP, 27-Mar-2020.) |
⊢ (𝑅 = 𝑆 → (𝑅 hereditary 𝐴 ↔ 𝑆 hereditary 𝐴)) | ||
Theorem | heeq2 41275 | Equality law for relations being herditary over a class. (Contributed by RP, 27-Mar-2020.) |
⊢ (𝐴 = 𝐵 → (𝑅 hereditary 𝐴 ↔ 𝑅 hereditary 𝐵)) | ||
Theorem | sbcheg 41276 | Distribute proper substitution through herditary relation. (Contributed by RP, 29-Jun-2020.) |
⊢ (𝐴 ∈ 𝑉 → ([𝐴 / 𝑥]𝐵 hereditary 𝐶 ↔ ⦋𝐴 / 𝑥⦌𝐵 hereditary ⦋𝐴 / 𝑥⦌𝐶)) | ||
Theorem | hess 41277 | Subclass law for relations being herditary over a class. (Contributed by RP, 27-Mar-2020.) |
⊢ (𝑆 ⊆ 𝑅 → (𝑅 hereditary 𝐴 → 𝑆 hereditary 𝐴)) | ||
Theorem | xphe 41278 | Any Cartesian product is hereditary in its second class. (Contributed by RP, 27-Mar-2020.) (Proof shortened by OpenAI, 3-Jul-2020.) |
⊢ (𝐴 × 𝐵) hereditary 𝐵 | ||
Theorem | 0he 41279 | The empty relation is hereditary in any class. (Contributed by RP, 27-Mar-2020.) |
⊢ ∅ hereditary 𝐴 | ||
Theorem | 0heALT 41280 | The empty relation is hereditary in any class. (Contributed by RP, 27-Mar-2020.) (New usage is discouraged.) (Proof modification is discouraged.) |
⊢ ∅ hereditary 𝐴 | ||
Theorem | he0 41281 | Any relation is hereditary in the empty set. (Contributed by RP, 27-Mar-2020.) |
⊢ 𝐴 hereditary ∅ | ||
Theorem | unhe1 41282 | The union of two relations hereditary in a class is also hereditary in a class. (Contributed by RP, 28-Mar-2020.) |
⊢ ((𝑅 hereditary 𝐴 ∧ 𝑆 hereditary 𝐴) → (𝑅 ∪ 𝑆) hereditary 𝐴) | ||
Theorem | snhesn 41283 | Any singleton is hereditary in any singleton. (Contributed by RP, 28-Mar-2020.) |
⊢ {〈𝐴, 𝐴〉} hereditary {𝐵} | ||
Theorem | idhe 41284 | The identity relation is hereditary in any class. (Contributed by RP, 28-Mar-2020.) |
⊢ I hereditary 𝐴 | ||
Theorem | psshepw 41285 | The relation between sets and their proper subsets is hereditary in the powerclass of any class. (Contributed by RP, 28-Mar-2020.) |
⊢ ◡ [⊊] hereditary 𝒫 𝐴 | ||
Theorem | sshepw 41286 | The relation between sets and their subsets is hereditary in the powerclass of any class. (Contributed by RP, 28-Mar-2020.) |
⊢ (◡ [⊊] ∪ I ) hereditary 𝒫 𝐴 | ||
Axiom | ax-frege1 41287 | The case in which 𝜑 is denied, 𝜓 is affirmed, and 𝜑 is affirmed is excluded. This is evident since 𝜑 cannot at the same time be denied and affirmed. Axiom 1 of [Frege1879] p. 26. Identical to ax-1 6. (Contributed by RP, 24-Dec-2019.) (New usage is discouraged.) |
⊢ (𝜑 → (𝜓 → 𝜑)) | ||
Axiom | ax-frege2 41288 | If a proposition 𝜒 is a necessary consequence of two propositions 𝜓 and 𝜑 and one of those, 𝜓, is in turn a necessary consequence of the other, 𝜑, then the proposition 𝜒 is a necessary consequence of the latter one, 𝜑, alone. Axiom 2 of [Frege1879] p. 26. Identical to ax-2 7. (Contributed by RP, 24-Dec-2019.) (New usage is discouraged.) |
⊢ ((𝜑 → (𝜓 → 𝜒)) → ((𝜑 → 𝜓) → (𝜑 → 𝜒))) | ||
Theorem | rp-simp2-frege 41289 | Simplification of triple conjunction. Compare with simp2 1135. (Contributed by RP, 24-Dec-2019.) (Proof modification is discouraged.) |
⊢ (𝜑 → (𝜓 → (𝜒 → 𝜓))) | ||
Theorem | rp-simp2 41290 | Simplification of triple conjunction. Identical to simp2 1135. (Contributed by RP, 24-Dec-2019.) (Proof modification is discouraged.) |
⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜓) | ||
Theorem | rp-frege3g 41291 |
Add antecedent to ax-frege2 41288. More general statement than frege3 41292.
Like ax-frege2 41288, it is essentially a closed form of mpd 15,
however it
has an extra antecedent.
It would be more natural to prove from a1i 11 and ax-frege2 41288 in Metamath. (Contributed by RP, 24-Dec-2019.) (Proof modification is discouraged.) |
⊢ (𝜑 → ((𝜓 → (𝜒 → 𝜃)) → ((𝜓 → 𝜒) → (𝜓 → 𝜃)))) | ||
Theorem | frege3 41292 | Add antecedent to ax-frege2 41288. Special case of rp-frege3g 41291. Proposition 3 of [Frege1879] p. 29. (Contributed by RP, 24-Dec-2019.) (Proof modification is discouraged.) |
⊢ ((𝜑 → 𝜓) → ((𝜒 → (𝜑 → 𝜓)) → ((𝜒 → 𝜑) → (𝜒 → 𝜓)))) | ||
Theorem | rp-misc1-frege 41293 | Double-use of ax-frege2 41288. (Contributed by RP, 24-Dec-2019.) (Proof modification is discouraged.) |
⊢ (((𝜑 → (𝜓 → 𝜒)) → (𝜑 → 𝜓)) → ((𝜑 → (𝜓 → 𝜒)) → (𝜑 → 𝜒))) | ||
Theorem | rp-frege24 41294 | Introducing an embedded antecedent. Alternate proof for frege24 41312. Closed form for a1d 25. (Contributed by RP, 24-Dec-2019.) |
⊢ ((𝜑 → 𝜓) → (𝜑 → (𝜒 → 𝜓))) | ||
Theorem | rp-frege4g 41295 | Deduction related to distribution. (Contributed by RP, 24-Dec-2019.) |
⊢ ((𝜑 → (𝜓 → (𝜒 → 𝜃))) → (𝜑 → ((𝜓 → 𝜒) → (𝜓 → 𝜃)))) | ||
Theorem | frege4 41296 | Special case of closed form of a2d 29. Special case of rp-frege4g 41295. Proposition 4 of [Frege1879] p. 31. (Contributed by RP, 24-Dec-2019.) (Proof modification is discouraged.) |
⊢ (((𝜑 → 𝜓) → (𝜒 → (𝜑 → 𝜓))) → ((𝜑 → 𝜓) → ((𝜒 → 𝜑) → (𝜒 → 𝜓)))) | ||
Theorem | frege5 41297 | A closed form of syl 17. Identical to imim2 58. Theorem *2.05 of [WhiteheadRussell] p. 100. Proposition 5 of [Frege1879] p. 32. (Contributed by RP, 24-Dec-2019.) (Proof modification is discouraged.) |
⊢ ((𝜑 → 𝜓) → ((𝜒 → 𝜑) → (𝜒 → 𝜓))) | ||
Theorem | rp-7frege 41298 | Distribute antecedent and add another. (Contributed by RP, 24-Dec-2019.) |
⊢ ((𝜑 → (𝜓 → 𝜒)) → (𝜃 → ((𝜑 → 𝜓) → (𝜑 → 𝜒)))) | ||
Theorem | rp-4frege 41299 | Elimination of a nested antecedent of special form. (Contributed by RP, 24-Dec-2019.) |
⊢ ((𝜑 → ((𝜓 → 𝜑) → 𝜒)) → (𝜑 → 𝜒)) | ||
Theorem | rp-6frege 41300 | Elimination of a nested antecedent of special form. (Contributed by RP, 24-Dec-2019.) |
⊢ (𝜑 → ((𝜓 → ((𝜒 → 𝜓) → 𝜃)) → (𝜓 → 𝜃))) |
< Previous Next > |
Copyright terms: Public domain | < Previous Next > |