Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > mndbn0 | Structured version Visualization version GIF version |
Description: The base set of a monoid is not empty. Statement in [Lang] p. 3. (Contributed by AV, 29-Dec-2023.) |
Ref | Expression |
---|---|
mndbn0.b | ⊢ 𝐵 = (Base‘𝐺) |
Ref | Expression |
---|---|
mndbn0 | ⊢ (𝐺 ∈ Mnd → 𝐵 ≠ ∅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mndbn0.b | . . 3 ⊢ 𝐵 = (Base‘𝐺) | |
2 | eqid 2737 | . . 3 ⊢ (0g‘𝐺) = (0g‘𝐺) | |
3 | 1, 2 | mndidcl 18498 | . 2 ⊢ (𝐺 ∈ Mnd → (0g‘𝐺) ∈ 𝐵) |
4 | 3 | ne0d 4287 | 1 ⊢ (𝐺 ∈ Mnd → 𝐵 ≠ ∅) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2106 ≠ wne 2941 ∅c0 4274 ‘cfv 6484 Basecbs 17010 0gc0g 17248 Mndcmnd 18483 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2708 ax-sep 5248 ax-nul 5255 ax-pr 5377 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2815 df-nfc 2887 df-ne 2942 df-ral 3063 df-rex 3072 df-rmo 3350 df-reu 3351 df-rab 3405 df-v 3444 df-sbc 3732 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-nul 4275 df-if 4479 df-sn 4579 df-pr 4581 df-op 4585 df-uni 4858 df-br 5098 df-opab 5160 df-mpt 5181 df-id 5523 df-xp 5631 df-rel 5632 df-cnv 5633 df-co 5634 df-dm 5635 df-iota 6436 df-fun 6486 df-fv 6492 df-riota 7298 df-ov 7345 df-0g 17250 df-mgm 18424 df-sgrp 18473 df-mnd 18484 |
This theorem is referenced by: slmdbn0 31746 slmdsn0 31749 |
Copyright terms: Public domain | W3C validator |