| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > mndbn0 | Structured version Visualization version GIF version | ||
| Description: The base set of a monoid is not empty. Statement in [Lang] p. 3. (Contributed by AV, 29-Dec-2023.) |
| Ref | Expression |
|---|---|
| mndbn0.b | ⊢ 𝐵 = (Base‘𝐺) |
| Ref | Expression |
|---|---|
| mndbn0 | ⊢ (𝐺 ∈ Mnd → 𝐵 ≠ ∅) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mndbn0.b | . . 3 ⊢ 𝐵 = (Base‘𝐺) | |
| 2 | eqid 2734 | . . 3 ⊢ (0g‘𝐺) = (0g‘𝐺) | |
| 3 | 1, 2 | mndidcl 18731 | . 2 ⊢ (𝐺 ∈ Mnd → (0g‘𝐺) ∈ 𝐵) |
| 4 | 3 | ne0d 4322 | 1 ⊢ (𝐺 ∈ Mnd → 𝐵 ≠ ∅) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2107 ≠ wne 2931 ∅c0 4313 ‘cfv 6541 Basecbs 17229 0gc0g 17455 Mndcmnd 18716 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-sep 5276 ax-nul 5286 ax-pr 5412 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-ral 3051 df-rex 3060 df-rmo 3363 df-reu 3364 df-rab 3420 df-v 3465 df-sbc 3771 df-dif 3934 df-un 3936 df-ss 3948 df-nul 4314 df-if 4506 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4888 df-br 5124 df-opab 5186 df-mpt 5206 df-id 5558 df-xp 5671 df-rel 5672 df-cnv 5673 df-co 5674 df-dm 5675 df-iota 6494 df-fun 6543 df-fv 6549 df-riota 7370 df-ov 7416 df-0g 17457 df-mgm 18622 df-sgrp 18701 df-mnd 18717 |
| This theorem is referenced by: slmdbn0 33153 slmdsn0 33156 |
| Copyright terms: Public domain | W3C validator |