MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mndbn0 Structured version   Visualization version   GIF version

Theorem mndbn0 18641
Description: The base set of a monoid is not empty. Statement in [Lang] p. 3. (Contributed by AV, 29-Dec-2023.)
Hypothesis
Ref Expression
mndbn0.b 𝐵 = (Base‘𝐺)
Assertion
Ref Expression
mndbn0 (𝐺 ∈ Mnd → 𝐵 ≠ ∅)

Proof of Theorem mndbn0
StepHypRef Expression
1 mndbn0.b . . 3 𝐵 = (Base‘𝐺)
2 eqid 2733 . . 3 (0g𝐺) = (0g𝐺)
31, 2mndidcl 18640 . 2 (𝐺 ∈ Mnd → (0g𝐺) ∈ 𝐵)
43ne0d 4336 1 (𝐺 ∈ Mnd → 𝐵 ≠ ∅)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1542  wcel 2107  wne 2941  c0 4323  cfv 6544  Basecbs 17144  0gc0g 17385  Mndcmnd 18625
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-sep 5300  ax-nul 5307  ax-pr 5428
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2942  df-ral 3063  df-rex 3072  df-rmo 3377  df-reu 3378  df-rab 3434  df-v 3477  df-sbc 3779  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-nul 4324  df-if 4530  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4910  df-br 5150  df-opab 5212  df-mpt 5233  df-id 5575  df-xp 5683  df-rel 5684  df-cnv 5685  df-co 5686  df-dm 5687  df-iota 6496  df-fun 6546  df-fv 6552  df-riota 7365  df-ov 7412  df-0g 17387  df-mgm 18561  df-sgrp 18610  df-mnd 18626
This theorem is referenced by:  slmdbn0  32353  slmdsn0  32356
  Copyright terms: Public domain W3C validator