MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mndbn0 Structured version   Visualization version   GIF version

Theorem mndbn0 18499
Description: The base set of a monoid is not empty. Statement in [Lang] p. 3. (Contributed by AV, 29-Dec-2023.)
Hypothesis
Ref Expression
mndbn0.b 𝐵 = (Base‘𝐺)
Assertion
Ref Expression
mndbn0 (𝐺 ∈ Mnd → 𝐵 ≠ ∅)

Proof of Theorem mndbn0
StepHypRef Expression
1 mndbn0.b . . 3 𝐵 = (Base‘𝐺)
2 eqid 2737 . . 3 (0g𝐺) = (0g𝐺)
31, 2mndidcl 18498 . 2 (𝐺 ∈ Mnd → (0g𝐺) ∈ 𝐵)
43ne0d 4287 1 (𝐺 ∈ Mnd → 𝐵 ≠ ∅)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1541  wcel 2106  wne 2941  c0 4274  cfv 6484  Basecbs 17010  0gc0g 17248  Mndcmnd 18483
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2708  ax-sep 5248  ax-nul 5255  ax-pr 5377
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2815  df-nfc 2887  df-ne 2942  df-ral 3063  df-rex 3072  df-rmo 3350  df-reu 3351  df-rab 3405  df-v 3444  df-sbc 3732  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-nul 4275  df-if 4479  df-sn 4579  df-pr 4581  df-op 4585  df-uni 4858  df-br 5098  df-opab 5160  df-mpt 5181  df-id 5523  df-xp 5631  df-rel 5632  df-cnv 5633  df-co 5634  df-dm 5635  df-iota 6436  df-fun 6486  df-fv 6492  df-riota 7298  df-ov 7345  df-0g 17250  df-mgm 18424  df-sgrp 18473  df-mnd 18484
This theorem is referenced by:  slmdbn0  31746  slmdsn0  31749
  Copyright terms: Public domain W3C validator