Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mpaalem Structured version   Visualization version   GIF version

Theorem mpaalem 38495
Description: Properties of the minimal polynomial of an algebraic number. (Contributed by Stefan O'Rear, 25-Nov-2014.)
Assertion
Ref Expression
mpaalem (𝐴 ∈ 𝔸 → ((minPolyAA‘𝐴) ∈ (Poly‘ℚ) ∧ ((deg‘(minPolyAA‘𝐴)) = (degAA𝐴) ∧ ((minPolyAA‘𝐴)‘𝐴) = 0 ∧ ((coeff‘(minPolyAA‘𝐴))‘(degAA𝐴)) = 1)))

Proof of Theorem mpaalem
Dummy variable 𝑝 is distinct from all other variables.
StepHypRef Expression
1 mpaaval 38494 . . 3 (𝐴 ∈ 𝔸 → (minPolyAA‘𝐴) = (𝑝 ∈ (Poly‘ℚ)((deg‘𝑝) = (degAA𝐴) ∧ (𝑝𝐴) = 0 ∧ ((coeff‘𝑝)‘(degAA𝐴)) = 1)))
2 mpaaeu 38493 . . . 4 (𝐴 ∈ 𝔸 → ∃!𝑝 ∈ (Poly‘ℚ)((deg‘𝑝) = (degAA𝐴) ∧ (𝑝𝐴) = 0 ∧ ((coeff‘𝑝)‘(degAA𝐴)) = 1))
3 riotacl2 6850 . . . 4 (∃!𝑝 ∈ (Poly‘ℚ)((deg‘𝑝) = (degAA𝐴) ∧ (𝑝𝐴) = 0 ∧ ((coeff‘𝑝)‘(degAA𝐴)) = 1) → (𝑝 ∈ (Poly‘ℚ)((deg‘𝑝) = (degAA𝐴) ∧ (𝑝𝐴) = 0 ∧ ((coeff‘𝑝)‘(degAA𝐴)) = 1)) ∈ {𝑝 ∈ (Poly‘ℚ) ∣ ((deg‘𝑝) = (degAA𝐴) ∧ (𝑝𝐴) = 0 ∧ ((coeff‘𝑝)‘(degAA𝐴)) = 1)})
42, 3syl 17 . . 3 (𝐴 ∈ 𝔸 → (𝑝 ∈ (Poly‘ℚ)((deg‘𝑝) = (degAA𝐴) ∧ (𝑝𝐴) = 0 ∧ ((coeff‘𝑝)‘(degAA𝐴)) = 1)) ∈ {𝑝 ∈ (Poly‘ℚ) ∣ ((deg‘𝑝) = (degAA𝐴) ∧ (𝑝𝐴) = 0 ∧ ((coeff‘𝑝)‘(degAA𝐴)) = 1)})
51, 4eqeltrd 2876 . 2 (𝐴 ∈ 𝔸 → (minPolyAA‘𝐴) ∈ {𝑝 ∈ (Poly‘ℚ) ∣ ((deg‘𝑝) = (degAA𝐴) ∧ (𝑝𝐴) = 0 ∧ ((coeff‘𝑝)‘(degAA𝐴)) = 1)})
6 fveqeq2 6418 . . . 4 (𝑝 = (minPolyAA‘𝐴) → ((deg‘𝑝) = (degAA𝐴) ↔ (deg‘(minPolyAA‘𝐴)) = (degAA𝐴)))
7 fveq1 6408 . . . . 5 (𝑝 = (minPolyAA‘𝐴) → (𝑝𝐴) = ((minPolyAA‘𝐴)‘𝐴))
87eqeq1d 2799 . . . 4 (𝑝 = (minPolyAA‘𝐴) → ((𝑝𝐴) = 0 ↔ ((minPolyAA‘𝐴)‘𝐴) = 0))
9 fveq2 6409 . . . . . 6 (𝑝 = (minPolyAA‘𝐴) → (coeff‘𝑝) = (coeff‘(minPolyAA‘𝐴)))
109fveq1d 6411 . . . . 5 (𝑝 = (minPolyAA‘𝐴) → ((coeff‘𝑝)‘(degAA𝐴)) = ((coeff‘(minPolyAA‘𝐴))‘(degAA𝐴)))
1110eqeq1d 2799 . . . 4 (𝑝 = (minPolyAA‘𝐴) → (((coeff‘𝑝)‘(degAA𝐴)) = 1 ↔ ((coeff‘(minPolyAA‘𝐴))‘(degAA𝐴)) = 1))
126, 8, 113anbi123d 1561 . . 3 (𝑝 = (minPolyAA‘𝐴) → (((deg‘𝑝) = (degAA𝐴) ∧ (𝑝𝐴) = 0 ∧ ((coeff‘𝑝)‘(degAA𝐴)) = 1) ↔ ((deg‘(minPolyAA‘𝐴)) = (degAA𝐴) ∧ ((minPolyAA‘𝐴)‘𝐴) = 0 ∧ ((coeff‘(minPolyAA‘𝐴))‘(degAA𝐴)) = 1)))
1312elrab 3554 . 2 ((minPolyAA‘𝐴) ∈ {𝑝 ∈ (Poly‘ℚ) ∣ ((deg‘𝑝) = (degAA𝐴) ∧ (𝑝𝐴) = 0 ∧ ((coeff‘𝑝)‘(degAA𝐴)) = 1)} ↔ ((minPolyAA‘𝐴) ∈ (Poly‘ℚ) ∧ ((deg‘(minPolyAA‘𝐴)) = (degAA𝐴) ∧ ((minPolyAA‘𝐴)‘𝐴) = 0 ∧ ((coeff‘(minPolyAA‘𝐴))‘(degAA𝐴)) = 1)))
145, 13sylib 210 1 (𝐴 ∈ 𝔸 → ((minPolyAA‘𝐴) ∈ (Poly‘ℚ) ∧ ((deg‘(minPolyAA‘𝐴)) = (degAA𝐴) ∧ ((minPolyAA‘𝐴)‘𝐴) = 0 ∧ ((coeff‘(minPolyAA‘𝐴))‘(degAA𝐴)) = 1)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 385  w3a 1108   = wceq 1653  wcel 2157  ∃!wreu 3089  {crab 3091  cfv 6099  crio 6836  0cc0 10222  1c1 10223  cq 12029  Polycply 24278  coeffccoe 24280  degcdgr 24281  𝔸caa 24407  degAAcdgraa 38483  minPolyAAcmpaa 38484
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1891  ax-4 1905  ax-5 2006  ax-6 2072  ax-7 2107  ax-8 2159  ax-9 2166  ax-10 2185  ax-11 2200  ax-12 2213  ax-13 2354  ax-ext 2775  ax-rep 4962  ax-sep 4973  ax-nul 4981  ax-pow 5033  ax-pr 5095  ax-un 7181  ax-inf2 8786  ax-cnex 10278  ax-resscn 10279  ax-1cn 10280  ax-icn 10281  ax-addcl 10282  ax-addrcl 10283  ax-mulcl 10284  ax-mulrcl 10285  ax-mulcom 10286  ax-addass 10287  ax-mulass 10288  ax-distr 10289  ax-i2m1 10290  ax-1ne0 10291  ax-1rid 10292  ax-rnegex 10293  ax-rrecex 10294  ax-cnre 10295  ax-pre-lttri 10296  ax-pre-lttrn 10297  ax-pre-ltadd 10298  ax-pre-mulgt0 10299  ax-pre-sup 10300  ax-addf 10301
This theorem depends on definitions:  df-bi 199  df-an 386  df-or 875  df-3or 1109  df-3an 1110  df-tru 1657  df-fal 1667  df-ex 1876  df-nf 1880  df-sb 2065  df-mo 2590  df-eu 2607  df-clab 2784  df-cleq 2790  df-clel 2793  df-nfc 2928  df-ne 2970  df-nel 3073  df-ral 3092  df-rex 3093  df-reu 3094  df-rmo 3095  df-rab 3096  df-v 3385  df-sbc 3632  df-csb 3727  df-dif 3770  df-un 3772  df-in 3774  df-ss 3781  df-pss 3783  df-nul 4114  df-if 4276  df-pw 4349  df-sn 4367  df-pr 4369  df-tp 4371  df-op 4373  df-uni 4627  df-int 4666  df-iun 4710  df-br 4842  df-opab 4904  df-mpt 4921  df-tr 4944  df-id 5218  df-eprel 5223  df-po 5231  df-so 5232  df-fr 5269  df-se 5270  df-we 5271  df-xp 5316  df-rel 5317  df-cnv 5318  df-co 5319  df-dm 5320  df-rn 5321  df-res 5322  df-ima 5323  df-pred 5896  df-ord 5942  df-on 5943  df-lim 5944  df-suc 5945  df-iota 6062  df-fun 6101  df-fn 6102  df-f 6103  df-f1 6104  df-fo 6105  df-f1o 6106  df-fv 6107  df-isom 6108  df-riota 6837  df-ov 6879  df-oprab 6880  df-mpt2 6881  df-of 7129  df-om 7298  df-1st 7399  df-2nd 7400  df-wrecs 7643  df-recs 7705  df-rdg 7743  df-1o 7797  df-oadd 7801  df-er 7980  df-map 8095  df-pm 8096  df-en 8194  df-dom 8195  df-sdom 8196  df-fin 8197  df-sup 8588  df-inf 8589  df-oi 8655  df-card 9049  df-pnf 10363  df-mnf 10364  df-xr 10365  df-ltxr 10366  df-le 10367  df-sub 10556  df-neg 10557  df-div 10975  df-nn 11311  df-2 11372  df-3 11373  df-n0 11577  df-z 11663  df-uz 11927  df-q 12030  df-rp 12071  df-fz 12577  df-fzo 12717  df-fl 12844  df-mod 12920  df-seq 13052  df-exp 13111  df-hash 13367  df-cj 14177  df-re 14178  df-im 14179  df-sqrt 14313  df-abs 14314  df-clim 14557  df-rlim 14558  df-sum 14755  df-0p 23775  df-ply 24282  df-coe 24284  df-dgr 24285  df-aa 24408  df-dgraa 38485  df-mpaa 38486
This theorem is referenced by:  mpaacl  38496  mpaadgr  38497  mpaaroot  38498  mpaamn  38499
  Copyright terms: Public domain W3C validator