| Mathbox for Stefan O'Rear |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > mptfcl | Structured version Visualization version GIF version | ||
| Description: Interpret range of a maps-to notation as a constraint on the definition. (Contributed by Stefan O'Rear, 10-Oct-2014.) |
| Ref | Expression |
|---|---|
| mptfcl | ⊢ ((𝑡 ∈ 𝐴 ↦ 𝐵):𝐴⟶𝐶 → (𝑡 ∈ 𝐴 → 𝐵 ∈ 𝐶)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2729 | . . 3 ⊢ (𝑡 ∈ 𝐴 ↦ 𝐵) = (𝑡 ∈ 𝐴 ↦ 𝐵) | |
| 2 | 1 | fmpt 7082 | . 2 ⊢ (∀𝑡 ∈ 𝐴 𝐵 ∈ 𝐶 ↔ (𝑡 ∈ 𝐴 ↦ 𝐵):𝐴⟶𝐶) |
| 3 | rsp 3225 | . 2 ⊢ (∀𝑡 ∈ 𝐴 𝐵 ∈ 𝐶 → (𝑡 ∈ 𝐴 → 𝐵 ∈ 𝐶)) | |
| 4 | 2, 3 | sylbir 235 | 1 ⊢ ((𝑡 ∈ 𝐴 ↦ 𝐵):𝐴⟶𝐶 → (𝑡 ∈ 𝐴 → 𝐵 ∈ 𝐶)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2109 ∀wral 3044 ↦ cmpt 5188 ⟶wf 6507 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pr 5387 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ral 3045 df-rex 3054 df-rab 3406 df-v 3449 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-sn 4590 df-pr 4592 df-op 4596 df-br 5108 df-opab 5170 df-mpt 5189 df-id 5533 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-fun 6513 df-fn 6514 df-f 6515 |
| This theorem is referenced by: mzpsubmpt 42731 eq0rabdioph 42764 eqrabdioph 42765 |
| Copyright terms: Public domain | W3C validator |