Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mptfcl Structured version   Visualization version   GIF version

Theorem mptfcl 42753
Description: Interpret range of a maps-to notation as a constraint on the definition. (Contributed by Stefan O'Rear, 10-Oct-2014.)
Assertion
Ref Expression
mptfcl ((𝑡𝐴𝐵):𝐴𝐶 → (𝑡𝐴𝐵𝐶))
Distinct variable groups:   𝑡,𝐴   𝑡,𝐶
Allowed substitution hint:   𝐵(𝑡)

Proof of Theorem mptfcl
StepHypRef Expression
1 eqid 2731 . . 3 (𝑡𝐴𝐵) = (𝑡𝐴𝐵)
21fmpt 7038 . 2 (∀𝑡𝐴 𝐵𝐶 ↔ (𝑡𝐴𝐵):𝐴𝐶)
3 rsp 3220 . 2 (∀𝑡𝐴 𝐵𝐶 → (𝑡𝐴𝐵𝐶))
42, 3sylbir 235 1 ((𝑡𝐴𝐵):𝐴𝐶 → (𝑡𝐴𝐵𝐶))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2111  wral 3047  cmpt 5167  wf 6472
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5229  ax-nul 5239  ax-pr 5365
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4279  df-if 4471  df-sn 4572  df-pr 4574  df-op 4578  df-br 5087  df-opab 5149  df-mpt 5168  df-id 5506  df-xp 5617  df-rel 5618  df-cnv 5619  df-co 5620  df-dm 5621  df-rn 5622  df-res 5623  df-ima 5624  df-fun 6478  df-fn 6479  df-f 6480
This theorem is referenced by:  mzpsubmpt  42776  eq0rabdioph  42809  eqrabdioph  42810
  Copyright terms: Public domain W3C validator