Mathbox for Stefan O'Rear |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > mptfcl | Structured version Visualization version GIF version |
Description: Interpret range of a maps-to notation as a constraint on the definition. (Contributed by Stefan O'Rear, 10-Oct-2014.) |
Ref | Expression |
---|---|
mptfcl | ⊢ ((𝑡 ∈ 𝐴 ↦ 𝐵):𝐴⟶𝐶 → (𝑡 ∈ 𝐴 → 𝐵 ∈ 𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2739 | . . 3 ⊢ (𝑡 ∈ 𝐴 ↦ 𝐵) = (𝑡 ∈ 𝐴 ↦ 𝐵) | |
2 | 1 | fmpt 6887 | . 2 ⊢ (∀𝑡 ∈ 𝐴 𝐵 ∈ 𝐶 ↔ (𝑡 ∈ 𝐴 ↦ 𝐵):𝐴⟶𝐶) |
3 | rsp 3119 | . 2 ⊢ (∀𝑡 ∈ 𝐴 𝐵 ∈ 𝐶 → (𝑡 ∈ 𝐴 → 𝐵 ∈ 𝐶)) | |
4 | 2, 3 | sylbir 238 | 1 ⊢ ((𝑡 ∈ 𝐴 ↦ 𝐵):𝐴⟶𝐶 → (𝑡 ∈ 𝐴 → 𝐵 ∈ 𝐶)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2114 ∀wral 3054 ↦ cmpt 5111 ⟶wf 6336 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2020 ax-8 2116 ax-9 2124 ax-10 2145 ax-11 2162 ax-12 2179 ax-ext 2711 ax-sep 5168 ax-nul 5175 ax-pr 5297 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 847 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1787 df-nf 1791 df-sb 2075 df-mo 2541 df-eu 2571 df-clab 2718 df-cleq 2731 df-clel 2812 df-nfc 2882 df-ral 3059 df-rex 3060 df-rab 3063 df-v 3401 df-dif 3847 df-un 3849 df-in 3851 df-ss 3861 df-nul 4213 df-if 4416 df-sn 4518 df-pr 4520 df-op 4524 df-br 5032 df-opab 5094 df-mpt 5112 df-id 5430 df-xp 5532 df-rel 5533 df-cnv 5534 df-co 5535 df-dm 5536 df-rn 5537 df-res 5538 df-ima 5539 df-fun 6342 df-fn 6343 df-f 6344 |
This theorem is referenced by: mzpsubmpt 40160 eq0rabdioph 40193 eqrabdioph 40194 |
Copyright terms: Public domain | W3C validator |