| Mathbox for Stefan O'Rear |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > mptfcl | Structured version Visualization version GIF version | ||
| Description: Interpret range of a maps-to notation as a constraint on the definition. (Contributed by Stefan O'Rear, 10-Oct-2014.) |
| Ref | Expression |
|---|---|
| mptfcl | ⊢ ((𝑡 ∈ 𝐴 ↦ 𝐵):𝐴⟶𝐶 → (𝑡 ∈ 𝐴 → 𝐵 ∈ 𝐶)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2733 | . . 3 ⊢ (𝑡 ∈ 𝐴 ↦ 𝐵) = (𝑡 ∈ 𝐴 ↦ 𝐵) | |
| 2 | 1 | fmpt 7052 | . 2 ⊢ (∀𝑡 ∈ 𝐴 𝐵 ∈ 𝐶 ↔ (𝑡 ∈ 𝐴 ↦ 𝐵):𝐴⟶𝐶) |
| 3 | rsp 3221 | . 2 ⊢ (∀𝑡 ∈ 𝐴 𝐵 ∈ 𝐶 → (𝑡 ∈ 𝐴 → 𝐵 ∈ 𝐶)) | |
| 4 | 2, 3 | sylbir 235 | 1 ⊢ ((𝑡 ∈ 𝐴 ↦ 𝐵):𝐴⟶𝐶 → (𝑡 ∈ 𝐴 → 𝐵 ∈ 𝐶)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2113 ∀wral 3048 ↦ cmpt 5176 ⟶wf 6485 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-sep 5238 ax-nul 5248 ax-pr 5374 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ral 3049 df-rex 3058 df-rab 3397 df-v 3439 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-nul 4283 df-if 4477 df-sn 4578 df-pr 4580 df-op 4584 df-br 5096 df-opab 5158 df-mpt 5177 df-id 5516 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-res 5633 df-ima 5634 df-fun 6491 df-fn 6492 df-f 6493 |
| This theorem is referenced by: mzpsubmpt 42900 eq0rabdioph 42933 eqrabdioph 42934 |
| Copyright terms: Public domain | W3C validator |