![]() |
Mathbox for Stefan O'Rear |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > mptfcl | Structured version Visualization version GIF version |
Description: Interpret range of a maps-to notation as a constraint on the definition. (Contributed by Stefan O'Rear, 10-Oct-2014.) |
Ref | Expression |
---|---|
mptfcl | ⊢ ((𝑡 ∈ 𝐴 ↦ 𝐵):𝐴⟶𝐶 → (𝑡 ∈ 𝐴 → 𝐵 ∈ 𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2779 | . . 3 ⊢ (𝑡 ∈ 𝐴 ↦ 𝐵) = (𝑡 ∈ 𝐴 ↦ 𝐵) | |
2 | 1 | fmpt 6697 | . 2 ⊢ (∀𝑡 ∈ 𝐴 𝐵 ∈ 𝐶 ↔ (𝑡 ∈ 𝐴 ↦ 𝐵):𝐴⟶𝐶) |
3 | rsp 3156 | . 2 ⊢ (∀𝑡 ∈ 𝐴 𝐵 ∈ 𝐶 → (𝑡 ∈ 𝐴 → 𝐵 ∈ 𝐶)) | |
4 | 2, 3 | sylbir 227 | 1 ⊢ ((𝑡 ∈ 𝐴 ↦ 𝐵):𝐴⟶𝐶 → (𝑡 ∈ 𝐴 → 𝐵 ∈ 𝐶)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2050 ∀wral 3089 ↦ cmpt 5008 ⟶wf 6184 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1758 ax-4 1772 ax-5 1869 ax-6 1928 ax-7 1965 ax-8 2052 ax-9 2059 ax-10 2079 ax-11 2093 ax-12 2106 ax-13 2301 ax-ext 2751 ax-sep 5060 ax-nul 5067 ax-pr 5186 |
This theorem depends on definitions: df-bi 199 df-an 388 df-or 834 df-3an 1070 df-tru 1510 df-ex 1743 df-nf 1747 df-sb 2016 df-mo 2547 df-eu 2584 df-clab 2760 df-cleq 2772 df-clel 2847 df-nfc 2919 df-ne 2969 df-ral 3094 df-rex 3095 df-rab 3098 df-v 3418 df-sbc 3683 df-dif 3833 df-un 3835 df-in 3837 df-ss 3844 df-nul 4180 df-if 4351 df-sn 4442 df-pr 4444 df-op 4448 df-uni 4713 df-br 4930 df-opab 4992 df-mpt 5009 df-id 5312 df-xp 5413 df-rel 5414 df-cnv 5415 df-co 5416 df-dm 5417 df-rn 5418 df-res 5419 df-ima 5420 df-iota 6152 df-fun 6190 df-fn 6191 df-f 6192 df-fv 6196 |
This theorem is referenced by: mzpsubmpt 38732 eq0rabdioph 38766 eqrabdioph 38767 |
Copyright terms: Public domain | W3C validator |