![]() |
Mathbox for Stefan O'Rear |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > mapfzcons2 | Structured version Visualization version GIF version |
Description: Recover added element from an extended mapping. (Contributed by Stefan O'Rear, 10-Oct-2014.) (Revised by Stefan O'Rear, 5-May-2015.) |
Ref | Expression |
---|---|
mapfzcons.1 | ⊢ 𝑀 = (𝑁 + 1) |
Ref | Expression |
---|---|
mapfzcons2 | ⊢ ((𝐴 ∈ (𝐵 ↑m (1...𝑁)) ∧ 𝐶 ∈ 𝐵) → ((𝐴 ∪ {⟨𝑀, 𝐶⟩})‘𝑀) = 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mapfzcons.1 | . . . 4 ⊢ 𝑀 = (𝑁 + 1) | |
2 | ovex 7448 | . . . 4 ⊢ (𝑁 + 1) ∈ V | |
3 | 1, 2 | eqeltri 2821 | . . 3 ⊢ 𝑀 ∈ V |
4 | 3 | a1i 11 | . 2 ⊢ ((𝐴 ∈ (𝐵 ↑m (1...𝑁)) ∧ 𝐶 ∈ 𝐵) → 𝑀 ∈ V) |
5 | elex 3482 | . . 3 ⊢ (𝐶 ∈ 𝐵 → 𝐶 ∈ V) | |
6 | 5 | adantl 480 | . 2 ⊢ ((𝐴 ∈ (𝐵 ↑m (1...𝑁)) ∧ 𝐶 ∈ 𝐵) → 𝐶 ∈ V) |
7 | elmapi 8864 | . . . . . . 7 ⊢ (𝐴 ∈ (𝐵 ↑m (1...𝑁)) → 𝐴:(1...𝑁)⟶𝐵) | |
8 | 7 | fdmd 6727 | . . . . . 6 ⊢ (𝐴 ∈ (𝐵 ↑m (1...𝑁)) → dom 𝐴 = (1...𝑁)) |
9 | 8 | adantr 479 | . . . . 5 ⊢ ((𝐴 ∈ (𝐵 ↑m (1...𝑁)) ∧ 𝐶 ∈ 𝐵) → dom 𝐴 = (1...𝑁)) |
10 | 9 | ineq1d 4205 | . . . 4 ⊢ ((𝐴 ∈ (𝐵 ↑m (1...𝑁)) ∧ 𝐶 ∈ 𝐵) → (dom 𝐴 ∩ {𝑀}) = ((1...𝑁) ∩ {𝑀})) |
11 | 1 | sneqi 4635 | . . . . . 6 ⊢ {𝑀} = {(𝑁 + 1)} |
12 | 11 | ineq2i 4203 | . . . . 5 ⊢ ((1...𝑁) ∩ {𝑀}) = ((1...𝑁) ∩ {(𝑁 + 1)}) |
13 | fzp1disj 13590 | . . . . 5 ⊢ ((1...𝑁) ∩ {(𝑁 + 1)}) = ∅ | |
14 | 12, 13 | eqtri 2753 | . . . 4 ⊢ ((1...𝑁) ∩ {𝑀}) = ∅ |
15 | 10, 14 | eqtrdi 2781 | . . 3 ⊢ ((𝐴 ∈ (𝐵 ↑m (1...𝑁)) ∧ 𝐶 ∈ 𝐵) → (dom 𝐴 ∩ {𝑀}) = ∅) |
16 | disjsn 4711 | . . 3 ⊢ ((dom 𝐴 ∩ {𝑀}) = ∅ ↔ ¬ 𝑀 ∈ dom 𝐴) | |
17 | 15, 16 | sylib 217 | . 2 ⊢ ((𝐴 ∈ (𝐵 ↑m (1...𝑁)) ∧ 𝐶 ∈ 𝐵) → ¬ 𝑀 ∈ dom 𝐴) |
18 | fsnunfv 7191 | . 2 ⊢ ((𝑀 ∈ V ∧ 𝐶 ∈ V ∧ ¬ 𝑀 ∈ dom 𝐴) → ((𝐴 ∪ {⟨𝑀, 𝐶⟩})‘𝑀) = 𝐶) | |
19 | 4, 6, 17, 18 | syl3anc 1368 | 1 ⊢ ((𝐴 ∈ (𝐵 ↑m (1...𝑁)) ∧ 𝐶 ∈ 𝐵) → ((𝐴 ∪ {⟨𝑀, 𝐶⟩})‘𝑀) = 𝐶) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 394 = wceq 1533 ∈ wcel 2098 Vcvv 3463 ∪ cun 3938 ∩ cin 3939 ∅c0 4318 {csn 4624 ⟨cop 4630 dom cdm 5672 ‘cfv 6542 (class class class)co 7415 ↑m cmap 8841 1c1 11137 + caddc 11139 ...cfz 13514 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2696 ax-sep 5294 ax-nul 5301 ax-pow 5359 ax-pr 5423 ax-un 7737 ax-cnex 11192 ax-resscn 11193 ax-1cn 11194 ax-icn 11195 ax-addcl 11196 ax-addrcl 11197 ax-mulcl 11198 ax-mulrcl 11199 ax-mulcom 11200 ax-addass 11201 ax-mulass 11202 ax-distr 11203 ax-i2m1 11204 ax-1ne0 11205 ax-1rid 11206 ax-rnegex 11207 ax-rrecex 11208 ax-cnre 11209 ax-pre-lttri 11210 ax-pre-lttrn 11211 ax-pre-ltadd 11212 ax-pre-mulgt0 11213 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2703 df-cleq 2717 df-clel 2802 df-nfc 2877 df-ne 2931 df-nel 3037 df-ral 3052 df-rex 3061 df-reu 3365 df-rab 3420 df-v 3465 df-sbc 3770 df-csb 3886 df-dif 3943 df-un 3945 df-in 3947 df-ss 3957 df-nul 4319 df-if 4525 df-pw 4600 df-sn 4625 df-pr 4627 df-op 4631 df-uni 4904 df-iun 4993 df-br 5144 df-opab 5206 df-mpt 5227 df-id 5570 df-po 5584 df-so 5585 df-xp 5678 df-rel 5679 df-cnv 5680 df-co 5681 df-dm 5682 df-rn 5683 df-res 5684 df-ima 5685 df-iota 6494 df-fun 6544 df-fn 6545 df-f 6546 df-f1 6547 df-fo 6548 df-f1o 6549 df-fv 6550 df-riota 7371 df-ov 7418 df-oprab 7419 df-mpo 7420 df-1st 7989 df-2nd 7990 df-er 8721 df-map 8843 df-en 8961 df-dom 8962 df-sdom 8963 df-pnf 11278 df-mnf 11279 df-xr 11280 df-ltxr 11281 df-le 11282 df-sub 11474 df-neg 11475 df-z 12587 df-uz 12851 df-fz 13515 |
This theorem is referenced by: rexrabdioph 42278 |
Copyright terms: Public domain | W3C validator |