| Mathbox for Stefan O'Rear |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > mapfzcons2 | Structured version Visualization version GIF version | ||
| Description: Recover added element from an extended mapping. (Contributed by Stefan O'Rear, 10-Oct-2014.) (Revised by Stefan O'Rear, 5-May-2015.) |
| Ref | Expression |
|---|---|
| mapfzcons.1 | ⊢ 𝑀 = (𝑁 + 1) |
| Ref | Expression |
|---|---|
| mapfzcons2 | ⊢ ((𝐴 ∈ (𝐵 ↑m (1...𝑁)) ∧ 𝐶 ∈ 𝐵) → ((𝐴 ∪ {〈𝑀, 𝐶〉})‘𝑀) = 𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mapfzcons.1 | . . . 4 ⊢ 𝑀 = (𝑁 + 1) | |
| 2 | ovex 7379 | . . . 4 ⊢ (𝑁 + 1) ∈ V | |
| 3 | 1, 2 | eqeltri 2827 | . . 3 ⊢ 𝑀 ∈ V |
| 4 | 3 | a1i 11 | . 2 ⊢ ((𝐴 ∈ (𝐵 ↑m (1...𝑁)) ∧ 𝐶 ∈ 𝐵) → 𝑀 ∈ V) |
| 5 | elex 3457 | . . 3 ⊢ (𝐶 ∈ 𝐵 → 𝐶 ∈ V) | |
| 6 | 5 | adantl 481 | . 2 ⊢ ((𝐴 ∈ (𝐵 ↑m (1...𝑁)) ∧ 𝐶 ∈ 𝐵) → 𝐶 ∈ V) |
| 7 | elmapi 8773 | . . . . . . 7 ⊢ (𝐴 ∈ (𝐵 ↑m (1...𝑁)) → 𝐴:(1...𝑁)⟶𝐵) | |
| 8 | 7 | fdmd 6661 | . . . . . 6 ⊢ (𝐴 ∈ (𝐵 ↑m (1...𝑁)) → dom 𝐴 = (1...𝑁)) |
| 9 | 8 | adantr 480 | . . . . 5 ⊢ ((𝐴 ∈ (𝐵 ↑m (1...𝑁)) ∧ 𝐶 ∈ 𝐵) → dom 𝐴 = (1...𝑁)) |
| 10 | 9 | ineq1d 4166 | . . . 4 ⊢ ((𝐴 ∈ (𝐵 ↑m (1...𝑁)) ∧ 𝐶 ∈ 𝐵) → (dom 𝐴 ∩ {𝑀}) = ((1...𝑁) ∩ {𝑀})) |
| 11 | 1 | sneqi 4584 | . . . . . 6 ⊢ {𝑀} = {(𝑁 + 1)} |
| 12 | 11 | ineq2i 4164 | . . . . 5 ⊢ ((1...𝑁) ∩ {𝑀}) = ((1...𝑁) ∩ {(𝑁 + 1)}) |
| 13 | fzp1disj 13483 | . . . . 5 ⊢ ((1...𝑁) ∩ {(𝑁 + 1)}) = ∅ | |
| 14 | 12, 13 | eqtri 2754 | . . . 4 ⊢ ((1...𝑁) ∩ {𝑀}) = ∅ |
| 15 | 10, 14 | eqtrdi 2782 | . . 3 ⊢ ((𝐴 ∈ (𝐵 ↑m (1...𝑁)) ∧ 𝐶 ∈ 𝐵) → (dom 𝐴 ∩ {𝑀}) = ∅) |
| 16 | disjsn 4661 | . . 3 ⊢ ((dom 𝐴 ∩ {𝑀}) = ∅ ↔ ¬ 𝑀 ∈ dom 𝐴) | |
| 17 | 15, 16 | sylib 218 | . 2 ⊢ ((𝐴 ∈ (𝐵 ↑m (1...𝑁)) ∧ 𝐶 ∈ 𝐵) → ¬ 𝑀 ∈ dom 𝐴) |
| 18 | fsnunfv 7121 | . 2 ⊢ ((𝑀 ∈ V ∧ 𝐶 ∈ V ∧ ¬ 𝑀 ∈ dom 𝐴) → ((𝐴 ∪ {〈𝑀, 𝐶〉})‘𝑀) = 𝐶) | |
| 19 | 4, 6, 17, 18 | syl3anc 1373 | 1 ⊢ ((𝐴 ∈ (𝐵 ↑m (1...𝑁)) ∧ 𝐶 ∈ 𝐵) → ((𝐴 ∪ {〈𝑀, 𝐶〉})‘𝑀) = 𝐶) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2111 Vcvv 3436 ∪ cun 3895 ∩ cin 3896 ∅c0 4280 {csn 4573 〈cop 4579 dom cdm 5614 ‘cfv 6481 (class class class)co 7346 ↑m cmap 8750 1c1 11007 + caddc 11009 ...cfz 13407 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7668 ax-cnex 11062 ax-resscn 11063 ax-1cn 11064 ax-icn 11065 ax-addcl 11066 ax-addrcl 11067 ax-mulcl 11068 ax-mulrcl 11069 ax-mulcom 11070 ax-addass 11071 ax-mulass 11072 ax-distr 11073 ax-i2m1 11074 ax-1ne0 11075 ax-1rid 11076 ax-rnegex 11077 ax-rrecex 11078 ax-cnre 11079 ax-pre-lttri 11080 ax-pre-lttrn 11081 ax-pre-ltadd 11082 ax-pre-mulgt0 11083 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-iun 4941 df-br 5090 df-opab 5152 df-mpt 5171 df-id 5509 df-po 5522 df-so 5523 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-riota 7303 df-ov 7349 df-oprab 7350 df-mpo 7351 df-1st 7921 df-2nd 7922 df-er 8622 df-map 8752 df-en 8870 df-dom 8871 df-sdom 8872 df-pnf 11148 df-mnf 11149 df-xr 11150 df-ltxr 11151 df-le 11152 df-sub 11346 df-neg 11347 df-z 12469 df-uz 12733 df-fz 13408 |
| This theorem is referenced by: rexrabdioph 42897 |
| Copyright terms: Public domain | W3C validator |