![]() |
Mathbox for Stefan O'Rear |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > mapfzcons2 | Structured version Visualization version GIF version |
Description: Recover added element from an extended mapping. (Contributed by Stefan O'Rear, 10-Oct-2014.) (Revised by Stefan O'Rear, 5-May-2015.) |
Ref | Expression |
---|---|
mapfzcons.1 | ⊢ 𝑀 = (𝑁 + 1) |
Ref | Expression |
---|---|
mapfzcons2 | ⊢ ((𝐴 ∈ (𝐵 ↑m (1...𝑁)) ∧ 𝐶 ∈ 𝐵) → ((𝐴 ∪ {⟨𝑀, 𝐶⟩})‘𝑀) = 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mapfzcons.1 | . . . 4 ⊢ 𝑀 = (𝑁 + 1) | |
2 | ovex 7438 | . . . 4 ⊢ (𝑁 + 1) ∈ V | |
3 | 1, 2 | eqeltri 2823 | . . 3 ⊢ 𝑀 ∈ V |
4 | 3 | a1i 11 | . 2 ⊢ ((𝐴 ∈ (𝐵 ↑m (1...𝑁)) ∧ 𝐶 ∈ 𝐵) → 𝑀 ∈ V) |
5 | elex 3487 | . . 3 ⊢ (𝐶 ∈ 𝐵 → 𝐶 ∈ V) | |
6 | 5 | adantl 481 | . 2 ⊢ ((𝐴 ∈ (𝐵 ↑m (1...𝑁)) ∧ 𝐶 ∈ 𝐵) → 𝐶 ∈ V) |
7 | elmapi 8845 | . . . . . . 7 ⊢ (𝐴 ∈ (𝐵 ↑m (1...𝑁)) → 𝐴:(1...𝑁)⟶𝐵) | |
8 | 7 | fdmd 6722 | . . . . . 6 ⊢ (𝐴 ∈ (𝐵 ↑m (1...𝑁)) → dom 𝐴 = (1...𝑁)) |
9 | 8 | adantr 480 | . . . . 5 ⊢ ((𝐴 ∈ (𝐵 ↑m (1...𝑁)) ∧ 𝐶 ∈ 𝐵) → dom 𝐴 = (1...𝑁)) |
10 | 9 | ineq1d 4206 | . . . 4 ⊢ ((𝐴 ∈ (𝐵 ↑m (1...𝑁)) ∧ 𝐶 ∈ 𝐵) → (dom 𝐴 ∩ {𝑀}) = ((1...𝑁) ∩ {𝑀})) |
11 | 1 | sneqi 4634 | . . . . . 6 ⊢ {𝑀} = {(𝑁 + 1)} |
12 | 11 | ineq2i 4204 | . . . . 5 ⊢ ((1...𝑁) ∩ {𝑀}) = ((1...𝑁) ∩ {(𝑁 + 1)}) |
13 | fzp1disj 13566 | . . . . 5 ⊢ ((1...𝑁) ∩ {(𝑁 + 1)}) = ∅ | |
14 | 12, 13 | eqtri 2754 | . . . 4 ⊢ ((1...𝑁) ∩ {𝑀}) = ∅ |
15 | 10, 14 | eqtrdi 2782 | . . 3 ⊢ ((𝐴 ∈ (𝐵 ↑m (1...𝑁)) ∧ 𝐶 ∈ 𝐵) → (dom 𝐴 ∩ {𝑀}) = ∅) |
16 | disjsn 4710 | . . 3 ⊢ ((dom 𝐴 ∩ {𝑀}) = ∅ ↔ ¬ 𝑀 ∈ dom 𝐴) | |
17 | 15, 16 | sylib 217 | . 2 ⊢ ((𝐴 ∈ (𝐵 ↑m (1...𝑁)) ∧ 𝐶 ∈ 𝐵) → ¬ 𝑀 ∈ dom 𝐴) |
18 | fsnunfv 7181 | . 2 ⊢ ((𝑀 ∈ V ∧ 𝐶 ∈ V ∧ ¬ 𝑀 ∈ dom 𝐴) → ((𝐴 ∪ {⟨𝑀, 𝐶⟩})‘𝑀) = 𝐶) | |
19 | 4, 6, 17, 18 | syl3anc 1368 | 1 ⊢ ((𝐴 ∈ (𝐵 ↑m (1...𝑁)) ∧ 𝐶 ∈ 𝐵) → ((𝐴 ∪ {⟨𝑀, 𝐶⟩})‘𝑀) = 𝐶) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 = wceq 1533 ∈ wcel 2098 Vcvv 3468 ∪ cun 3941 ∩ cin 3942 ∅c0 4317 {csn 4623 ⟨cop 4629 dom cdm 5669 ‘cfv 6537 (class class class)co 7405 ↑m cmap 8822 1c1 11113 + caddc 11115 ...cfz 13490 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2697 ax-sep 5292 ax-nul 5299 ax-pow 5356 ax-pr 5420 ax-un 7722 ax-cnex 11168 ax-resscn 11169 ax-1cn 11170 ax-icn 11171 ax-addcl 11172 ax-addrcl 11173 ax-mulcl 11174 ax-mulrcl 11175 ax-mulcom 11176 ax-addass 11177 ax-mulass 11178 ax-distr 11179 ax-i2m1 11180 ax-1ne0 11181 ax-1rid 11182 ax-rnegex 11183 ax-rrecex 11184 ax-cnre 11185 ax-pre-lttri 11186 ax-pre-lttrn 11187 ax-pre-ltadd 11188 ax-pre-mulgt0 11189 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2704 df-cleq 2718 df-clel 2804 df-nfc 2879 df-ne 2935 df-nel 3041 df-ral 3056 df-rex 3065 df-reu 3371 df-rab 3427 df-v 3470 df-sbc 3773 df-csb 3889 df-dif 3946 df-un 3948 df-in 3950 df-ss 3960 df-nul 4318 df-if 4524 df-pw 4599 df-sn 4624 df-pr 4626 df-op 4630 df-uni 4903 df-iun 4992 df-br 5142 df-opab 5204 df-mpt 5225 df-id 5567 df-po 5581 df-so 5582 df-xp 5675 df-rel 5676 df-cnv 5677 df-co 5678 df-dm 5679 df-rn 5680 df-res 5681 df-ima 5682 df-iota 6489 df-fun 6539 df-fn 6540 df-f 6541 df-f1 6542 df-fo 6543 df-f1o 6544 df-fv 6545 df-riota 7361 df-ov 7408 df-oprab 7409 df-mpo 7410 df-1st 7974 df-2nd 7975 df-er 8705 df-map 8824 df-en 8942 df-dom 8943 df-sdom 8944 df-pnf 11254 df-mnf 11255 df-xr 11256 df-ltxr 11257 df-le 11258 df-sub 11450 df-neg 11451 df-z 12563 df-uz 12827 df-fz 13491 |
This theorem is referenced by: rexrabdioph 42115 |
Copyright terms: Public domain | W3C validator |