Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mapfzcons2 Structured version   Visualization version   GIF version

Theorem mapfzcons2 42735
Description: Recover added element from an extended mapping. (Contributed by Stefan O'Rear, 10-Oct-2014.) (Revised by Stefan O'Rear, 5-May-2015.)
Hypothesis
Ref Expression
mapfzcons.1 𝑀 = (𝑁 + 1)
Assertion
Ref Expression
mapfzcons2 ((𝐴 ∈ (𝐵m (1...𝑁)) ∧ 𝐶𝐵) → ((𝐴 ∪ {⟨𝑀, 𝐶⟩})‘𝑀) = 𝐶)

Proof of Theorem mapfzcons2
StepHypRef Expression
1 mapfzcons.1 . . . 4 𝑀 = (𝑁 + 1)
2 ovex 7465 . . . 4 (𝑁 + 1) ∈ V
31, 2eqeltri 2836 . . 3 𝑀 ∈ V
43a1i 11 . 2 ((𝐴 ∈ (𝐵m (1...𝑁)) ∧ 𝐶𝐵) → 𝑀 ∈ V)
5 elex 3500 . . 3 (𝐶𝐵𝐶 ∈ V)
65adantl 481 . 2 ((𝐴 ∈ (𝐵m (1...𝑁)) ∧ 𝐶𝐵) → 𝐶 ∈ V)
7 elmapi 8890 . . . . . . 7 (𝐴 ∈ (𝐵m (1...𝑁)) → 𝐴:(1...𝑁)⟶𝐵)
87fdmd 6745 . . . . . 6 (𝐴 ∈ (𝐵m (1...𝑁)) → dom 𝐴 = (1...𝑁))
98adantr 480 . . . . 5 ((𝐴 ∈ (𝐵m (1...𝑁)) ∧ 𝐶𝐵) → dom 𝐴 = (1...𝑁))
109ineq1d 4218 . . . 4 ((𝐴 ∈ (𝐵m (1...𝑁)) ∧ 𝐶𝐵) → (dom 𝐴 ∩ {𝑀}) = ((1...𝑁) ∩ {𝑀}))
111sneqi 4636 . . . . . 6 {𝑀} = {(𝑁 + 1)}
1211ineq2i 4216 . . . . 5 ((1...𝑁) ∩ {𝑀}) = ((1...𝑁) ∩ {(𝑁 + 1)})
13 fzp1disj 13624 . . . . 5 ((1...𝑁) ∩ {(𝑁 + 1)}) = ∅
1412, 13eqtri 2764 . . . 4 ((1...𝑁) ∩ {𝑀}) = ∅
1510, 14eqtrdi 2792 . . 3 ((𝐴 ∈ (𝐵m (1...𝑁)) ∧ 𝐶𝐵) → (dom 𝐴 ∩ {𝑀}) = ∅)
16 disjsn 4710 . . 3 ((dom 𝐴 ∩ {𝑀}) = ∅ ↔ ¬ 𝑀 ∈ dom 𝐴)
1715, 16sylib 218 . 2 ((𝐴 ∈ (𝐵m (1...𝑁)) ∧ 𝐶𝐵) → ¬ 𝑀 ∈ dom 𝐴)
18 fsnunfv 7208 . 2 ((𝑀 ∈ V ∧ 𝐶 ∈ V ∧ ¬ 𝑀 ∈ dom 𝐴) → ((𝐴 ∪ {⟨𝑀, 𝐶⟩})‘𝑀) = 𝐶)
194, 6, 17, 18syl3anc 1372 1 ((𝐴 ∈ (𝐵m (1...𝑁)) ∧ 𝐶𝐵) → ((𝐴 ∪ {⟨𝑀, 𝐶⟩})‘𝑀) = 𝐶)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1539  wcel 2107  Vcvv 3479  cun 3948  cin 3949  c0 4332  {csn 4625  cop 4631  dom cdm 5684  cfv 6560  (class class class)co 7432  m cmap 8867  1c1 11157   + caddc 11159  ...cfz 13548
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2707  ax-sep 5295  ax-nul 5305  ax-pow 5364  ax-pr 5431  ax-un 7756  ax-cnex 11212  ax-resscn 11213  ax-1cn 11214  ax-icn 11215  ax-addcl 11216  ax-addrcl 11217  ax-mulcl 11218  ax-mulrcl 11219  ax-mulcom 11220  ax-addass 11221  ax-mulass 11222  ax-distr 11223  ax-i2m1 11224  ax-1ne0 11225  ax-1rid 11226  ax-rnegex 11227  ax-rrecex 11228  ax-cnre 11229  ax-pre-lttri 11230  ax-pre-lttrn 11231  ax-pre-ltadd 11232  ax-pre-mulgt0 11233
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2728  df-clel 2815  df-nfc 2891  df-ne 2940  df-nel 3046  df-ral 3061  df-rex 3070  df-reu 3380  df-rab 3436  df-v 3481  df-sbc 3788  df-csb 3899  df-dif 3953  df-un 3955  df-in 3957  df-ss 3967  df-nul 4333  df-if 4525  df-pw 4601  df-sn 4626  df-pr 4628  df-op 4632  df-uni 4907  df-iun 4992  df-br 5143  df-opab 5205  df-mpt 5225  df-id 5577  df-po 5591  df-so 5592  df-xp 5690  df-rel 5691  df-cnv 5692  df-co 5693  df-dm 5694  df-rn 5695  df-res 5696  df-ima 5697  df-iota 6513  df-fun 6562  df-fn 6563  df-f 6564  df-f1 6565  df-fo 6566  df-f1o 6567  df-fv 6568  df-riota 7389  df-ov 7435  df-oprab 7436  df-mpo 7437  df-1st 8015  df-2nd 8016  df-er 8746  df-map 8869  df-en 8987  df-dom 8988  df-sdom 8989  df-pnf 11298  df-mnf 11299  df-xr 11300  df-ltxr 11301  df-le 11302  df-sub 11495  df-neg 11496  df-z 12616  df-uz 12880  df-fz 13549
This theorem is referenced by:  rexrabdioph  42810
  Copyright terms: Public domain W3C validator