Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mzpsubmpt Structured version   Visualization version   GIF version

Theorem mzpsubmpt 42766
Description: The difference of two polynomial functions is polynomial. (Contributed by Stefan O'Rear, 10-Oct-2014.)
Assertion
Ref Expression
mzpsubmpt (((𝑥 ∈ (ℤ ↑m 𝑉) ↦ 𝐴) ∈ (mzPoly‘𝑉) ∧ (𝑥 ∈ (ℤ ↑m 𝑉) ↦ 𝐵) ∈ (mzPoly‘𝑉)) → (𝑥 ∈ (ℤ ↑m 𝑉) ↦ (𝐴𝐵)) ∈ (mzPoly‘𝑉))
Distinct variable group:   𝑥,𝑉
Allowed substitution hints:   𝐴(𝑥)   𝐵(𝑥)

Proof of Theorem mzpsubmpt
StepHypRef Expression
1 nfmpt1 5220 . . . . 5 𝑥(𝑥 ∈ (ℤ ↑m 𝑉) ↦ 𝐴)
21nfel1 2915 . . . 4 𝑥(𝑥 ∈ (ℤ ↑m 𝑉) ↦ 𝐴) ∈ (mzPoly‘𝑉)
3 nfmpt1 5220 . . . . 5 𝑥(𝑥 ∈ (ℤ ↑m 𝑉) ↦ 𝐵)
43nfel1 2915 . . . 4 𝑥(𝑥 ∈ (ℤ ↑m 𝑉) ↦ 𝐵) ∈ (mzPoly‘𝑉)
52, 4nfan 1899 . . 3 𝑥((𝑥 ∈ (ℤ ↑m 𝑉) ↦ 𝐴) ∈ (mzPoly‘𝑉) ∧ (𝑥 ∈ (ℤ ↑m 𝑉) ↦ 𝐵) ∈ (mzPoly‘𝑉))
6 mzpf 42759 . . . . . . . . 9 ((𝑥 ∈ (ℤ ↑m 𝑉) ↦ 𝐵) ∈ (mzPoly‘𝑉) → (𝑥 ∈ (ℤ ↑m 𝑉) ↦ 𝐵):(ℤ ↑m 𝑉)⟶ℤ)
76ad2antlr 727 . . . . . . . 8 ((((𝑥 ∈ (ℤ ↑m 𝑉) ↦ 𝐴) ∈ (mzPoly‘𝑉) ∧ (𝑥 ∈ (ℤ ↑m 𝑉) ↦ 𝐵) ∈ (mzPoly‘𝑉)) ∧ 𝑥 ∈ (ℤ ↑m 𝑉)) → (𝑥 ∈ (ℤ ↑m 𝑉) ↦ 𝐵):(ℤ ↑m 𝑉)⟶ℤ)
8 simpr 484 . . . . . . . 8 ((((𝑥 ∈ (ℤ ↑m 𝑉) ↦ 𝐴) ∈ (mzPoly‘𝑉) ∧ (𝑥 ∈ (ℤ ↑m 𝑉) ↦ 𝐵) ∈ (mzPoly‘𝑉)) ∧ 𝑥 ∈ (ℤ ↑m 𝑉)) → 𝑥 ∈ (ℤ ↑m 𝑉))
9 mptfcl 42743 . . . . . . . 8 ((𝑥 ∈ (ℤ ↑m 𝑉) ↦ 𝐵):(ℤ ↑m 𝑉)⟶ℤ → (𝑥 ∈ (ℤ ↑m 𝑉) → 𝐵 ∈ ℤ))
107, 8, 9sylc 65 . . . . . . 7 ((((𝑥 ∈ (ℤ ↑m 𝑉) ↦ 𝐴) ∈ (mzPoly‘𝑉) ∧ (𝑥 ∈ (ℤ ↑m 𝑉) ↦ 𝐵) ∈ (mzPoly‘𝑉)) ∧ 𝑥 ∈ (ℤ ↑m 𝑉)) → 𝐵 ∈ ℤ)
1110zcnd 12698 . . . . . 6 ((((𝑥 ∈ (ℤ ↑m 𝑉) ↦ 𝐴) ∈ (mzPoly‘𝑉) ∧ (𝑥 ∈ (ℤ ↑m 𝑉) ↦ 𝐵) ∈ (mzPoly‘𝑉)) ∧ 𝑥 ∈ (ℤ ↑m 𝑉)) → 𝐵 ∈ ℂ)
1211mulm1d 11689 . . . . 5 ((((𝑥 ∈ (ℤ ↑m 𝑉) ↦ 𝐴) ∈ (mzPoly‘𝑉) ∧ (𝑥 ∈ (ℤ ↑m 𝑉) ↦ 𝐵) ∈ (mzPoly‘𝑉)) ∧ 𝑥 ∈ (ℤ ↑m 𝑉)) → (-1 · 𝐵) = -𝐵)
1312oveq2d 7421 . . . 4 ((((𝑥 ∈ (ℤ ↑m 𝑉) ↦ 𝐴) ∈ (mzPoly‘𝑉) ∧ (𝑥 ∈ (ℤ ↑m 𝑉) ↦ 𝐵) ∈ (mzPoly‘𝑉)) ∧ 𝑥 ∈ (ℤ ↑m 𝑉)) → (𝐴 + (-1 · 𝐵)) = (𝐴 + -𝐵))
14 mzpf 42759 . . . . . . . 8 ((𝑥 ∈ (ℤ ↑m 𝑉) ↦ 𝐴) ∈ (mzPoly‘𝑉) → (𝑥 ∈ (ℤ ↑m 𝑉) ↦ 𝐴):(ℤ ↑m 𝑉)⟶ℤ)
1514ad2antrr 726 . . . . . . 7 ((((𝑥 ∈ (ℤ ↑m 𝑉) ↦ 𝐴) ∈ (mzPoly‘𝑉) ∧ (𝑥 ∈ (ℤ ↑m 𝑉) ↦ 𝐵) ∈ (mzPoly‘𝑉)) ∧ 𝑥 ∈ (ℤ ↑m 𝑉)) → (𝑥 ∈ (ℤ ↑m 𝑉) ↦ 𝐴):(ℤ ↑m 𝑉)⟶ℤ)
16 mptfcl 42743 . . . . . . 7 ((𝑥 ∈ (ℤ ↑m 𝑉) ↦ 𝐴):(ℤ ↑m 𝑉)⟶ℤ → (𝑥 ∈ (ℤ ↑m 𝑉) → 𝐴 ∈ ℤ))
1715, 8, 16sylc 65 . . . . . 6 ((((𝑥 ∈ (ℤ ↑m 𝑉) ↦ 𝐴) ∈ (mzPoly‘𝑉) ∧ (𝑥 ∈ (ℤ ↑m 𝑉) ↦ 𝐵) ∈ (mzPoly‘𝑉)) ∧ 𝑥 ∈ (ℤ ↑m 𝑉)) → 𝐴 ∈ ℤ)
1817zcnd 12698 . . . . 5 ((((𝑥 ∈ (ℤ ↑m 𝑉) ↦ 𝐴) ∈ (mzPoly‘𝑉) ∧ (𝑥 ∈ (ℤ ↑m 𝑉) ↦ 𝐵) ∈ (mzPoly‘𝑉)) ∧ 𝑥 ∈ (ℤ ↑m 𝑉)) → 𝐴 ∈ ℂ)
1918, 11negsubd 11600 . . . 4 ((((𝑥 ∈ (ℤ ↑m 𝑉) ↦ 𝐴) ∈ (mzPoly‘𝑉) ∧ (𝑥 ∈ (ℤ ↑m 𝑉) ↦ 𝐵) ∈ (mzPoly‘𝑉)) ∧ 𝑥 ∈ (ℤ ↑m 𝑉)) → (𝐴 + -𝐵) = (𝐴𝐵))
2013, 19eqtr2d 2771 . . 3 ((((𝑥 ∈ (ℤ ↑m 𝑉) ↦ 𝐴) ∈ (mzPoly‘𝑉) ∧ (𝑥 ∈ (ℤ ↑m 𝑉) ↦ 𝐵) ∈ (mzPoly‘𝑉)) ∧ 𝑥 ∈ (ℤ ↑m 𝑉)) → (𝐴𝐵) = (𝐴 + (-1 · 𝐵)))
215, 20mpteq2da 5213 . 2 (((𝑥 ∈ (ℤ ↑m 𝑉) ↦ 𝐴) ∈ (mzPoly‘𝑉) ∧ (𝑥 ∈ (ℤ ↑m 𝑉) ↦ 𝐵) ∈ (mzPoly‘𝑉)) → (𝑥 ∈ (ℤ ↑m 𝑉) ↦ (𝐴𝐵)) = (𝑥 ∈ (ℤ ↑m 𝑉) ↦ (𝐴 + (-1 · 𝐵))))
22 elfvex 6914 . . . . 5 ((𝑥 ∈ (ℤ ↑m 𝑉) ↦ 𝐵) ∈ (mzPoly‘𝑉) → 𝑉 ∈ V)
23 neg1z 12628 . . . . 5 -1 ∈ ℤ
24 mzpconstmpt 42763 . . . . 5 ((𝑉 ∈ V ∧ -1 ∈ ℤ) → (𝑥 ∈ (ℤ ↑m 𝑉) ↦ -1) ∈ (mzPoly‘𝑉))
2522, 23, 24sylancl 586 . . . 4 ((𝑥 ∈ (ℤ ↑m 𝑉) ↦ 𝐵) ∈ (mzPoly‘𝑉) → (𝑥 ∈ (ℤ ↑m 𝑉) ↦ -1) ∈ (mzPoly‘𝑉))
26 mzpmulmpt 42765 . . . 4 (((𝑥 ∈ (ℤ ↑m 𝑉) ↦ -1) ∈ (mzPoly‘𝑉) ∧ (𝑥 ∈ (ℤ ↑m 𝑉) ↦ 𝐵) ∈ (mzPoly‘𝑉)) → (𝑥 ∈ (ℤ ↑m 𝑉) ↦ (-1 · 𝐵)) ∈ (mzPoly‘𝑉))
2725, 26mpancom 688 . . 3 ((𝑥 ∈ (ℤ ↑m 𝑉) ↦ 𝐵) ∈ (mzPoly‘𝑉) → (𝑥 ∈ (ℤ ↑m 𝑉) ↦ (-1 · 𝐵)) ∈ (mzPoly‘𝑉))
28 mzpaddmpt 42764 . . 3 (((𝑥 ∈ (ℤ ↑m 𝑉) ↦ 𝐴) ∈ (mzPoly‘𝑉) ∧ (𝑥 ∈ (ℤ ↑m 𝑉) ↦ (-1 · 𝐵)) ∈ (mzPoly‘𝑉)) → (𝑥 ∈ (ℤ ↑m 𝑉) ↦ (𝐴 + (-1 · 𝐵))) ∈ (mzPoly‘𝑉))
2927, 28sylan2 593 . 2 (((𝑥 ∈ (ℤ ↑m 𝑉) ↦ 𝐴) ∈ (mzPoly‘𝑉) ∧ (𝑥 ∈ (ℤ ↑m 𝑉) ↦ 𝐵) ∈ (mzPoly‘𝑉)) → (𝑥 ∈ (ℤ ↑m 𝑉) ↦ (𝐴 + (-1 · 𝐵))) ∈ (mzPoly‘𝑉))
3021, 29eqeltrd 2834 1 (((𝑥 ∈ (ℤ ↑m 𝑉) ↦ 𝐴) ∈ (mzPoly‘𝑉) ∧ (𝑥 ∈ (ℤ ↑m 𝑉) ↦ 𝐵) ∈ (mzPoly‘𝑉)) → (𝑥 ∈ (ℤ ↑m 𝑉) ↦ (𝐴𝐵)) ∈ (mzPoly‘𝑉))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wcel 2108  Vcvv 3459  cmpt 5201  wf 6527  cfv 6531  (class class class)co 7405  m cmap 8840  1c1 11130   + caddc 11132   · cmul 11134  cmin 11466  -cneg 11467  cz 12588  mzPolycmzp 42745
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-rep 5249  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7729  ax-cnex 11185  ax-resscn 11186  ax-1cn 11187  ax-icn 11188  ax-addcl 11189  ax-addrcl 11190  ax-mulcl 11191  ax-mulrcl 11192  ax-mulcom 11193  ax-addass 11194  ax-mulass 11195  ax-distr 11196  ax-i2m1 11197  ax-1ne0 11198  ax-1rid 11199  ax-rnegex 11200  ax-rrecex 11201  ax-cnre 11202  ax-pre-lttri 11203  ax-pre-lttrn 11204  ax-pre-ltadd 11205  ax-pre-mulgt0 11206
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-nel 3037  df-ral 3052  df-rex 3061  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-int 4923  df-iun 4969  df-br 5120  df-opab 5182  df-mpt 5202  df-tr 5230  df-id 5548  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-we 5608  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-pred 6290  df-ord 6355  df-on 6356  df-lim 6357  df-suc 6358  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-f1 6536  df-fo 6537  df-f1o 6538  df-fv 6539  df-riota 7362  df-ov 7408  df-oprab 7409  df-mpo 7410  df-of 7671  df-om 7862  df-2nd 7989  df-frecs 8280  df-wrecs 8311  df-recs 8385  df-rdg 8424  df-er 8719  df-map 8842  df-en 8960  df-dom 8961  df-sdom 8962  df-pnf 11271  df-mnf 11272  df-xr 11273  df-ltxr 11274  df-le 11275  df-sub 11468  df-neg 11469  df-nn 12241  df-n0 12502  df-z 12589  df-mzpcl 42746  df-mzp 42747
This theorem is referenced by:  mzpnegmpt  42767  eqrabdioph  42800  lerabdioph  42828  ltrabdioph  42831  rmydioph  43038  rmxdioph  43040  expdiophlem2  43046
  Copyright terms: Public domain W3C validator