Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mzpsubmpt Structured version   Visualization version   GIF version

Theorem mzpsubmpt 42731
Description: The difference of two polynomial functions is polynomial. (Contributed by Stefan O'Rear, 10-Oct-2014.)
Assertion
Ref Expression
mzpsubmpt (((𝑥 ∈ (ℤ ↑m 𝑉) ↦ 𝐴) ∈ (mzPoly‘𝑉) ∧ (𝑥 ∈ (ℤ ↑m 𝑉) ↦ 𝐵) ∈ (mzPoly‘𝑉)) → (𝑥 ∈ (ℤ ↑m 𝑉) ↦ (𝐴𝐵)) ∈ (mzPoly‘𝑉))
Distinct variable group:   𝑥,𝑉
Allowed substitution hints:   𝐴(𝑥)   𝐵(𝑥)

Proof of Theorem mzpsubmpt
StepHypRef Expression
1 nfmpt1 5256 . . . . 5 𝑥(𝑥 ∈ (ℤ ↑m 𝑉) ↦ 𝐴)
21nfel1 2920 . . . 4 𝑥(𝑥 ∈ (ℤ ↑m 𝑉) ↦ 𝐴) ∈ (mzPoly‘𝑉)
3 nfmpt1 5256 . . . . 5 𝑥(𝑥 ∈ (ℤ ↑m 𝑉) ↦ 𝐵)
43nfel1 2920 . . . 4 𝑥(𝑥 ∈ (ℤ ↑m 𝑉) ↦ 𝐵) ∈ (mzPoly‘𝑉)
52, 4nfan 1897 . . 3 𝑥((𝑥 ∈ (ℤ ↑m 𝑉) ↦ 𝐴) ∈ (mzPoly‘𝑉) ∧ (𝑥 ∈ (ℤ ↑m 𝑉) ↦ 𝐵) ∈ (mzPoly‘𝑉))
6 mzpf 42724 . . . . . . . . 9 ((𝑥 ∈ (ℤ ↑m 𝑉) ↦ 𝐵) ∈ (mzPoly‘𝑉) → (𝑥 ∈ (ℤ ↑m 𝑉) ↦ 𝐵):(ℤ ↑m 𝑉)⟶ℤ)
76ad2antlr 727 . . . . . . . 8 ((((𝑥 ∈ (ℤ ↑m 𝑉) ↦ 𝐴) ∈ (mzPoly‘𝑉) ∧ (𝑥 ∈ (ℤ ↑m 𝑉) ↦ 𝐵) ∈ (mzPoly‘𝑉)) ∧ 𝑥 ∈ (ℤ ↑m 𝑉)) → (𝑥 ∈ (ℤ ↑m 𝑉) ↦ 𝐵):(ℤ ↑m 𝑉)⟶ℤ)
8 simpr 484 . . . . . . . 8 ((((𝑥 ∈ (ℤ ↑m 𝑉) ↦ 𝐴) ∈ (mzPoly‘𝑉) ∧ (𝑥 ∈ (ℤ ↑m 𝑉) ↦ 𝐵) ∈ (mzPoly‘𝑉)) ∧ 𝑥 ∈ (ℤ ↑m 𝑉)) → 𝑥 ∈ (ℤ ↑m 𝑉))
9 mptfcl 42708 . . . . . . . 8 ((𝑥 ∈ (ℤ ↑m 𝑉) ↦ 𝐵):(ℤ ↑m 𝑉)⟶ℤ → (𝑥 ∈ (ℤ ↑m 𝑉) → 𝐵 ∈ ℤ))
107, 8, 9sylc 65 . . . . . . 7 ((((𝑥 ∈ (ℤ ↑m 𝑉) ↦ 𝐴) ∈ (mzPoly‘𝑉) ∧ (𝑥 ∈ (ℤ ↑m 𝑉) ↦ 𝐵) ∈ (mzPoly‘𝑉)) ∧ 𝑥 ∈ (ℤ ↑m 𝑉)) → 𝐵 ∈ ℤ)
1110zcnd 12721 . . . . . 6 ((((𝑥 ∈ (ℤ ↑m 𝑉) ↦ 𝐴) ∈ (mzPoly‘𝑉) ∧ (𝑥 ∈ (ℤ ↑m 𝑉) ↦ 𝐵) ∈ (mzPoly‘𝑉)) ∧ 𝑥 ∈ (ℤ ↑m 𝑉)) → 𝐵 ∈ ℂ)
1211mulm1d 11713 . . . . 5 ((((𝑥 ∈ (ℤ ↑m 𝑉) ↦ 𝐴) ∈ (mzPoly‘𝑉) ∧ (𝑥 ∈ (ℤ ↑m 𝑉) ↦ 𝐵) ∈ (mzPoly‘𝑉)) ∧ 𝑥 ∈ (ℤ ↑m 𝑉)) → (-1 · 𝐵) = -𝐵)
1312oveq2d 7447 . . . 4 ((((𝑥 ∈ (ℤ ↑m 𝑉) ↦ 𝐴) ∈ (mzPoly‘𝑉) ∧ (𝑥 ∈ (ℤ ↑m 𝑉) ↦ 𝐵) ∈ (mzPoly‘𝑉)) ∧ 𝑥 ∈ (ℤ ↑m 𝑉)) → (𝐴 + (-1 · 𝐵)) = (𝐴 + -𝐵))
14 mzpf 42724 . . . . . . . 8 ((𝑥 ∈ (ℤ ↑m 𝑉) ↦ 𝐴) ∈ (mzPoly‘𝑉) → (𝑥 ∈ (ℤ ↑m 𝑉) ↦ 𝐴):(ℤ ↑m 𝑉)⟶ℤ)
1514ad2antrr 726 . . . . . . 7 ((((𝑥 ∈ (ℤ ↑m 𝑉) ↦ 𝐴) ∈ (mzPoly‘𝑉) ∧ (𝑥 ∈ (ℤ ↑m 𝑉) ↦ 𝐵) ∈ (mzPoly‘𝑉)) ∧ 𝑥 ∈ (ℤ ↑m 𝑉)) → (𝑥 ∈ (ℤ ↑m 𝑉) ↦ 𝐴):(ℤ ↑m 𝑉)⟶ℤ)
16 mptfcl 42708 . . . . . . 7 ((𝑥 ∈ (ℤ ↑m 𝑉) ↦ 𝐴):(ℤ ↑m 𝑉)⟶ℤ → (𝑥 ∈ (ℤ ↑m 𝑉) → 𝐴 ∈ ℤ))
1715, 8, 16sylc 65 . . . . . 6 ((((𝑥 ∈ (ℤ ↑m 𝑉) ↦ 𝐴) ∈ (mzPoly‘𝑉) ∧ (𝑥 ∈ (ℤ ↑m 𝑉) ↦ 𝐵) ∈ (mzPoly‘𝑉)) ∧ 𝑥 ∈ (ℤ ↑m 𝑉)) → 𝐴 ∈ ℤ)
1817zcnd 12721 . . . . 5 ((((𝑥 ∈ (ℤ ↑m 𝑉) ↦ 𝐴) ∈ (mzPoly‘𝑉) ∧ (𝑥 ∈ (ℤ ↑m 𝑉) ↦ 𝐵) ∈ (mzPoly‘𝑉)) ∧ 𝑥 ∈ (ℤ ↑m 𝑉)) → 𝐴 ∈ ℂ)
1918, 11negsubd 11624 . . . 4 ((((𝑥 ∈ (ℤ ↑m 𝑉) ↦ 𝐴) ∈ (mzPoly‘𝑉) ∧ (𝑥 ∈ (ℤ ↑m 𝑉) ↦ 𝐵) ∈ (mzPoly‘𝑉)) ∧ 𝑥 ∈ (ℤ ↑m 𝑉)) → (𝐴 + -𝐵) = (𝐴𝐵))
2013, 19eqtr2d 2776 . . 3 ((((𝑥 ∈ (ℤ ↑m 𝑉) ↦ 𝐴) ∈ (mzPoly‘𝑉) ∧ (𝑥 ∈ (ℤ ↑m 𝑉) ↦ 𝐵) ∈ (mzPoly‘𝑉)) ∧ 𝑥 ∈ (ℤ ↑m 𝑉)) → (𝐴𝐵) = (𝐴 + (-1 · 𝐵)))
215, 20mpteq2da 5246 . 2 (((𝑥 ∈ (ℤ ↑m 𝑉) ↦ 𝐴) ∈ (mzPoly‘𝑉) ∧ (𝑥 ∈ (ℤ ↑m 𝑉) ↦ 𝐵) ∈ (mzPoly‘𝑉)) → (𝑥 ∈ (ℤ ↑m 𝑉) ↦ (𝐴𝐵)) = (𝑥 ∈ (ℤ ↑m 𝑉) ↦ (𝐴 + (-1 · 𝐵))))
22 elfvex 6945 . . . . 5 ((𝑥 ∈ (ℤ ↑m 𝑉) ↦ 𝐵) ∈ (mzPoly‘𝑉) → 𝑉 ∈ V)
23 neg1z 12651 . . . . 5 -1 ∈ ℤ
24 mzpconstmpt 42728 . . . . 5 ((𝑉 ∈ V ∧ -1 ∈ ℤ) → (𝑥 ∈ (ℤ ↑m 𝑉) ↦ -1) ∈ (mzPoly‘𝑉))
2522, 23, 24sylancl 586 . . . 4 ((𝑥 ∈ (ℤ ↑m 𝑉) ↦ 𝐵) ∈ (mzPoly‘𝑉) → (𝑥 ∈ (ℤ ↑m 𝑉) ↦ -1) ∈ (mzPoly‘𝑉))
26 mzpmulmpt 42730 . . . 4 (((𝑥 ∈ (ℤ ↑m 𝑉) ↦ -1) ∈ (mzPoly‘𝑉) ∧ (𝑥 ∈ (ℤ ↑m 𝑉) ↦ 𝐵) ∈ (mzPoly‘𝑉)) → (𝑥 ∈ (ℤ ↑m 𝑉) ↦ (-1 · 𝐵)) ∈ (mzPoly‘𝑉))
2725, 26mpancom 688 . . 3 ((𝑥 ∈ (ℤ ↑m 𝑉) ↦ 𝐵) ∈ (mzPoly‘𝑉) → (𝑥 ∈ (ℤ ↑m 𝑉) ↦ (-1 · 𝐵)) ∈ (mzPoly‘𝑉))
28 mzpaddmpt 42729 . . 3 (((𝑥 ∈ (ℤ ↑m 𝑉) ↦ 𝐴) ∈ (mzPoly‘𝑉) ∧ (𝑥 ∈ (ℤ ↑m 𝑉) ↦ (-1 · 𝐵)) ∈ (mzPoly‘𝑉)) → (𝑥 ∈ (ℤ ↑m 𝑉) ↦ (𝐴 + (-1 · 𝐵))) ∈ (mzPoly‘𝑉))
2927, 28sylan2 593 . 2 (((𝑥 ∈ (ℤ ↑m 𝑉) ↦ 𝐴) ∈ (mzPoly‘𝑉) ∧ (𝑥 ∈ (ℤ ↑m 𝑉) ↦ 𝐵) ∈ (mzPoly‘𝑉)) → (𝑥 ∈ (ℤ ↑m 𝑉) ↦ (𝐴 + (-1 · 𝐵))) ∈ (mzPoly‘𝑉))
3021, 29eqeltrd 2839 1 (((𝑥 ∈ (ℤ ↑m 𝑉) ↦ 𝐴) ∈ (mzPoly‘𝑉) ∧ (𝑥 ∈ (ℤ ↑m 𝑉) ↦ 𝐵) ∈ (mzPoly‘𝑉)) → (𝑥 ∈ (ℤ ↑m 𝑉) ↦ (𝐴𝐵)) ∈ (mzPoly‘𝑉))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wcel 2106  Vcvv 3478  cmpt 5231  wf 6559  cfv 6563  (class class class)co 7431  m cmap 8865  1c1 11154   + caddc 11156   · cmul 11158  cmin 11490  -cneg 11491  cz 12611  mzPolycmzp 42710
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-rep 5285  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754  ax-cnex 11209  ax-resscn 11210  ax-1cn 11211  ax-icn 11212  ax-addcl 11213  ax-addrcl 11214  ax-mulcl 11215  ax-mulrcl 11216  ax-mulcom 11217  ax-addass 11218  ax-mulass 11219  ax-distr 11220  ax-i2m1 11221  ax-1ne0 11222  ax-1rid 11223  ax-rnegex 11224  ax-rrecex 11225  ax-cnre 11226  ax-pre-lttri 11227  ax-pre-lttrn 11228  ax-pre-ltadd 11229  ax-pre-mulgt0 11230
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-int 4952  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5583  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-we 5643  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-pred 6323  df-ord 6389  df-on 6390  df-lim 6391  df-suc 6392  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-of 7697  df-om 7888  df-2nd 8014  df-frecs 8305  df-wrecs 8336  df-recs 8410  df-rdg 8449  df-er 8744  df-map 8867  df-en 8985  df-dom 8986  df-sdom 8987  df-pnf 11295  df-mnf 11296  df-xr 11297  df-ltxr 11298  df-le 11299  df-sub 11492  df-neg 11493  df-nn 12265  df-n0 12525  df-z 12612  df-mzpcl 42711  df-mzp 42712
This theorem is referenced by:  mzpnegmpt  42732  eqrabdioph  42765  lerabdioph  42793  ltrabdioph  42796  rmydioph  43003  rmxdioph  43005  expdiophlem2  43011
  Copyright terms: Public domain W3C validator