Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mzpsubmpt Structured version   Visualization version   GIF version

Theorem mzpsubmpt 38266
Description: The difference of two polynomial functions is polynomial. (Contributed by Stefan O'Rear, 10-Oct-2014.)
Assertion
Ref Expression
mzpsubmpt (((𝑥 ∈ (ℤ ↑𝑚 𝑉) ↦ 𝐴) ∈ (mzPoly‘𝑉) ∧ (𝑥 ∈ (ℤ ↑𝑚 𝑉) ↦ 𝐵) ∈ (mzPoly‘𝑉)) → (𝑥 ∈ (ℤ ↑𝑚 𝑉) ↦ (𝐴𝐵)) ∈ (mzPoly‘𝑉))
Distinct variable group:   𝑥,𝑉
Allowed substitution hints:   𝐴(𝑥)   𝐵(𝑥)

Proof of Theorem mzpsubmpt
StepHypRef Expression
1 nfmpt1 4982 . . . . 5 𝑥(𝑥 ∈ (ℤ ↑𝑚 𝑉) ↦ 𝐴)
21nfel1 2948 . . . 4 𝑥(𝑥 ∈ (ℤ ↑𝑚 𝑉) ↦ 𝐴) ∈ (mzPoly‘𝑉)
3 nfmpt1 4982 . . . . 5 𝑥(𝑥 ∈ (ℤ ↑𝑚 𝑉) ↦ 𝐵)
43nfel1 2948 . . . 4 𝑥(𝑥 ∈ (ℤ ↑𝑚 𝑉) ↦ 𝐵) ∈ (mzPoly‘𝑉)
52, 4nfan 1946 . . 3 𝑥((𝑥 ∈ (ℤ ↑𝑚 𝑉) ↦ 𝐴) ∈ (mzPoly‘𝑉) ∧ (𝑥 ∈ (ℤ ↑𝑚 𝑉) ↦ 𝐵) ∈ (mzPoly‘𝑉))
6 mzpf 38259 . . . . . . . . 9 ((𝑥 ∈ (ℤ ↑𝑚 𝑉) ↦ 𝐵) ∈ (mzPoly‘𝑉) → (𝑥 ∈ (ℤ ↑𝑚 𝑉) ↦ 𝐵):(ℤ ↑𝑚 𝑉)⟶ℤ)
76ad2antlr 717 . . . . . . . 8 ((((𝑥 ∈ (ℤ ↑𝑚 𝑉) ↦ 𝐴) ∈ (mzPoly‘𝑉) ∧ (𝑥 ∈ (ℤ ↑𝑚 𝑉) ↦ 𝐵) ∈ (mzPoly‘𝑉)) ∧ 𝑥 ∈ (ℤ ↑𝑚 𝑉)) → (𝑥 ∈ (ℤ ↑𝑚 𝑉) ↦ 𝐵):(ℤ ↑𝑚 𝑉)⟶ℤ)
8 simpr 479 . . . . . . . 8 ((((𝑥 ∈ (ℤ ↑𝑚 𝑉) ↦ 𝐴) ∈ (mzPoly‘𝑉) ∧ (𝑥 ∈ (ℤ ↑𝑚 𝑉) ↦ 𝐵) ∈ (mzPoly‘𝑉)) ∧ 𝑥 ∈ (ℤ ↑𝑚 𝑉)) → 𝑥 ∈ (ℤ ↑𝑚 𝑉))
9 mptfcl 38243 . . . . . . . 8 ((𝑥 ∈ (ℤ ↑𝑚 𝑉) ↦ 𝐵):(ℤ ↑𝑚 𝑉)⟶ℤ → (𝑥 ∈ (ℤ ↑𝑚 𝑉) → 𝐵 ∈ ℤ))
107, 8, 9sylc 65 . . . . . . 7 ((((𝑥 ∈ (ℤ ↑𝑚 𝑉) ↦ 𝐴) ∈ (mzPoly‘𝑉) ∧ (𝑥 ∈ (ℤ ↑𝑚 𝑉) ↦ 𝐵) ∈ (mzPoly‘𝑉)) ∧ 𝑥 ∈ (ℤ ↑𝑚 𝑉)) → 𝐵 ∈ ℤ)
1110zcnd 11835 . . . . . 6 ((((𝑥 ∈ (ℤ ↑𝑚 𝑉) ↦ 𝐴) ∈ (mzPoly‘𝑉) ∧ (𝑥 ∈ (ℤ ↑𝑚 𝑉) ↦ 𝐵) ∈ (mzPoly‘𝑉)) ∧ 𝑥 ∈ (ℤ ↑𝑚 𝑉)) → 𝐵 ∈ ℂ)
1211mulm1d 10827 . . . . 5 ((((𝑥 ∈ (ℤ ↑𝑚 𝑉) ↦ 𝐴) ∈ (mzPoly‘𝑉) ∧ (𝑥 ∈ (ℤ ↑𝑚 𝑉) ↦ 𝐵) ∈ (mzPoly‘𝑉)) ∧ 𝑥 ∈ (ℤ ↑𝑚 𝑉)) → (-1 · 𝐵) = -𝐵)
1312oveq2d 6938 . . . 4 ((((𝑥 ∈ (ℤ ↑𝑚 𝑉) ↦ 𝐴) ∈ (mzPoly‘𝑉) ∧ (𝑥 ∈ (ℤ ↑𝑚 𝑉) ↦ 𝐵) ∈ (mzPoly‘𝑉)) ∧ 𝑥 ∈ (ℤ ↑𝑚 𝑉)) → (𝐴 + (-1 · 𝐵)) = (𝐴 + -𝐵))
14 mzpf 38259 . . . . . . . 8 ((𝑥 ∈ (ℤ ↑𝑚 𝑉) ↦ 𝐴) ∈ (mzPoly‘𝑉) → (𝑥 ∈ (ℤ ↑𝑚 𝑉) ↦ 𝐴):(ℤ ↑𝑚 𝑉)⟶ℤ)
1514ad2antrr 716 . . . . . . 7 ((((𝑥 ∈ (ℤ ↑𝑚 𝑉) ↦ 𝐴) ∈ (mzPoly‘𝑉) ∧ (𝑥 ∈ (ℤ ↑𝑚 𝑉) ↦ 𝐵) ∈ (mzPoly‘𝑉)) ∧ 𝑥 ∈ (ℤ ↑𝑚 𝑉)) → (𝑥 ∈ (ℤ ↑𝑚 𝑉) ↦ 𝐴):(ℤ ↑𝑚 𝑉)⟶ℤ)
16 mptfcl 38243 . . . . . . 7 ((𝑥 ∈ (ℤ ↑𝑚 𝑉) ↦ 𝐴):(ℤ ↑𝑚 𝑉)⟶ℤ → (𝑥 ∈ (ℤ ↑𝑚 𝑉) → 𝐴 ∈ ℤ))
1715, 8, 16sylc 65 . . . . . 6 ((((𝑥 ∈ (ℤ ↑𝑚 𝑉) ↦ 𝐴) ∈ (mzPoly‘𝑉) ∧ (𝑥 ∈ (ℤ ↑𝑚 𝑉) ↦ 𝐵) ∈ (mzPoly‘𝑉)) ∧ 𝑥 ∈ (ℤ ↑𝑚 𝑉)) → 𝐴 ∈ ℤ)
1817zcnd 11835 . . . . 5 ((((𝑥 ∈ (ℤ ↑𝑚 𝑉) ↦ 𝐴) ∈ (mzPoly‘𝑉) ∧ (𝑥 ∈ (ℤ ↑𝑚 𝑉) ↦ 𝐵) ∈ (mzPoly‘𝑉)) ∧ 𝑥 ∈ (ℤ ↑𝑚 𝑉)) → 𝐴 ∈ ℂ)
1918, 11negsubd 10740 . . . 4 ((((𝑥 ∈ (ℤ ↑𝑚 𝑉) ↦ 𝐴) ∈ (mzPoly‘𝑉) ∧ (𝑥 ∈ (ℤ ↑𝑚 𝑉) ↦ 𝐵) ∈ (mzPoly‘𝑉)) ∧ 𝑥 ∈ (ℤ ↑𝑚 𝑉)) → (𝐴 + -𝐵) = (𝐴𝐵))
2013, 19eqtr2d 2815 . . 3 ((((𝑥 ∈ (ℤ ↑𝑚 𝑉) ↦ 𝐴) ∈ (mzPoly‘𝑉) ∧ (𝑥 ∈ (ℤ ↑𝑚 𝑉) ↦ 𝐵) ∈ (mzPoly‘𝑉)) ∧ 𝑥 ∈ (ℤ ↑𝑚 𝑉)) → (𝐴𝐵) = (𝐴 + (-1 · 𝐵)))
215, 20mpteq2da 4978 . 2 (((𝑥 ∈ (ℤ ↑𝑚 𝑉) ↦ 𝐴) ∈ (mzPoly‘𝑉) ∧ (𝑥 ∈ (ℤ ↑𝑚 𝑉) ↦ 𝐵) ∈ (mzPoly‘𝑉)) → (𝑥 ∈ (ℤ ↑𝑚 𝑉) ↦ (𝐴𝐵)) = (𝑥 ∈ (ℤ ↑𝑚 𝑉) ↦ (𝐴 + (-1 · 𝐵))))
22 elfvex 6480 . . . . 5 ((𝑥 ∈ (ℤ ↑𝑚 𝑉) ↦ 𝐵) ∈ (mzPoly‘𝑉) → 𝑉 ∈ V)
23 neg1z 11765 . . . . 5 -1 ∈ ℤ
24 mzpconstmpt 38263 . . . . 5 ((𝑉 ∈ V ∧ -1 ∈ ℤ) → (𝑥 ∈ (ℤ ↑𝑚 𝑉) ↦ -1) ∈ (mzPoly‘𝑉))
2522, 23, 24sylancl 580 . . . 4 ((𝑥 ∈ (ℤ ↑𝑚 𝑉) ↦ 𝐵) ∈ (mzPoly‘𝑉) → (𝑥 ∈ (ℤ ↑𝑚 𝑉) ↦ -1) ∈ (mzPoly‘𝑉))
26 mzpmulmpt 38265 . . . 4 (((𝑥 ∈ (ℤ ↑𝑚 𝑉) ↦ -1) ∈ (mzPoly‘𝑉) ∧ (𝑥 ∈ (ℤ ↑𝑚 𝑉) ↦ 𝐵) ∈ (mzPoly‘𝑉)) → (𝑥 ∈ (ℤ ↑𝑚 𝑉) ↦ (-1 · 𝐵)) ∈ (mzPoly‘𝑉))
2725, 26mpancom 678 . . 3 ((𝑥 ∈ (ℤ ↑𝑚 𝑉) ↦ 𝐵) ∈ (mzPoly‘𝑉) → (𝑥 ∈ (ℤ ↑𝑚 𝑉) ↦ (-1 · 𝐵)) ∈ (mzPoly‘𝑉))
28 mzpaddmpt 38264 . . 3 (((𝑥 ∈ (ℤ ↑𝑚 𝑉) ↦ 𝐴) ∈ (mzPoly‘𝑉) ∧ (𝑥 ∈ (ℤ ↑𝑚 𝑉) ↦ (-1 · 𝐵)) ∈ (mzPoly‘𝑉)) → (𝑥 ∈ (ℤ ↑𝑚 𝑉) ↦ (𝐴 + (-1 · 𝐵))) ∈ (mzPoly‘𝑉))
2927, 28sylan2 586 . 2 (((𝑥 ∈ (ℤ ↑𝑚 𝑉) ↦ 𝐴) ∈ (mzPoly‘𝑉) ∧ (𝑥 ∈ (ℤ ↑𝑚 𝑉) ↦ 𝐵) ∈ (mzPoly‘𝑉)) → (𝑥 ∈ (ℤ ↑𝑚 𝑉) ↦ (𝐴 + (-1 · 𝐵))) ∈ (mzPoly‘𝑉))
3021, 29eqeltrd 2859 1 (((𝑥 ∈ (ℤ ↑𝑚 𝑉) ↦ 𝐴) ∈ (mzPoly‘𝑉) ∧ (𝑥 ∈ (ℤ ↑𝑚 𝑉) ↦ 𝐵) ∈ (mzPoly‘𝑉)) → (𝑥 ∈ (ℤ ↑𝑚 𝑉) ↦ (𝐴𝐵)) ∈ (mzPoly‘𝑉))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 386  wcel 2107  Vcvv 3398  cmpt 4965  wf 6131  cfv 6135  (class class class)co 6922  𝑚 cmap 8140  1c1 10273   + caddc 10275   · cmul 10277  cmin 10606  -cneg 10607  cz 11728  mzPolycmzp 38245
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1839  ax-4 1853  ax-5 1953  ax-6 2021  ax-7 2055  ax-8 2109  ax-9 2116  ax-10 2135  ax-11 2150  ax-12 2163  ax-13 2334  ax-ext 2754  ax-rep 5006  ax-sep 5017  ax-nul 5025  ax-pow 5077  ax-pr 5138  ax-un 7226  ax-cnex 10328  ax-resscn 10329  ax-1cn 10330  ax-icn 10331  ax-addcl 10332  ax-addrcl 10333  ax-mulcl 10334  ax-mulrcl 10335  ax-mulcom 10336  ax-addass 10337  ax-mulass 10338  ax-distr 10339  ax-i2m1 10340  ax-1ne0 10341  ax-1rid 10342  ax-rnegex 10343  ax-rrecex 10344  ax-cnre 10345  ax-pre-lttri 10346  ax-pre-lttrn 10347  ax-pre-ltadd 10348  ax-pre-mulgt0 10349
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 837  df-3or 1072  df-3an 1073  df-tru 1605  df-ex 1824  df-nf 1828  df-sb 2012  df-mo 2551  df-eu 2587  df-clab 2764  df-cleq 2770  df-clel 2774  df-nfc 2921  df-ne 2970  df-nel 3076  df-ral 3095  df-rex 3096  df-reu 3097  df-rab 3099  df-v 3400  df-sbc 3653  df-csb 3752  df-dif 3795  df-un 3797  df-in 3799  df-ss 3806  df-pss 3808  df-nul 4142  df-if 4308  df-pw 4381  df-sn 4399  df-pr 4401  df-tp 4403  df-op 4405  df-uni 4672  df-int 4711  df-iun 4755  df-br 4887  df-opab 4949  df-mpt 4966  df-tr 4988  df-id 5261  df-eprel 5266  df-po 5274  df-so 5275  df-fr 5314  df-we 5316  df-xp 5361  df-rel 5362  df-cnv 5363  df-co 5364  df-dm 5365  df-rn 5366  df-res 5367  df-ima 5368  df-pred 5933  df-ord 5979  df-on 5980  df-lim 5981  df-suc 5982  df-iota 6099  df-fun 6137  df-fn 6138  df-f 6139  df-f1 6140  df-fo 6141  df-f1o 6142  df-fv 6143  df-riota 6883  df-ov 6925  df-oprab 6926  df-mpt2 6927  df-of 7174  df-om 7344  df-wrecs 7689  df-recs 7751  df-rdg 7789  df-er 8026  df-map 8142  df-en 8242  df-dom 8243  df-sdom 8244  df-pnf 10413  df-mnf 10414  df-xr 10415  df-ltxr 10416  df-le 10417  df-sub 10608  df-neg 10609  df-nn 11375  df-n0 11643  df-z 11729  df-mzpcl 38246  df-mzp 38247
This theorem is referenced by:  mzpnegmpt  38267  eqrabdioph  38301  lerabdioph  38329  ltrabdioph  38332  rmydioph  38540  rmxdioph  38542  expdiophlem2  38548
  Copyright terms: Public domain W3C validator