Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > fmpt | Structured version Visualization version GIF version |
Description: Functionality of the mapping operation. (Contributed by Mario Carneiro, 26-Jul-2013.) (Revised by Mario Carneiro, 31-Aug-2015.) |
Ref | Expression |
---|---|
fmpt.1 | ⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝐶) |
Ref | Expression |
---|---|
fmpt | ⊢ (∀𝑥 ∈ 𝐴 𝐶 ∈ 𝐵 ↔ 𝐹:𝐴⟶𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fmpt.1 | . . . 4 ⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝐶) | |
2 | 1 | fnmpt 6557 | . . 3 ⊢ (∀𝑥 ∈ 𝐴 𝐶 ∈ 𝐵 → 𝐹 Fn 𝐴) |
3 | 1 | rnmpt 5853 | . . . 4 ⊢ ran 𝐹 = {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 = 𝐶} |
4 | r19.29 3183 | . . . . . . 7 ⊢ ((∀𝑥 ∈ 𝐴 𝐶 ∈ 𝐵 ∧ ∃𝑥 ∈ 𝐴 𝑦 = 𝐶) → ∃𝑥 ∈ 𝐴 (𝐶 ∈ 𝐵 ∧ 𝑦 = 𝐶)) | |
5 | eleq1 2826 | . . . . . . . . 9 ⊢ (𝑦 = 𝐶 → (𝑦 ∈ 𝐵 ↔ 𝐶 ∈ 𝐵)) | |
6 | 5 | biimparc 479 | . . . . . . . 8 ⊢ ((𝐶 ∈ 𝐵 ∧ 𝑦 = 𝐶) → 𝑦 ∈ 𝐵) |
7 | 6 | rexlimivw 3210 | . . . . . . 7 ⊢ (∃𝑥 ∈ 𝐴 (𝐶 ∈ 𝐵 ∧ 𝑦 = 𝐶) → 𝑦 ∈ 𝐵) |
8 | 4, 7 | syl 17 | . . . . . 6 ⊢ ((∀𝑥 ∈ 𝐴 𝐶 ∈ 𝐵 ∧ ∃𝑥 ∈ 𝐴 𝑦 = 𝐶) → 𝑦 ∈ 𝐵) |
9 | 8 | ex 412 | . . . . 5 ⊢ (∀𝑥 ∈ 𝐴 𝐶 ∈ 𝐵 → (∃𝑥 ∈ 𝐴 𝑦 = 𝐶 → 𝑦 ∈ 𝐵)) |
10 | 9 | abssdv 3998 | . . . 4 ⊢ (∀𝑥 ∈ 𝐴 𝐶 ∈ 𝐵 → {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 = 𝐶} ⊆ 𝐵) |
11 | 3, 10 | eqsstrid 3965 | . . 3 ⊢ (∀𝑥 ∈ 𝐴 𝐶 ∈ 𝐵 → ran 𝐹 ⊆ 𝐵) |
12 | df-f 6422 | . . 3 ⊢ (𝐹:𝐴⟶𝐵 ↔ (𝐹 Fn 𝐴 ∧ ran 𝐹 ⊆ 𝐵)) | |
13 | 2, 11, 12 | sylanbrc 582 | . 2 ⊢ (∀𝑥 ∈ 𝐴 𝐶 ∈ 𝐵 → 𝐹:𝐴⟶𝐵) |
14 | fimacnv 6606 | . . . 4 ⊢ (𝐹:𝐴⟶𝐵 → (◡𝐹 “ 𝐵) = 𝐴) | |
15 | 1 | mptpreima 6130 | . . . 4 ⊢ (◡𝐹 “ 𝐵) = {𝑥 ∈ 𝐴 ∣ 𝐶 ∈ 𝐵} |
16 | 14, 15 | eqtr3di 2794 | . . 3 ⊢ (𝐹:𝐴⟶𝐵 → 𝐴 = {𝑥 ∈ 𝐴 ∣ 𝐶 ∈ 𝐵}) |
17 | rabid2 3307 | . . 3 ⊢ (𝐴 = {𝑥 ∈ 𝐴 ∣ 𝐶 ∈ 𝐵} ↔ ∀𝑥 ∈ 𝐴 𝐶 ∈ 𝐵) | |
18 | 16, 17 | sylib 217 | . 2 ⊢ (𝐹:𝐴⟶𝐵 → ∀𝑥 ∈ 𝐴 𝐶 ∈ 𝐵) |
19 | 13, 18 | impbii 208 | 1 ⊢ (∀𝑥 ∈ 𝐴 𝐶 ∈ 𝐵 ↔ 𝐹:𝐴⟶𝐵) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∧ wa 395 = wceq 1539 ∈ wcel 2108 {cab 2715 ∀wral 3063 ∃wrex 3064 {crab 3067 ⊆ wss 3883 ↦ cmpt 5153 ◡ccnv 5579 ran crn 5581 “ cima 5583 Fn wfn 6413 ⟶wf 6414 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pr 5347 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-br 5071 df-opab 5133 df-mpt 5154 df-id 5480 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-fun 6420 df-fn 6421 df-f 6422 |
This theorem is referenced by: f1ompt 6967 fmpti 6968 fvmptelrn 6969 fmptd 6970 fmptdf 6973 rnmptss 6978 f1oresrab 6981 idref 7000 f1mpt 7115 f1stres 7828 f2ndres 7829 fmpox 7880 fmpoco 7906 onoviun 8145 onnseq 8146 mptelixpg 8681 dom2lem 8735 iinfi 9106 cantnfrescl 9364 acni2 9733 acnlem 9735 dfac4 9809 dfacacn 9828 fin23lem28 10027 axdc2lem 10135 axcclem 10144 ac6num 10166 uzf 12514 ccatalpha 14226 repsf 14414 rlim2 15133 rlimi 15150 o1fsum 15453 ackbijnn 15468 pcmptcl 16520 vdwlem11 16620 ismon2 17363 isepi2 17370 yonedalem3b 17913 smndex1gbas 18456 efgsf 19250 gsummhm2 19455 gsummptcl 19483 gsummptfif1o 19484 gsummptfzcl 19485 gsumcom2 19491 gsummptnn0fz 19502 issrngd 20036 ipcl 20750 subrgasclcl 21185 evl1sca 21410 mavmulcl 21604 m2detleiblem3 21686 m2detleiblem4 21687 iinopn 21959 ordtrest2 22263 iscnp2 22298 discmp 22457 2ndcdisj 22515 ptunimpt 22654 pttopon 22655 ptcnplem 22680 upxp 22682 txdis1cn 22694 cnmpt11 22722 cnmpt21 22730 cnmptkp 22739 cnmptk1 22740 cnmpt1k 22741 cnmptkk 22742 cnmptk1p 22744 qtopeu 22775 uzrest 22956 txflf 23065 clsnsg 23169 tgpconncomp 23172 tsmsf1o 23204 prdsmet 23431 fsumcn 23939 cncfmpt1f 23983 iccpnfcnv 24013 lebnumlem1 24030 copco 24087 pcoass 24093 bcth3 24400 voliun 24623 i1f1lem 24758 iblcnlem 24858 limcvallem 24940 ellimc2 24946 cnmptlimc 24959 dvle 25076 dvfsumle 25090 dvfsumge 25091 dvfsumabs 25092 dvfsumlem2 25096 itgsubstlem 25117 sincn 25508 coscn 25509 rlimcxp 26028 harmonicbnd 26058 harmonicbnd2 26059 lgamgulmlem6 26088 sqff1o 26236 lgseisenlem3 26430 fmptdF 30895 ordtrest2NEW 31775 ddemeas 32104 eulerpartgbij 32239 0rrv 32318 reprpmtf1o 32506 subfacf 33037 tailf 34491 fdc 35830 heiborlem5 35900 3factsumint 39961 dvle2 40008 elrfirn2 40434 mptfcl 40458 mzpexpmpt 40483 mzpsubst 40486 rabdiophlem1 40539 rabdiophlem2 40540 pw2f1ocnv 40775 refsumcn 42462 fompt 42619 fmptf 42672 fprodcnlem 43030 dvsinax 43344 itgsubsticclem 43406 fargshiftf 44780 isomuspgrlem2b 45169 |
Copyright terms: Public domain | W3C validator |