Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > fmpt | Structured version Visualization version GIF version |
Description: Functionality of the mapping operation. (Contributed by Mario Carneiro, 26-Jul-2013.) (Revised by Mario Carneiro, 31-Aug-2015.) |
Ref | Expression |
---|---|
fmpt.1 | ⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝐶) |
Ref | Expression |
---|---|
fmpt | ⊢ (∀𝑥 ∈ 𝐴 𝐶 ∈ 𝐵 ↔ 𝐹:𝐴⟶𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fmpt.1 | . . . 4 ⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝐶) | |
2 | 1 | fnmpt 6582 | . . 3 ⊢ (∀𝑥 ∈ 𝐴 𝐶 ∈ 𝐵 → 𝐹 Fn 𝐴) |
3 | 1 | rnmpt 5867 | . . . 4 ⊢ ran 𝐹 = {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 = 𝐶} |
4 | r19.29 3185 | . . . . . . 7 ⊢ ((∀𝑥 ∈ 𝐴 𝐶 ∈ 𝐵 ∧ ∃𝑥 ∈ 𝐴 𝑦 = 𝐶) → ∃𝑥 ∈ 𝐴 (𝐶 ∈ 𝐵 ∧ 𝑦 = 𝐶)) | |
5 | eleq1 2827 | . . . . . . . . 9 ⊢ (𝑦 = 𝐶 → (𝑦 ∈ 𝐵 ↔ 𝐶 ∈ 𝐵)) | |
6 | 5 | biimparc 480 | . . . . . . . 8 ⊢ ((𝐶 ∈ 𝐵 ∧ 𝑦 = 𝐶) → 𝑦 ∈ 𝐵) |
7 | 6 | rexlimivw 3212 | . . . . . . 7 ⊢ (∃𝑥 ∈ 𝐴 (𝐶 ∈ 𝐵 ∧ 𝑦 = 𝐶) → 𝑦 ∈ 𝐵) |
8 | 4, 7 | syl 17 | . . . . . 6 ⊢ ((∀𝑥 ∈ 𝐴 𝐶 ∈ 𝐵 ∧ ∃𝑥 ∈ 𝐴 𝑦 = 𝐶) → 𝑦 ∈ 𝐵) |
9 | 8 | ex 413 | . . . . 5 ⊢ (∀𝑥 ∈ 𝐴 𝐶 ∈ 𝐵 → (∃𝑥 ∈ 𝐴 𝑦 = 𝐶 → 𝑦 ∈ 𝐵)) |
10 | 9 | abssdv 4003 | . . . 4 ⊢ (∀𝑥 ∈ 𝐴 𝐶 ∈ 𝐵 → {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 = 𝐶} ⊆ 𝐵) |
11 | 3, 10 | eqsstrid 3970 | . . 3 ⊢ (∀𝑥 ∈ 𝐴 𝐶 ∈ 𝐵 → ran 𝐹 ⊆ 𝐵) |
12 | df-f 6441 | . . 3 ⊢ (𝐹:𝐴⟶𝐵 ↔ (𝐹 Fn 𝐴 ∧ ran 𝐹 ⊆ 𝐵)) | |
13 | 2, 11, 12 | sylanbrc 583 | . 2 ⊢ (∀𝑥 ∈ 𝐴 𝐶 ∈ 𝐵 → 𝐹:𝐴⟶𝐵) |
14 | fimacnv 6631 | . . . 4 ⊢ (𝐹:𝐴⟶𝐵 → (◡𝐹 “ 𝐵) = 𝐴) | |
15 | 1 | mptpreima 6146 | . . . 4 ⊢ (◡𝐹 “ 𝐵) = {𝑥 ∈ 𝐴 ∣ 𝐶 ∈ 𝐵} |
16 | 14, 15 | eqtr3di 2794 | . . 3 ⊢ (𝐹:𝐴⟶𝐵 → 𝐴 = {𝑥 ∈ 𝐴 ∣ 𝐶 ∈ 𝐵}) |
17 | rabid2 3315 | . . 3 ⊢ (𝐴 = {𝑥 ∈ 𝐴 ∣ 𝐶 ∈ 𝐵} ↔ ∀𝑥 ∈ 𝐴 𝐶 ∈ 𝐵) | |
18 | 16, 17 | sylib 217 | . 2 ⊢ (𝐹:𝐴⟶𝐵 → ∀𝑥 ∈ 𝐴 𝐶 ∈ 𝐵) |
19 | 13, 18 | impbii 208 | 1 ⊢ (∀𝑥 ∈ 𝐴 𝐶 ∈ 𝐵 ↔ 𝐹:𝐴⟶𝐵) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∧ wa 396 = wceq 1539 ∈ wcel 2107 {cab 2716 ∀wral 3065 ∃wrex 3066 {crab 3069 ⊆ wss 3888 ↦ cmpt 5158 ◡ccnv 5589 ran crn 5591 “ cima 5593 Fn wfn 6432 ⟶wf 6433 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2710 ax-sep 5224 ax-nul 5231 ax-pr 5353 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2541 df-eu 2570 df-clab 2717 df-cleq 2731 df-clel 2817 df-nfc 2890 df-ral 3070 df-rex 3071 df-rab 3074 df-v 3435 df-dif 3891 df-un 3893 df-in 3895 df-ss 3905 df-nul 4258 df-if 4461 df-sn 4563 df-pr 4565 df-op 4569 df-br 5076 df-opab 5138 df-mpt 5159 df-id 5490 df-xp 5596 df-rel 5597 df-cnv 5598 df-co 5599 df-dm 5600 df-rn 5601 df-res 5602 df-ima 5603 df-fun 6439 df-fn 6440 df-f 6441 |
This theorem is referenced by: f1ompt 6994 fmpti 6995 fvmptelrn 6996 fmptd 6997 fmptdf 7000 rnmptss 7005 f1oresrab 7008 idref 7027 f1mpt 7143 f1stres 7864 f2ndres 7865 fmpox 7916 fmpoco 7944 onoviun 8183 onnseq 8184 mptelixpg 8732 dom2lem 8789 iinfi 9185 cantnfrescl 9443 acni2 9811 acnlem 9813 dfac4 9887 dfacacn 9906 fin23lem28 10105 axdc2lem 10213 axcclem 10222 ac6num 10244 uzf 12594 ccatalpha 14307 repsf 14495 rlim2 15214 rlimi 15231 o1fsum 15534 ackbijnn 15549 pcmptcl 16601 vdwlem11 16701 ismon2 17455 isepi2 17462 yonedalem3b 18006 smndex1gbas 18550 efgsf 19344 gsummhm2 19549 gsummptcl 19577 gsummptfif1o 19578 gsummptfzcl 19579 gsumcom2 19585 gsummptnn0fz 19596 issrngd 20130 ipcl 20847 subrgasclcl 21284 evl1sca 21509 mavmulcl 21705 m2detleiblem3 21787 m2detleiblem4 21788 iinopn 22060 ordtrest2 22364 iscnp2 22399 discmp 22558 2ndcdisj 22616 ptunimpt 22755 pttopon 22756 ptcnplem 22781 upxp 22783 txdis1cn 22795 cnmpt11 22823 cnmpt21 22831 cnmptkp 22840 cnmptk1 22841 cnmpt1k 22842 cnmptkk 22843 cnmptk1p 22845 qtopeu 22876 uzrest 23057 txflf 23166 clsnsg 23270 tgpconncomp 23273 tsmsf1o 23305 prdsmet 23532 fsumcn 24042 cncfmpt1f 24086 iccpnfcnv 24116 lebnumlem1 24133 copco 24190 pcoass 24196 bcth3 24504 voliun 24727 i1f1lem 24862 iblcnlem 24962 limcvallem 25044 ellimc2 25050 cnmptlimc 25063 dvle 25180 dvfsumle 25194 dvfsumge 25195 dvfsumabs 25196 dvfsumlem2 25200 itgsubstlem 25221 sincn 25612 coscn 25613 rlimcxp 26132 harmonicbnd 26162 harmonicbnd2 26163 lgamgulmlem6 26192 sqff1o 26340 lgseisenlem3 26534 fmptdF 31002 ordtrest2NEW 31882 ddemeas 32213 eulerpartgbij 32348 0rrv 32427 reprpmtf1o 32615 subfacf 33146 tailf 34573 fdc 35912 heiborlem5 35982 3factsumint 40040 dvle2 40087 elrfirn2 40525 mptfcl 40549 mzpexpmpt 40574 mzpsubst 40577 rabdiophlem1 40630 rabdiophlem2 40631 pw2f1ocnv 40866 refsumcn 42580 fompt 42737 fmptf 42790 fprodcnlem 43147 dvsinax 43461 itgsubsticclem 43523 fargshiftf 44903 isomuspgrlem2b 45292 |
Copyright terms: Public domain | W3C validator |