Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ndmaovrcl Structured version   Visualization version   GIF version

Theorem ndmaovrcl 47162
Description: Reverse closure law, in contrast to ndmovrcl 7602 where it is required that the operation's domain doesn't contain the empty set (¬ ∅ ∈ 𝑆), no additional asumption is required. (Contributed by Alexander van der Vekens, 26-May-2017.)
Hypothesis
Ref Expression
ndmaov.1 dom 𝐹 = (𝑆 × 𝑆)
Assertion
Ref Expression
ndmaovrcl ( ((𝐴𝐹𝐵)) ∈ 𝑆 → (𝐴𝑆𝐵𝑆))

Proof of Theorem ndmaovrcl
StepHypRef Expression
1 aovvdm 47143 . 2 ( ((𝐴𝐹𝐵)) ∈ 𝑆 → ⟨𝐴, 𝐵⟩ ∈ dom 𝐹)
2 opelxp 5703 . . . 4 (⟨𝐴, 𝐵⟩ ∈ (𝑆 × 𝑆) ↔ (𝐴𝑆𝐵𝑆))
32biimpi 216 . . 3 (⟨𝐴, 𝐵⟩ ∈ (𝑆 × 𝑆) → (𝐴𝑆𝐵𝑆))
4 ndmaov.1 . . 3 dom 𝐹 = (𝑆 × 𝑆)
53, 4eleq2s 2851 . 2 (⟨𝐴, 𝐵⟩ ∈ dom 𝐹 → (𝐴𝑆𝐵𝑆))
61, 5syl 17 1 ( ((𝐴𝐹𝐵)) ∈ 𝑆 → (𝐴𝑆𝐵𝑆))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1539  wcel 2107  cop 4614   × cxp 5665  dom cdm 5667   ((caov 47076
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2706  ax-sep 5278  ax-nul 5288  ax-pr 5414
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2726  df-clel 2808  df-nfc 2884  df-ne 2932  df-ral 3051  df-rex 3060  df-rab 3421  df-v 3466  df-sbc 3773  df-csb 3882  df-dif 3936  df-un 3938  df-in 3940  df-ss 3950  df-nul 4316  df-if 4508  df-sn 4609  df-pr 4611  df-op 4615  df-uni 4890  df-int 4929  df-br 5126  df-opab 5188  df-id 5560  df-xp 5673  df-rel 5674  df-cnv 5675  df-co 5676  df-dm 5677  df-res 5679  df-iota 6495  df-fun 6544  df-fv 6550  df-aiota 47043  df-dfat 47077  df-afv 47078  df-aov 47079
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator