MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  addcomnq Structured version   Visualization version   GIF version

Theorem addcomnq 10998
Description: Addition of positive fractions is commutative. (Contributed by NM, 30-Aug-1995.) (Revised by Mario Carneiro, 28-Apr-2013.) (New usage is discouraged.)
Assertion
Ref Expression
addcomnq (𝐴 +Q 𝐵) = (𝐵 +Q 𝐴)

Proof of Theorem addcomnq
StepHypRef Expression
1 addcompq 10997 . . . 4 (𝐴 +pQ 𝐵) = (𝐵 +pQ 𝐴)
21fveq2i 6917 . . 3 ([Q]‘(𝐴 +pQ 𝐵)) = ([Q]‘(𝐵 +pQ 𝐴))
3 addpqnq 10985 . . 3 ((𝐴Q𝐵Q) → (𝐴 +Q 𝐵) = ([Q]‘(𝐴 +pQ 𝐵)))
4 addpqnq 10985 . . . 4 ((𝐵Q𝐴Q) → (𝐵 +Q 𝐴) = ([Q]‘(𝐵 +pQ 𝐴)))
54ancoms 458 . . 3 ((𝐴Q𝐵Q) → (𝐵 +Q 𝐴) = ([Q]‘(𝐵 +pQ 𝐴)))
62, 3, 53eqtr4a 2803 . 2 ((𝐴Q𝐵Q) → (𝐴 +Q 𝐵) = (𝐵 +Q 𝐴))
7 addnqf 10995 . . . 4 +Q :(Q × Q)⟶Q
87fdmi 6755 . . 3 dom +Q = (Q × Q)
98ndmovcom 7627 . 2 (¬ (𝐴Q𝐵Q) → (𝐴 +Q 𝐵) = (𝐵 +Q 𝐴))
106, 9pm2.61i 182 1 (𝐴 +Q 𝐵) = (𝐵 +Q 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wa 395   = wceq 1539  wcel 2108   × cxp 5691  cfv 6569  (class class class)co 7438   +pQ cplpq 10895  Qcnq 10899  [Q]cerq 10901   +Q cplq 10902
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-sep 5305  ax-nul 5315  ax-pr 5441  ax-un 7761
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-ral 3062  df-rex 3071  df-rmo 3380  df-reu 3381  df-rab 3437  df-v 3483  df-sbc 3795  df-csb 3912  df-dif 3969  df-un 3971  df-in 3973  df-ss 3983  df-pss 3986  df-nul 4343  df-if 4535  df-pw 4610  df-sn 4635  df-pr 4637  df-op 4641  df-uni 4916  df-iun 5001  df-br 5152  df-opab 5214  df-mpt 5235  df-tr 5269  df-id 5587  df-eprel 5593  df-po 5601  df-so 5602  df-fr 5645  df-we 5647  df-xp 5699  df-rel 5700  df-cnv 5701  df-co 5702  df-dm 5703  df-rn 5704  df-res 5705  df-ima 5706  df-pred 6329  df-ord 6395  df-on 6396  df-lim 6397  df-suc 6398  df-iota 6522  df-fun 6571  df-fn 6572  df-f 6573  df-f1 6574  df-fo 6575  df-f1o 6576  df-fv 6577  df-ov 7441  df-oprab 7442  df-mpo 7443  df-om 7895  df-1st 8022  df-2nd 8023  df-frecs 8314  df-wrecs 8345  df-recs 8419  df-rdg 8458  df-1o 8514  df-oadd 8518  df-omul 8519  df-er 8753  df-ni 10919  df-pli 10920  df-mi 10921  df-lti 10922  df-plpq 10955  df-enq 10958  df-nq 10959  df-erq 10960  df-plq 10961  df-1nq 10963
This theorem is referenced by:  ltaddnq  11021  addclprlem2  11064  addclpr  11065  addcompr  11068  distrlem4pr  11073  prlem934  11080  ltexprlem2  11084  ltexprlem6  11088  ltexprlem7  11089  prlem936  11094
  Copyright terms: Public domain W3C validator