![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > addcomnq | Structured version Visualization version GIF version |
Description: Addition of positive fractions is commutative. (Contributed by NM, 30-Aug-1995.) (Revised by Mario Carneiro, 28-Apr-2013.) (New usage is discouraged.) |
Ref | Expression |
---|---|
addcomnq | ⊢ (𝐴 +Q 𝐵) = (𝐵 +Q 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | addcompq 10997 | . . . 4 ⊢ (𝐴 +pQ 𝐵) = (𝐵 +pQ 𝐴) | |
2 | 1 | fveq2i 6917 | . . 3 ⊢ ([Q]‘(𝐴 +pQ 𝐵)) = ([Q]‘(𝐵 +pQ 𝐴)) |
3 | addpqnq 10985 | . . 3 ⊢ ((𝐴 ∈ Q ∧ 𝐵 ∈ Q) → (𝐴 +Q 𝐵) = ([Q]‘(𝐴 +pQ 𝐵))) | |
4 | addpqnq 10985 | . . . 4 ⊢ ((𝐵 ∈ Q ∧ 𝐴 ∈ Q) → (𝐵 +Q 𝐴) = ([Q]‘(𝐵 +pQ 𝐴))) | |
5 | 4 | ancoms 458 | . . 3 ⊢ ((𝐴 ∈ Q ∧ 𝐵 ∈ Q) → (𝐵 +Q 𝐴) = ([Q]‘(𝐵 +pQ 𝐴))) |
6 | 2, 3, 5 | 3eqtr4a 2803 | . 2 ⊢ ((𝐴 ∈ Q ∧ 𝐵 ∈ Q) → (𝐴 +Q 𝐵) = (𝐵 +Q 𝐴)) |
7 | addnqf 10995 | . . . 4 ⊢ +Q :(Q × Q)⟶Q | |
8 | 7 | fdmi 6755 | . . 3 ⊢ dom +Q = (Q × Q) |
9 | 8 | ndmovcom 7627 | . 2 ⊢ (¬ (𝐴 ∈ Q ∧ 𝐵 ∈ Q) → (𝐴 +Q 𝐵) = (𝐵 +Q 𝐴)) |
10 | 6, 9 | pm2.61i 182 | 1 ⊢ (𝐴 +Q 𝐵) = (𝐵 +Q 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 395 = wceq 1539 ∈ wcel 2108 × cxp 5691 ‘cfv 6569 (class class class)co 7438 +pQ cplpq 10895 Qcnq 10899 [Q]cerq 10901 +Q cplq 10902 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-sep 5305 ax-nul 5315 ax-pr 5441 ax-un 7761 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3or 1088 df-3an 1089 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ne 2941 df-ral 3062 df-rex 3071 df-rmo 3380 df-reu 3381 df-rab 3437 df-v 3483 df-sbc 3795 df-csb 3912 df-dif 3969 df-un 3971 df-in 3973 df-ss 3983 df-pss 3986 df-nul 4343 df-if 4535 df-pw 4610 df-sn 4635 df-pr 4637 df-op 4641 df-uni 4916 df-iun 5001 df-br 5152 df-opab 5214 df-mpt 5235 df-tr 5269 df-id 5587 df-eprel 5593 df-po 5601 df-so 5602 df-fr 5645 df-we 5647 df-xp 5699 df-rel 5700 df-cnv 5701 df-co 5702 df-dm 5703 df-rn 5704 df-res 5705 df-ima 5706 df-pred 6329 df-ord 6395 df-on 6396 df-lim 6397 df-suc 6398 df-iota 6522 df-fun 6571 df-fn 6572 df-f 6573 df-f1 6574 df-fo 6575 df-f1o 6576 df-fv 6577 df-ov 7441 df-oprab 7442 df-mpo 7443 df-om 7895 df-1st 8022 df-2nd 8023 df-frecs 8314 df-wrecs 8345 df-recs 8419 df-rdg 8458 df-1o 8514 df-oadd 8518 df-omul 8519 df-er 8753 df-ni 10919 df-pli 10920 df-mi 10921 df-lti 10922 df-plpq 10955 df-enq 10958 df-nq 10959 df-erq 10960 df-plq 10961 df-1nq 10963 |
This theorem is referenced by: ltaddnq 11021 addclprlem2 11064 addclpr 11065 addcompr 11068 distrlem4pr 11073 prlem934 11080 ltexprlem2 11084 ltexprlem6 11088 ltexprlem7 11089 prlem936 11094 |
Copyright terms: Public domain | W3C validator |