![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > addcomnq | Structured version Visualization version GIF version |
Description: Addition of positive fractions is commutative. (Contributed by NM, 30-Aug-1995.) (Revised by Mario Carneiro, 28-Apr-2013.) (New usage is discouraged.) |
Ref | Expression |
---|---|
addcomnq | ⊢ (𝐴 +Q 𝐵) = (𝐵 +Q 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | addcompq 11021 | . . . 4 ⊢ (𝐴 +pQ 𝐵) = (𝐵 +pQ 𝐴) | |
2 | 1 | fveq2i 6925 | . . 3 ⊢ ([Q]‘(𝐴 +pQ 𝐵)) = ([Q]‘(𝐵 +pQ 𝐴)) |
3 | addpqnq 11009 | . . 3 ⊢ ((𝐴 ∈ Q ∧ 𝐵 ∈ Q) → (𝐴 +Q 𝐵) = ([Q]‘(𝐴 +pQ 𝐵))) | |
4 | addpqnq 11009 | . . . 4 ⊢ ((𝐵 ∈ Q ∧ 𝐴 ∈ Q) → (𝐵 +Q 𝐴) = ([Q]‘(𝐵 +pQ 𝐴))) | |
5 | 4 | ancoms 458 | . . 3 ⊢ ((𝐴 ∈ Q ∧ 𝐵 ∈ Q) → (𝐵 +Q 𝐴) = ([Q]‘(𝐵 +pQ 𝐴))) |
6 | 2, 3, 5 | 3eqtr4a 2806 | . 2 ⊢ ((𝐴 ∈ Q ∧ 𝐵 ∈ Q) → (𝐴 +Q 𝐵) = (𝐵 +Q 𝐴)) |
7 | addnqf 11019 | . . . 4 ⊢ +Q :(Q × Q)⟶Q | |
8 | 7 | fdmi 6760 | . . 3 ⊢ dom +Q = (Q × Q) |
9 | 8 | ndmovcom 7639 | . 2 ⊢ (¬ (𝐴 ∈ Q ∧ 𝐵 ∈ Q) → (𝐴 +Q 𝐵) = (𝐵 +Q 𝐴)) |
10 | 6, 9 | pm2.61i 182 | 1 ⊢ (𝐴 +Q 𝐵) = (𝐵 +Q 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 395 = wceq 1537 ∈ wcel 2108 × cxp 5698 ‘cfv 6575 (class class class)co 7450 +pQ cplpq 10919 Qcnq 10923 [Q]cerq 10925 +Q cplq 10926 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pr 5447 ax-un 7772 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-ral 3068 df-rex 3077 df-rmo 3388 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-pss 3996 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-tr 5284 df-id 5593 df-eprel 5599 df-po 5607 df-so 5608 df-fr 5652 df-we 5654 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-pred 6334 df-ord 6400 df-on 6401 df-lim 6402 df-suc 6403 df-iota 6527 df-fun 6577 df-fn 6578 df-f 6579 df-f1 6580 df-fo 6581 df-f1o 6582 df-fv 6583 df-ov 7453 df-oprab 7454 df-mpo 7455 df-om 7906 df-1st 8032 df-2nd 8033 df-frecs 8324 df-wrecs 8355 df-recs 8429 df-rdg 8468 df-1o 8524 df-oadd 8528 df-omul 8529 df-er 8765 df-ni 10943 df-pli 10944 df-mi 10945 df-lti 10946 df-plpq 10979 df-enq 10982 df-nq 10983 df-erq 10984 df-plq 10985 df-1nq 10987 |
This theorem is referenced by: ltaddnq 11045 addclprlem2 11088 addclpr 11089 addcompr 11092 distrlem4pr 11097 prlem934 11104 ltexprlem2 11108 ltexprlem6 11112 ltexprlem7 11113 prlem936 11118 |
Copyright terms: Public domain | W3C validator |