![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > addcomnq | Structured version Visualization version GIF version |
Description: Addition of positive fractions is commutative. (Contributed by NM, 30-Aug-1995.) (Revised by Mario Carneiro, 28-Apr-2013.) (New usage is discouraged.) |
Ref | Expression |
---|---|
addcomnq | ⊢ (𝐴 +Q 𝐵) = (𝐵 +Q 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | addcompq 10941 | . . . 4 ⊢ (𝐴 +pQ 𝐵) = (𝐵 +pQ 𝐴) | |
2 | 1 | fveq2i 6891 | . . 3 ⊢ ([Q]‘(𝐴 +pQ 𝐵)) = ([Q]‘(𝐵 +pQ 𝐴)) |
3 | addpqnq 10929 | . . 3 ⊢ ((𝐴 ∈ Q ∧ 𝐵 ∈ Q) → (𝐴 +Q 𝐵) = ([Q]‘(𝐴 +pQ 𝐵))) | |
4 | addpqnq 10929 | . . . 4 ⊢ ((𝐵 ∈ Q ∧ 𝐴 ∈ Q) → (𝐵 +Q 𝐴) = ([Q]‘(𝐵 +pQ 𝐴))) | |
5 | 4 | ancoms 460 | . . 3 ⊢ ((𝐴 ∈ Q ∧ 𝐵 ∈ Q) → (𝐵 +Q 𝐴) = ([Q]‘(𝐵 +pQ 𝐴))) |
6 | 2, 3, 5 | 3eqtr4a 2799 | . 2 ⊢ ((𝐴 ∈ Q ∧ 𝐵 ∈ Q) → (𝐴 +Q 𝐵) = (𝐵 +Q 𝐴)) |
7 | addnqf 10939 | . . . 4 ⊢ +Q :(Q × Q)⟶Q | |
8 | 7 | fdmi 6726 | . . 3 ⊢ dom +Q = (Q × Q) |
9 | 8 | ndmovcom 7589 | . 2 ⊢ (¬ (𝐴 ∈ Q ∧ 𝐵 ∈ Q) → (𝐴 +Q 𝐵) = (𝐵 +Q 𝐴)) |
10 | 6, 9 | pm2.61i 182 | 1 ⊢ (𝐴 +Q 𝐵) = (𝐵 +Q 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 397 = wceq 1542 ∈ wcel 2107 × cxp 5673 ‘cfv 6540 (class class class)co 7404 +pQ cplpq 10839 Qcnq 10843 [Q]cerq 10845 +Q cplq 10846 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-sep 5298 ax-nul 5305 ax-pr 5426 ax-un 7720 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ne 2942 df-ral 3063 df-rex 3072 df-rmo 3377 df-reu 3378 df-rab 3434 df-v 3477 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-pss 3966 df-nul 4322 df-if 4528 df-pw 4603 df-sn 4628 df-pr 4630 df-op 4634 df-uni 4908 df-iun 4998 df-br 5148 df-opab 5210 df-mpt 5231 df-tr 5265 df-id 5573 df-eprel 5579 df-po 5587 df-so 5588 df-fr 5630 df-we 5632 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-rn 5686 df-res 5687 df-ima 5688 df-pred 6297 df-ord 6364 df-on 6365 df-lim 6366 df-suc 6367 df-iota 6492 df-fun 6542 df-fn 6543 df-f 6544 df-f1 6545 df-fo 6546 df-f1o 6547 df-fv 6548 df-ov 7407 df-oprab 7408 df-mpo 7409 df-om 7851 df-1st 7970 df-2nd 7971 df-frecs 8261 df-wrecs 8292 df-recs 8366 df-rdg 8405 df-1o 8461 df-oadd 8465 df-omul 8466 df-er 8699 df-ni 10863 df-pli 10864 df-mi 10865 df-lti 10866 df-plpq 10899 df-enq 10902 df-nq 10903 df-erq 10904 df-plq 10905 df-1nq 10907 |
This theorem is referenced by: ltaddnq 10965 addclprlem2 11008 addclpr 11009 addcompr 11012 distrlem4pr 11017 prlem934 11024 ltexprlem2 11028 ltexprlem6 11032 ltexprlem7 11033 prlem936 11038 |
Copyright terms: Public domain | W3C validator |