| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > addcomnq | Structured version Visualization version GIF version | ||
| Description: Addition of positive fractions is commutative. (Contributed by NM, 30-Aug-1995.) (Revised by Mario Carneiro, 28-Apr-2013.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| addcomnq | ⊢ (𝐴 +Q 𝐵) = (𝐵 +Q 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | addcompq 10879 | . . . 4 ⊢ (𝐴 +pQ 𝐵) = (𝐵 +pQ 𝐴) | |
| 2 | 1 | fveq2i 6843 | . . 3 ⊢ ([Q]‘(𝐴 +pQ 𝐵)) = ([Q]‘(𝐵 +pQ 𝐴)) |
| 3 | addpqnq 10867 | . . 3 ⊢ ((𝐴 ∈ Q ∧ 𝐵 ∈ Q) → (𝐴 +Q 𝐵) = ([Q]‘(𝐴 +pQ 𝐵))) | |
| 4 | addpqnq 10867 | . . . 4 ⊢ ((𝐵 ∈ Q ∧ 𝐴 ∈ Q) → (𝐵 +Q 𝐴) = ([Q]‘(𝐵 +pQ 𝐴))) | |
| 5 | 4 | ancoms 458 | . . 3 ⊢ ((𝐴 ∈ Q ∧ 𝐵 ∈ Q) → (𝐵 +Q 𝐴) = ([Q]‘(𝐵 +pQ 𝐴))) |
| 6 | 2, 3, 5 | 3eqtr4a 2790 | . 2 ⊢ ((𝐴 ∈ Q ∧ 𝐵 ∈ Q) → (𝐴 +Q 𝐵) = (𝐵 +Q 𝐴)) |
| 7 | addnqf 10877 | . . . 4 ⊢ +Q :(Q × Q)⟶Q | |
| 8 | 7 | fdmi 6681 | . . 3 ⊢ dom +Q = (Q × Q) |
| 9 | 8 | ndmovcom 7556 | . 2 ⊢ (¬ (𝐴 ∈ Q ∧ 𝐵 ∈ Q) → (𝐴 +Q 𝐵) = (𝐵 +Q 𝐴)) |
| 10 | 6, 9 | pm2.61i 182 | 1 ⊢ (𝐴 +Q 𝐵) = (𝐵 +Q 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: ∧ wa 395 = wceq 1540 ∈ wcel 2109 × cxp 5629 ‘cfv 6499 (class class class)co 7369 +pQ cplpq 10777 Qcnq 10781 [Q]cerq 10783 +Q cplq 10784 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5246 ax-nul 5256 ax-pr 5382 ax-un 7691 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rmo 3351 df-reu 3352 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-pss 3931 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-iun 4953 df-br 5103 df-opab 5165 df-mpt 5184 df-tr 5210 df-id 5526 df-eprel 5531 df-po 5539 df-so 5540 df-fr 5584 df-we 5586 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-pred 6262 df-ord 6323 df-on 6324 df-lim 6325 df-suc 6326 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-ov 7372 df-oprab 7373 df-mpo 7374 df-om 7823 df-1st 7947 df-2nd 7948 df-frecs 8237 df-wrecs 8268 df-recs 8317 df-rdg 8355 df-1o 8411 df-oadd 8415 df-omul 8416 df-er 8648 df-ni 10801 df-pli 10802 df-mi 10803 df-lti 10804 df-plpq 10837 df-enq 10840 df-nq 10841 df-erq 10842 df-plq 10843 df-1nq 10845 |
| This theorem is referenced by: ltaddnq 10903 addclprlem2 10946 addclpr 10947 addcompr 10950 distrlem4pr 10955 prlem934 10962 ltexprlem2 10966 ltexprlem6 10970 ltexprlem7 10971 prlem936 10976 |
| Copyright terms: Public domain | W3C validator |