MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  addcomnq Structured version   Visualization version   GIF version

Theorem addcomnq 10880
Description: Addition of positive fractions is commutative. (Contributed by NM, 30-Aug-1995.) (Revised by Mario Carneiro, 28-Apr-2013.) (New usage is discouraged.)
Assertion
Ref Expression
addcomnq (𝐴 +Q 𝐵) = (𝐵 +Q 𝐴)

Proof of Theorem addcomnq
StepHypRef Expression
1 addcompq 10879 . . . 4 (𝐴 +pQ 𝐵) = (𝐵 +pQ 𝐴)
21fveq2i 6843 . . 3 ([Q]‘(𝐴 +pQ 𝐵)) = ([Q]‘(𝐵 +pQ 𝐴))
3 addpqnq 10867 . . 3 ((𝐴Q𝐵Q) → (𝐴 +Q 𝐵) = ([Q]‘(𝐴 +pQ 𝐵)))
4 addpqnq 10867 . . . 4 ((𝐵Q𝐴Q) → (𝐵 +Q 𝐴) = ([Q]‘(𝐵 +pQ 𝐴)))
54ancoms 458 . . 3 ((𝐴Q𝐵Q) → (𝐵 +Q 𝐴) = ([Q]‘(𝐵 +pQ 𝐴)))
62, 3, 53eqtr4a 2790 . 2 ((𝐴Q𝐵Q) → (𝐴 +Q 𝐵) = (𝐵 +Q 𝐴))
7 addnqf 10877 . . . 4 +Q :(Q × Q)⟶Q
87fdmi 6681 . . 3 dom +Q = (Q × Q)
98ndmovcom 7556 . 2 (¬ (𝐴Q𝐵Q) → (𝐴 +Q 𝐵) = (𝐵 +Q 𝐴))
106, 9pm2.61i 182 1 (𝐴 +Q 𝐵) = (𝐵 +Q 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wa 395   = wceq 1540  wcel 2109   × cxp 5629  cfv 6499  (class class class)co 7369   +pQ cplpq 10777  Qcnq 10781  [Q]cerq 10783   +Q cplq 10784
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5246  ax-nul 5256  ax-pr 5382  ax-un 7691
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rmo 3351  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6262  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-ov 7372  df-oprab 7373  df-mpo 7374  df-om 7823  df-1st 7947  df-2nd 7948  df-frecs 8237  df-wrecs 8268  df-recs 8317  df-rdg 8355  df-1o 8411  df-oadd 8415  df-omul 8416  df-er 8648  df-ni 10801  df-pli 10802  df-mi 10803  df-lti 10804  df-plpq 10837  df-enq 10840  df-nq 10841  df-erq 10842  df-plq 10843  df-1nq 10845
This theorem is referenced by:  ltaddnq  10903  addclprlem2  10946  addclpr  10947  addcompr  10950  distrlem4pr  10955  prlem934  10962  ltexprlem2  10966  ltexprlem6  10970  ltexprlem7  10971  prlem936  10976
  Copyright terms: Public domain W3C validator