![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > addcompr | Structured version Visualization version GIF version |
Description: Addition of positive reals is commutative. Proposition 9-3.5(ii) of [Gleason] p. 123. (Contributed by NM, 19-Nov-1995.) (New usage is discouraged.) |
Ref | Expression |
---|---|
addcompr | ⊢ (𝐴 +P 𝐵) = (𝐵 +P 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | plpv 10229 | . . 3 ⊢ ((𝐴 ∈ P ∧ 𝐵 ∈ P) → (𝐴 +P 𝐵) = {𝑥 ∣ ∃𝑧 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝑥 = (𝑧 +Q 𝑦)}) | |
2 | plpv 10229 | . . . . 5 ⊢ ((𝐵 ∈ P ∧ 𝐴 ∈ P) → (𝐵 +P 𝐴) = {𝑥 ∣ ∃𝑦 ∈ 𝐵 ∃𝑧 ∈ 𝐴 𝑥 = (𝑦 +Q 𝑧)}) | |
3 | addcomnq 10170 | . . . . . . . . 9 ⊢ (𝑦 +Q 𝑧) = (𝑧 +Q 𝑦) | |
4 | 3 | eqeq2i 2785 | . . . . . . . 8 ⊢ (𝑥 = (𝑦 +Q 𝑧) ↔ 𝑥 = (𝑧 +Q 𝑦)) |
5 | 4 | 2rexbii 3190 | . . . . . . 7 ⊢ (∃𝑦 ∈ 𝐵 ∃𝑧 ∈ 𝐴 𝑥 = (𝑦 +Q 𝑧) ↔ ∃𝑦 ∈ 𝐵 ∃𝑧 ∈ 𝐴 𝑥 = (𝑧 +Q 𝑦)) |
6 | rexcom 3291 | . . . . . . 7 ⊢ (∃𝑦 ∈ 𝐵 ∃𝑧 ∈ 𝐴 𝑥 = (𝑧 +Q 𝑦) ↔ ∃𝑧 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝑥 = (𝑧 +Q 𝑦)) | |
7 | 5, 6 | bitri 267 | . . . . . 6 ⊢ (∃𝑦 ∈ 𝐵 ∃𝑧 ∈ 𝐴 𝑥 = (𝑦 +Q 𝑧) ↔ ∃𝑧 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝑥 = (𝑧 +Q 𝑦)) |
8 | 7 | abbii 2839 | . . . . 5 ⊢ {𝑥 ∣ ∃𝑦 ∈ 𝐵 ∃𝑧 ∈ 𝐴 𝑥 = (𝑦 +Q 𝑧)} = {𝑥 ∣ ∃𝑧 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝑥 = (𝑧 +Q 𝑦)} |
9 | 2, 8 | syl6eq 2825 | . . . 4 ⊢ ((𝐵 ∈ P ∧ 𝐴 ∈ P) → (𝐵 +P 𝐴) = {𝑥 ∣ ∃𝑧 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝑥 = (𝑧 +Q 𝑦)}) |
10 | 9 | ancoms 451 | . . 3 ⊢ ((𝐴 ∈ P ∧ 𝐵 ∈ P) → (𝐵 +P 𝐴) = {𝑥 ∣ ∃𝑧 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝑥 = (𝑧 +Q 𝑦)}) |
11 | 1, 10 | eqtr4d 2812 | . 2 ⊢ ((𝐴 ∈ P ∧ 𝐵 ∈ P) → (𝐴 +P 𝐵) = (𝐵 +P 𝐴)) |
12 | dmplp 10231 | . . 3 ⊢ dom +P = (P × P) | |
13 | 12 | ndmovcom 7150 | . 2 ⊢ (¬ (𝐴 ∈ P ∧ 𝐵 ∈ P) → (𝐴 +P 𝐵) = (𝐵 +P 𝐴)) |
14 | 11, 13 | pm2.61i 177 | 1 ⊢ (𝐴 +P 𝐵) = (𝐵 +P 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 387 = wceq 1508 ∈ wcel 2051 {cab 2753 ∃wrex 3084 (class class class)co 6975 +Q cplq 10074 Pcnp 10078 +P cpp 10080 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1759 ax-4 1773 ax-5 1870 ax-6 1929 ax-7 1966 ax-8 2053 ax-9 2060 ax-10 2080 ax-11 2094 ax-12 2107 ax-13 2302 ax-ext 2745 ax-sep 5057 ax-nul 5064 ax-pow 5116 ax-pr 5183 ax-un 7278 ax-inf2 8897 |
This theorem depends on definitions: df-bi 199 df-an 388 df-or 835 df-3or 1070 df-3an 1071 df-tru 1511 df-ex 1744 df-nf 1748 df-sb 2017 df-mo 2548 df-eu 2585 df-clab 2754 df-cleq 2766 df-clel 2841 df-nfc 2913 df-ne 2963 df-ral 3088 df-rex 3089 df-reu 3090 df-rmo 3091 df-rab 3092 df-v 3412 df-sbc 3677 df-csb 3782 df-dif 3827 df-un 3829 df-in 3831 df-ss 3838 df-pss 3840 df-nul 4174 df-if 4346 df-pw 4419 df-sn 4437 df-pr 4439 df-tp 4441 df-op 4443 df-uni 4710 df-iun 4791 df-br 4927 df-opab 4989 df-mpt 5006 df-tr 5028 df-id 5309 df-eprel 5314 df-po 5323 df-so 5324 df-fr 5363 df-we 5365 df-xp 5410 df-rel 5411 df-cnv 5412 df-co 5413 df-dm 5414 df-rn 5415 df-res 5416 df-ima 5417 df-pred 5984 df-ord 6030 df-on 6031 df-lim 6032 df-suc 6033 df-iota 6150 df-fun 6188 df-fn 6189 df-f 6190 df-f1 6191 df-fo 6192 df-f1o 6193 df-fv 6194 df-ov 6978 df-oprab 6979 df-mpo 6980 df-om 7396 df-1st 7500 df-2nd 7501 df-wrecs 7749 df-recs 7811 df-rdg 7849 df-1o 7904 df-oadd 7908 df-omul 7909 df-er 8088 df-ni 10091 df-pli 10092 df-mi 10093 df-lti 10094 df-plpq 10127 df-enq 10130 df-nq 10131 df-erq 10132 df-plq 10133 df-1nq 10135 df-np 10200 df-plp 10202 |
This theorem is referenced by: enrer 10282 addcmpblnr 10288 mulcmpblnrlem 10289 ltsrpr 10296 addcomsr 10306 mulcomsr 10308 mulasssr 10309 distrsr 10310 ltsosr 10313 0lt1sr 10314 0idsr 10316 1idsr 10317 ltasr 10319 recexsrlem 10322 mulgt0sr 10324 ltpsrpr 10328 map2psrpr 10329 |
Copyright terms: Public domain | W3C validator |