![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > addcompr | Structured version Visualization version GIF version |
Description: Addition of positive reals is commutative. Proposition 9-3.5(ii) of [Gleason] p. 123. (Contributed by NM, 19-Nov-1995.) (New usage is discouraged.) |
Ref | Expression |
---|---|
addcompr | ⊢ (𝐴 +P 𝐵) = (𝐵 +P 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | plpv 11007 | . . 3 ⊢ ((𝐴 ∈ P ∧ 𝐵 ∈ P) → (𝐴 +P 𝐵) = {𝑥 ∣ ∃𝑧 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝑥 = (𝑧 +Q 𝑦)}) | |
2 | plpv 11007 | . . . . 5 ⊢ ((𝐵 ∈ P ∧ 𝐴 ∈ P) → (𝐵 +P 𝐴) = {𝑥 ∣ ∃𝑦 ∈ 𝐵 ∃𝑧 ∈ 𝐴 𝑥 = (𝑦 +Q 𝑧)}) | |
3 | addcomnq 10948 | . . . . . . . . 9 ⊢ (𝑦 +Q 𝑧) = (𝑧 +Q 𝑦) | |
4 | 3 | eqeq2i 2739 | . . . . . . . 8 ⊢ (𝑥 = (𝑦 +Q 𝑧) ↔ 𝑥 = (𝑧 +Q 𝑦)) |
5 | 4 | 2rexbii 3123 | . . . . . . 7 ⊢ (∃𝑦 ∈ 𝐵 ∃𝑧 ∈ 𝐴 𝑥 = (𝑦 +Q 𝑧) ↔ ∃𝑦 ∈ 𝐵 ∃𝑧 ∈ 𝐴 𝑥 = (𝑧 +Q 𝑦)) |
6 | rexcom 3281 | . . . . . . 7 ⊢ (∃𝑦 ∈ 𝐵 ∃𝑧 ∈ 𝐴 𝑥 = (𝑧 +Q 𝑦) ↔ ∃𝑧 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝑥 = (𝑧 +Q 𝑦)) | |
7 | 5, 6 | bitri 275 | . . . . . 6 ⊢ (∃𝑦 ∈ 𝐵 ∃𝑧 ∈ 𝐴 𝑥 = (𝑦 +Q 𝑧) ↔ ∃𝑧 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝑥 = (𝑧 +Q 𝑦)) |
8 | 7 | abbii 2796 | . . . . 5 ⊢ {𝑥 ∣ ∃𝑦 ∈ 𝐵 ∃𝑧 ∈ 𝐴 𝑥 = (𝑦 +Q 𝑧)} = {𝑥 ∣ ∃𝑧 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝑥 = (𝑧 +Q 𝑦)} |
9 | 2, 8 | eqtrdi 2782 | . . . 4 ⊢ ((𝐵 ∈ P ∧ 𝐴 ∈ P) → (𝐵 +P 𝐴) = {𝑥 ∣ ∃𝑧 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝑥 = (𝑧 +Q 𝑦)}) |
10 | 9 | ancoms 458 | . . 3 ⊢ ((𝐴 ∈ P ∧ 𝐵 ∈ P) → (𝐵 +P 𝐴) = {𝑥 ∣ ∃𝑧 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝑥 = (𝑧 +Q 𝑦)}) |
11 | 1, 10 | eqtr4d 2769 | . 2 ⊢ ((𝐴 ∈ P ∧ 𝐵 ∈ P) → (𝐴 +P 𝐵) = (𝐵 +P 𝐴)) |
12 | dmplp 11009 | . . 3 ⊢ dom +P = (P × P) | |
13 | 12 | ndmovcom 7591 | . 2 ⊢ (¬ (𝐴 ∈ P ∧ 𝐵 ∈ P) → (𝐴 +P 𝐵) = (𝐵 +P 𝐴)) |
14 | 11, 13 | pm2.61i 182 | 1 ⊢ (𝐴 +P 𝐵) = (𝐵 +P 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 395 = wceq 1533 ∈ wcel 2098 {cab 2703 ∃wrex 3064 (class class class)co 7405 +Q cplq 10852 Pcnp 10856 +P cpp 10858 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2697 ax-sep 5292 ax-nul 5299 ax-pow 5356 ax-pr 5420 ax-un 7722 ax-inf2 9638 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2704 df-cleq 2718 df-clel 2804 df-nfc 2879 df-ne 2935 df-ral 3056 df-rex 3065 df-rmo 3370 df-reu 3371 df-rab 3427 df-v 3470 df-sbc 3773 df-csb 3889 df-dif 3946 df-un 3948 df-in 3950 df-ss 3960 df-pss 3962 df-nul 4318 df-if 4524 df-pw 4599 df-sn 4624 df-pr 4626 df-op 4630 df-uni 4903 df-iun 4992 df-br 5142 df-opab 5204 df-mpt 5225 df-tr 5259 df-id 5567 df-eprel 5573 df-po 5581 df-so 5582 df-fr 5624 df-we 5626 df-xp 5675 df-rel 5676 df-cnv 5677 df-co 5678 df-dm 5679 df-rn 5680 df-res 5681 df-ima 5682 df-pred 6294 df-ord 6361 df-on 6362 df-lim 6363 df-suc 6364 df-iota 6489 df-fun 6539 df-fn 6540 df-f 6541 df-f1 6542 df-fo 6543 df-f1o 6544 df-fv 6545 df-ov 7408 df-oprab 7409 df-mpo 7410 df-om 7853 df-1st 7974 df-2nd 7975 df-frecs 8267 df-wrecs 8298 df-recs 8372 df-rdg 8411 df-1o 8467 df-oadd 8471 df-omul 8472 df-er 8705 df-ni 10869 df-pli 10870 df-mi 10871 df-lti 10872 df-plpq 10905 df-enq 10908 df-nq 10909 df-erq 10910 df-plq 10911 df-1nq 10913 df-np 10978 df-plp 10980 |
This theorem is referenced by: enrer 11060 addcmpblnr 11066 mulcmpblnrlem 11067 ltsrpr 11074 addcomsr 11084 mulcomsr 11086 mulasssr 11087 distrsr 11088 ltsosr 11091 0lt1sr 11092 0idsr 11094 1idsr 11095 ltasr 11097 recexsrlem 11100 mulgt0sr 11102 ltpsrpr 11106 map2psrpr 11107 |
Copyright terms: Public domain | W3C validator |