| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > addcompr | Structured version Visualization version GIF version | ||
| Description: Addition of positive reals is commutative. Proposition 9-3.5(ii) of [Gleason] p. 123. (Contributed by NM, 19-Nov-1995.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| addcompr | ⊢ (𝐴 +P 𝐵) = (𝐵 +P 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | plpv 11032 | . . 3 ⊢ ((𝐴 ∈ P ∧ 𝐵 ∈ P) → (𝐴 +P 𝐵) = {𝑥 ∣ ∃𝑧 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝑥 = (𝑧 +Q 𝑦)}) | |
| 2 | plpv 11032 | . . . . 5 ⊢ ((𝐵 ∈ P ∧ 𝐴 ∈ P) → (𝐵 +P 𝐴) = {𝑥 ∣ ∃𝑦 ∈ 𝐵 ∃𝑧 ∈ 𝐴 𝑥 = (𝑦 +Q 𝑧)}) | |
| 3 | addcomnq 10973 | . . . . . . . . 9 ⊢ (𝑦 +Q 𝑧) = (𝑧 +Q 𝑦) | |
| 4 | 3 | eqeq2i 2747 | . . . . . . . 8 ⊢ (𝑥 = (𝑦 +Q 𝑧) ↔ 𝑥 = (𝑧 +Q 𝑦)) |
| 5 | 4 | 2rexbii 3116 | . . . . . . 7 ⊢ (∃𝑦 ∈ 𝐵 ∃𝑧 ∈ 𝐴 𝑥 = (𝑦 +Q 𝑧) ↔ ∃𝑦 ∈ 𝐵 ∃𝑧 ∈ 𝐴 𝑥 = (𝑧 +Q 𝑦)) |
| 6 | rexcom 3274 | . . . . . . 7 ⊢ (∃𝑦 ∈ 𝐵 ∃𝑧 ∈ 𝐴 𝑥 = (𝑧 +Q 𝑦) ↔ ∃𝑧 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝑥 = (𝑧 +Q 𝑦)) | |
| 7 | 5, 6 | bitri 275 | . . . . . 6 ⊢ (∃𝑦 ∈ 𝐵 ∃𝑧 ∈ 𝐴 𝑥 = (𝑦 +Q 𝑧) ↔ ∃𝑧 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝑥 = (𝑧 +Q 𝑦)) |
| 8 | 7 | abbii 2801 | . . . . 5 ⊢ {𝑥 ∣ ∃𝑦 ∈ 𝐵 ∃𝑧 ∈ 𝐴 𝑥 = (𝑦 +Q 𝑧)} = {𝑥 ∣ ∃𝑧 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝑥 = (𝑧 +Q 𝑦)} |
| 9 | 2, 8 | eqtrdi 2785 | . . . 4 ⊢ ((𝐵 ∈ P ∧ 𝐴 ∈ P) → (𝐵 +P 𝐴) = {𝑥 ∣ ∃𝑧 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝑥 = (𝑧 +Q 𝑦)}) |
| 10 | 9 | ancoms 458 | . . 3 ⊢ ((𝐴 ∈ P ∧ 𝐵 ∈ P) → (𝐵 +P 𝐴) = {𝑥 ∣ ∃𝑧 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝑥 = (𝑧 +Q 𝑦)}) |
| 11 | 1, 10 | eqtr4d 2772 | . 2 ⊢ ((𝐴 ∈ P ∧ 𝐵 ∈ P) → (𝐴 +P 𝐵) = (𝐵 +P 𝐴)) |
| 12 | dmplp 11034 | . . 3 ⊢ dom +P = (P × P) | |
| 13 | 12 | ndmovcom 7602 | . 2 ⊢ (¬ (𝐴 ∈ P ∧ 𝐵 ∈ P) → (𝐴 +P 𝐵) = (𝐵 +P 𝐴)) |
| 14 | 11, 13 | pm2.61i 182 | 1 ⊢ (𝐴 +P 𝐵) = (𝐵 +P 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: ∧ wa 395 = wceq 1539 ∈ wcel 2107 {cab 2712 ∃wrex 3059 (class class class)co 7413 +Q cplq 10877 Pcnp 10881 +P cpp 10883 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-sep 5276 ax-nul 5286 ax-pow 5345 ax-pr 5412 ax-un 7737 ax-inf2 9663 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-ral 3051 df-rex 3060 df-rmo 3363 df-reu 3364 df-rab 3420 df-v 3465 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-pss 3951 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4888 df-iun 4973 df-br 5124 df-opab 5186 df-mpt 5206 df-tr 5240 df-id 5558 df-eprel 5564 df-po 5572 df-so 5573 df-fr 5617 df-we 5619 df-xp 5671 df-rel 5672 df-cnv 5673 df-co 5674 df-dm 5675 df-rn 5676 df-res 5677 df-ima 5678 df-pred 6301 df-ord 6366 df-on 6367 df-lim 6368 df-suc 6369 df-iota 6494 df-fun 6543 df-fn 6544 df-f 6545 df-f1 6546 df-fo 6547 df-f1o 6548 df-fv 6549 df-ov 7416 df-oprab 7417 df-mpo 7418 df-om 7870 df-1st 7996 df-2nd 7997 df-frecs 8288 df-wrecs 8319 df-recs 8393 df-rdg 8432 df-1o 8488 df-oadd 8492 df-omul 8493 df-er 8727 df-ni 10894 df-pli 10895 df-mi 10896 df-lti 10897 df-plpq 10930 df-enq 10933 df-nq 10934 df-erq 10935 df-plq 10936 df-1nq 10938 df-np 11003 df-plp 11005 |
| This theorem is referenced by: enrer 11085 addcmpblnr 11091 mulcmpblnrlem 11092 ltsrpr 11099 addcomsr 11109 mulcomsr 11111 mulasssr 11112 distrsr 11113 ltsosr 11116 0lt1sr 11117 0idsr 11119 1idsr 11120 ltasr 11122 recexsrlem 11125 mulgt0sr 11127 ltpsrpr 11131 map2psrpr 11132 |
| Copyright terms: Public domain | W3C validator |