| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > addcompr | Structured version Visualization version GIF version | ||
| Description: Addition of positive reals is commutative. Proposition 9-3.5(ii) of [Gleason] p. 123. (Contributed by NM, 19-Nov-1995.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| addcompr | ⊢ (𝐴 +P 𝐵) = (𝐵 +P 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | plpv 10970 | . . 3 ⊢ ((𝐴 ∈ P ∧ 𝐵 ∈ P) → (𝐴 +P 𝐵) = {𝑥 ∣ ∃𝑧 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝑥 = (𝑧 +Q 𝑦)}) | |
| 2 | plpv 10970 | . . . . 5 ⊢ ((𝐵 ∈ P ∧ 𝐴 ∈ P) → (𝐵 +P 𝐴) = {𝑥 ∣ ∃𝑦 ∈ 𝐵 ∃𝑧 ∈ 𝐴 𝑥 = (𝑦 +Q 𝑧)}) | |
| 3 | addcomnq 10911 | . . . . . . . . 9 ⊢ (𝑦 +Q 𝑧) = (𝑧 +Q 𝑦) | |
| 4 | 3 | eqeq2i 2743 | . . . . . . . 8 ⊢ (𝑥 = (𝑦 +Q 𝑧) ↔ 𝑥 = (𝑧 +Q 𝑦)) |
| 5 | 4 | 2rexbii 3110 | . . . . . . 7 ⊢ (∃𝑦 ∈ 𝐵 ∃𝑧 ∈ 𝐴 𝑥 = (𝑦 +Q 𝑧) ↔ ∃𝑦 ∈ 𝐵 ∃𝑧 ∈ 𝐴 𝑥 = (𝑧 +Q 𝑦)) |
| 6 | rexcom 3267 | . . . . . . 7 ⊢ (∃𝑦 ∈ 𝐵 ∃𝑧 ∈ 𝐴 𝑥 = (𝑧 +Q 𝑦) ↔ ∃𝑧 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝑥 = (𝑧 +Q 𝑦)) | |
| 7 | 5, 6 | bitri 275 | . . . . . 6 ⊢ (∃𝑦 ∈ 𝐵 ∃𝑧 ∈ 𝐴 𝑥 = (𝑦 +Q 𝑧) ↔ ∃𝑧 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝑥 = (𝑧 +Q 𝑦)) |
| 8 | 7 | abbii 2797 | . . . . 5 ⊢ {𝑥 ∣ ∃𝑦 ∈ 𝐵 ∃𝑧 ∈ 𝐴 𝑥 = (𝑦 +Q 𝑧)} = {𝑥 ∣ ∃𝑧 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝑥 = (𝑧 +Q 𝑦)} |
| 9 | 2, 8 | eqtrdi 2781 | . . . 4 ⊢ ((𝐵 ∈ P ∧ 𝐴 ∈ P) → (𝐵 +P 𝐴) = {𝑥 ∣ ∃𝑧 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝑥 = (𝑧 +Q 𝑦)}) |
| 10 | 9 | ancoms 458 | . . 3 ⊢ ((𝐴 ∈ P ∧ 𝐵 ∈ P) → (𝐵 +P 𝐴) = {𝑥 ∣ ∃𝑧 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝑥 = (𝑧 +Q 𝑦)}) |
| 11 | 1, 10 | eqtr4d 2768 | . 2 ⊢ ((𝐴 ∈ P ∧ 𝐵 ∈ P) → (𝐴 +P 𝐵) = (𝐵 +P 𝐴)) |
| 12 | dmplp 10972 | . . 3 ⊢ dom +P = (P × P) | |
| 13 | 12 | ndmovcom 7579 | . 2 ⊢ (¬ (𝐴 ∈ P ∧ 𝐵 ∈ P) → (𝐴 +P 𝐵) = (𝐵 +P 𝐴)) |
| 14 | 11, 13 | pm2.61i 182 | 1 ⊢ (𝐴 +P 𝐵) = (𝐵 +P 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: ∧ wa 395 = wceq 1540 ∈ wcel 2109 {cab 2708 ∃wrex 3054 (class class class)co 7390 +Q cplq 10815 Pcnp 10819 +P cpp 10821 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 ax-inf2 9601 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-rmo 3356 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-pss 3937 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-iun 4960 df-br 5111 df-opab 5173 df-mpt 5192 df-tr 5218 df-id 5536 df-eprel 5541 df-po 5549 df-so 5550 df-fr 5594 df-we 5596 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-pred 6277 df-ord 6338 df-on 6339 df-lim 6340 df-suc 6341 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-ov 7393 df-oprab 7394 df-mpo 7395 df-om 7846 df-1st 7971 df-2nd 7972 df-frecs 8263 df-wrecs 8294 df-recs 8343 df-rdg 8381 df-1o 8437 df-oadd 8441 df-omul 8442 df-er 8674 df-ni 10832 df-pli 10833 df-mi 10834 df-lti 10835 df-plpq 10868 df-enq 10871 df-nq 10872 df-erq 10873 df-plq 10874 df-1nq 10876 df-np 10941 df-plp 10943 |
| This theorem is referenced by: enrer 11023 addcmpblnr 11029 mulcmpblnrlem 11030 ltsrpr 11037 addcomsr 11047 mulcomsr 11049 mulasssr 11050 distrsr 11051 ltsosr 11054 0lt1sr 11055 0idsr 11057 1idsr 11058 ltasr 11060 recexsrlem 11063 mulgt0sr 11065 ltpsrpr 11069 map2psrpr 11070 |
| Copyright terms: Public domain | W3C validator |