MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  addcompr Structured version   Visualization version   GIF version

Theorem addcompr 10777
Description: Addition of positive reals is commutative. Proposition 9-3.5(ii) of [Gleason] p. 123. (Contributed by NM, 19-Nov-1995.) (New usage is discouraged.)
Assertion
Ref Expression
addcompr (𝐴 +P 𝐵) = (𝐵 +P 𝐴)

Proof of Theorem addcompr
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 plpv 10766 . . 3 ((𝐴P𝐵P) → (𝐴 +P 𝐵) = {𝑥 ∣ ∃𝑧𝐴𝑦𝐵 𝑥 = (𝑧 +Q 𝑦)})
2 plpv 10766 . . . . 5 ((𝐵P𝐴P) → (𝐵 +P 𝐴) = {𝑥 ∣ ∃𝑦𝐵𝑧𝐴 𝑥 = (𝑦 +Q 𝑧)})
3 addcomnq 10707 . . . . . . . . 9 (𝑦 +Q 𝑧) = (𝑧 +Q 𝑦)
43eqeq2i 2751 . . . . . . . 8 (𝑥 = (𝑦 +Q 𝑧) ↔ 𝑥 = (𝑧 +Q 𝑦))
542rexbii 3182 . . . . . . 7 (∃𝑦𝐵𝑧𝐴 𝑥 = (𝑦 +Q 𝑧) ↔ ∃𝑦𝐵𝑧𝐴 𝑥 = (𝑧 +Q 𝑦))
6 rexcom 3234 . . . . . . 7 (∃𝑦𝐵𝑧𝐴 𝑥 = (𝑧 +Q 𝑦) ↔ ∃𝑧𝐴𝑦𝐵 𝑥 = (𝑧 +Q 𝑦))
75, 6bitri 274 . . . . . 6 (∃𝑦𝐵𝑧𝐴 𝑥 = (𝑦 +Q 𝑧) ↔ ∃𝑧𝐴𝑦𝐵 𝑥 = (𝑧 +Q 𝑦))
87abbii 2808 . . . . 5 {𝑥 ∣ ∃𝑦𝐵𝑧𝐴 𝑥 = (𝑦 +Q 𝑧)} = {𝑥 ∣ ∃𝑧𝐴𝑦𝐵 𝑥 = (𝑧 +Q 𝑦)}
92, 8eqtrdi 2794 . . . 4 ((𝐵P𝐴P) → (𝐵 +P 𝐴) = {𝑥 ∣ ∃𝑧𝐴𝑦𝐵 𝑥 = (𝑧 +Q 𝑦)})
109ancoms 459 . . 3 ((𝐴P𝐵P) → (𝐵 +P 𝐴) = {𝑥 ∣ ∃𝑧𝐴𝑦𝐵 𝑥 = (𝑧 +Q 𝑦)})
111, 10eqtr4d 2781 . 2 ((𝐴P𝐵P) → (𝐴 +P 𝐵) = (𝐵 +P 𝐴))
12 dmplp 10768 . . 3 dom +P = (P × P)
1312ndmovcom 7459 . 2 (¬ (𝐴P𝐵P) → (𝐴 +P 𝐵) = (𝐵 +P 𝐴))
1411, 13pm2.61i 182 1 (𝐴 +P 𝐵) = (𝐵 +P 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wa 396   = wceq 1539  wcel 2106  {cab 2715  wrex 3065  (class class class)co 7275   +Q cplq 10611  Pcnp 10615   +P cpp 10617
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-inf2 9399
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-ov 7278  df-oprab 7279  df-mpo 7280  df-om 7713  df-1st 7831  df-2nd 7832  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-1o 8297  df-oadd 8301  df-omul 8302  df-er 8498  df-ni 10628  df-pli 10629  df-mi 10630  df-lti 10631  df-plpq 10664  df-enq 10667  df-nq 10668  df-erq 10669  df-plq 10670  df-1nq 10672  df-np 10737  df-plp 10739
This theorem is referenced by:  enrer  10819  addcmpblnr  10825  mulcmpblnrlem  10826  ltsrpr  10833  addcomsr  10843  mulcomsr  10845  mulasssr  10846  distrsr  10847  ltsosr  10850  0lt1sr  10851  0idsr  10853  1idsr  10854  ltasr  10856  recexsrlem  10859  mulgt0sr  10861  ltpsrpr  10865  map2psrpr  10866
  Copyright terms: Public domain W3C validator