MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  addcompr Structured version   Visualization version   GIF version

Theorem addcompr 11054
Description: Addition of positive reals is commutative. Proposition 9-3.5(ii) of [Gleason] p. 123. (Contributed by NM, 19-Nov-1995.) (New usage is discouraged.)
Assertion
Ref Expression
addcompr (𝐴 +P 𝐵) = (𝐵 +P 𝐴)

Proof of Theorem addcompr
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 plpv 11043 . . 3 ((𝐴P𝐵P) → (𝐴 +P 𝐵) = {𝑥 ∣ ∃𝑧𝐴𝑦𝐵 𝑥 = (𝑧 +Q 𝑦)})
2 plpv 11043 . . . . 5 ((𝐵P𝐴P) → (𝐵 +P 𝐴) = {𝑥 ∣ ∃𝑦𝐵𝑧𝐴 𝑥 = (𝑦 +Q 𝑧)})
3 addcomnq 10984 . . . . . . . . 9 (𝑦 +Q 𝑧) = (𝑧 +Q 𝑦)
43eqeq2i 2741 . . . . . . . 8 (𝑥 = (𝑦 +Q 𝑧) ↔ 𝑥 = (𝑧 +Q 𝑦))
542rexbii 3126 . . . . . . 7 (∃𝑦𝐵𝑧𝐴 𝑥 = (𝑦 +Q 𝑧) ↔ ∃𝑦𝐵𝑧𝐴 𝑥 = (𝑧 +Q 𝑦))
6 rexcom 3285 . . . . . . 7 (∃𝑦𝐵𝑧𝐴 𝑥 = (𝑧 +Q 𝑦) ↔ ∃𝑧𝐴𝑦𝐵 𝑥 = (𝑧 +Q 𝑦))
75, 6bitri 274 . . . . . 6 (∃𝑦𝐵𝑧𝐴 𝑥 = (𝑦 +Q 𝑧) ↔ ∃𝑧𝐴𝑦𝐵 𝑥 = (𝑧 +Q 𝑦))
87abbii 2798 . . . . 5 {𝑥 ∣ ∃𝑦𝐵𝑧𝐴 𝑥 = (𝑦 +Q 𝑧)} = {𝑥 ∣ ∃𝑧𝐴𝑦𝐵 𝑥 = (𝑧 +Q 𝑦)}
92, 8eqtrdi 2784 . . . 4 ((𝐵P𝐴P) → (𝐵 +P 𝐴) = {𝑥 ∣ ∃𝑧𝐴𝑦𝐵 𝑥 = (𝑧 +Q 𝑦)})
109ancoms 457 . . 3 ((𝐴P𝐵P) → (𝐵 +P 𝐴) = {𝑥 ∣ ∃𝑧𝐴𝑦𝐵 𝑥 = (𝑧 +Q 𝑦)})
111, 10eqtr4d 2771 . 2 ((𝐴P𝐵P) → (𝐴 +P 𝐵) = (𝐵 +P 𝐴))
12 dmplp 11045 . . 3 dom +P = (P × P)
1312ndmovcom 7615 . 2 (¬ (𝐴P𝐵P) → (𝐴 +P 𝐵) = (𝐵 +P 𝐴))
1411, 13pm2.61i 182 1 (𝐴 +P 𝐵) = (𝐵 +P 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wa 394   = wceq 1533  wcel 2098  {cab 2705  wrex 3067  (class class class)co 7426   +Q cplq 10888  Pcnp 10892   +P cpp 10894
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2699  ax-sep 5303  ax-nul 5310  ax-pow 5369  ax-pr 5433  ax-un 7748  ax-inf2 9674
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2529  df-eu 2558  df-clab 2706  df-cleq 2720  df-clel 2806  df-nfc 2881  df-ne 2938  df-ral 3059  df-rex 3068  df-rmo 3374  df-reu 3375  df-rab 3431  df-v 3475  df-sbc 3779  df-csb 3895  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-pss 3968  df-nul 4327  df-if 4533  df-pw 4608  df-sn 4633  df-pr 4635  df-op 4639  df-uni 4913  df-iun 5002  df-br 5153  df-opab 5215  df-mpt 5236  df-tr 5270  df-id 5580  df-eprel 5586  df-po 5594  df-so 5595  df-fr 5637  df-we 5639  df-xp 5688  df-rel 5689  df-cnv 5690  df-co 5691  df-dm 5692  df-rn 5693  df-res 5694  df-ima 5695  df-pred 6310  df-ord 6377  df-on 6378  df-lim 6379  df-suc 6380  df-iota 6505  df-fun 6555  df-fn 6556  df-f 6557  df-f1 6558  df-fo 6559  df-f1o 6560  df-fv 6561  df-ov 7429  df-oprab 7430  df-mpo 7431  df-om 7879  df-1st 8001  df-2nd 8002  df-frecs 8295  df-wrecs 8326  df-recs 8400  df-rdg 8439  df-1o 8495  df-oadd 8499  df-omul 8500  df-er 8733  df-ni 10905  df-pli 10906  df-mi 10907  df-lti 10908  df-plpq 10941  df-enq 10944  df-nq 10945  df-erq 10946  df-plq 10947  df-1nq 10949  df-np 11014  df-plp 11016
This theorem is referenced by:  enrer  11096  addcmpblnr  11102  mulcmpblnrlem  11103  ltsrpr  11110  addcomsr  11120  mulcomsr  11122  mulasssr  11123  distrsr  11124  ltsosr  11127  0lt1sr  11128  0idsr  11130  1idsr  11131  ltasr  11133  recexsrlem  11136  mulgt0sr  11138  ltpsrpr  11142  map2psrpr  11143
  Copyright terms: Public domain W3C validator