MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  addcompr Structured version   Visualization version   GIF version

Theorem addcompr 11043
Description: Addition of positive reals is commutative. Proposition 9-3.5(ii) of [Gleason] p. 123. (Contributed by NM, 19-Nov-1995.) (New usage is discouraged.)
Assertion
Ref Expression
addcompr (𝐴 +P 𝐵) = (𝐵 +P 𝐴)

Proof of Theorem addcompr
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 plpv 11032 . . 3 ((𝐴P𝐵P) → (𝐴 +P 𝐵) = {𝑥 ∣ ∃𝑧𝐴𝑦𝐵 𝑥 = (𝑧 +Q 𝑦)})
2 plpv 11032 . . . . 5 ((𝐵P𝐴P) → (𝐵 +P 𝐴) = {𝑥 ∣ ∃𝑦𝐵𝑧𝐴 𝑥 = (𝑦 +Q 𝑧)})
3 addcomnq 10973 . . . . . . . . 9 (𝑦 +Q 𝑧) = (𝑧 +Q 𝑦)
43eqeq2i 2747 . . . . . . . 8 (𝑥 = (𝑦 +Q 𝑧) ↔ 𝑥 = (𝑧 +Q 𝑦))
542rexbii 3116 . . . . . . 7 (∃𝑦𝐵𝑧𝐴 𝑥 = (𝑦 +Q 𝑧) ↔ ∃𝑦𝐵𝑧𝐴 𝑥 = (𝑧 +Q 𝑦))
6 rexcom 3274 . . . . . . 7 (∃𝑦𝐵𝑧𝐴 𝑥 = (𝑧 +Q 𝑦) ↔ ∃𝑧𝐴𝑦𝐵 𝑥 = (𝑧 +Q 𝑦))
75, 6bitri 275 . . . . . 6 (∃𝑦𝐵𝑧𝐴 𝑥 = (𝑦 +Q 𝑧) ↔ ∃𝑧𝐴𝑦𝐵 𝑥 = (𝑧 +Q 𝑦))
87abbii 2801 . . . . 5 {𝑥 ∣ ∃𝑦𝐵𝑧𝐴 𝑥 = (𝑦 +Q 𝑧)} = {𝑥 ∣ ∃𝑧𝐴𝑦𝐵 𝑥 = (𝑧 +Q 𝑦)}
92, 8eqtrdi 2785 . . . 4 ((𝐵P𝐴P) → (𝐵 +P 𝐴) = {𝑥 ∣ ∃𝑧𝐴𝑦𝐵 𝑥 = (𝑧 +Q 𝑦)})
109ancoms 458 . . 3 ((𝐴P𝐵P) → (𝐵 +P 𝐴) = {𝑥 ∣ ∃𝑧𝐴𝑦𝐵 𝑥 = (𝑧 +Q 𝑦)})
111, 10eqtr4d 2772 . 2 ((𝐴P𝐵P) → (𝐴 +P 𝐵) = (𝐵 +P 𝐴))
12 dmplp 11034 . . 3 dom +P = (P × P)
1312ndmovcom 7602 . 2 (¬ (𝐴P𝐵P) → (𝐴 +P 𝐵) = (𝐵 +P 𝐴))
1411, 13pm2.61i 182 1 (𝐴 +P 𝐵) = (𝐵 +P 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wa 395   = wceq 1539  wcel 2107  {cab 2712  wrex 3059  (class class class)co 7413   +Q cplq 10877  Pcnp 10881   +P cpp 10883
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2706  ax-sep 5276  ax-nul 5286  ax-pow 5345  ax-pr 5412  ax-un 7737  ax-inf2 9663
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2726  df-clel 2808  df-nfc 2884  df-ne 2932  df-ral 3051  df-rex 3060  df-rmo 3363  df-reu 3364  df-rab 3420  df-v 3465  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4888  df-iun 4973  df-br 5124  df-opab 5186  df-mpt 5206  df-tr 5240  df-id 5558  df-eprel 5564  df-po 5572  df-so 5573  df-fr 5617  df-we 5619  df-xp 5671  df-rel 5672  df-cnv 5673  df-co 5674  df-dm 5675  df-rn 5676  df-res 5677  df-ima 5678  df-pred 6301  df-ord 6366  df-on 6367  df-lim 6368  df-suc 6369  df-iota 6494  df-fun 6543  df-fn 6544  df-f 6545  df-f1 6546  df-fo 6547  df-f1o 6548  df-fv 6549  df-ov 7416  df-oprab 7417  df-mpo 7418  df-om 7870  df-1st 7996  df-2nd 7997  df-frecs 8288  df-wrecs 8319  df-recs 8393  df-rdg 8432  df-1o 8488  df-oadd 8492  df-omul 8493  df-er 8727  df-ni 10894  df-pli 10895  df-mi 10896  df-lti 10897  df-plpq 10930  df-enq 10933  df-nq 10934  df-erq 10935  df-plq 10936  df-1nq 10938  df-np 11003  df-plp 11005
This theorem is referenced by:  enrer  11085  addcmpblnr  11091  mulcmpblnrlem  11092  ltsrpr  11099  addcomsr  11109  mulcomsr  11111  mulasssr  11112  distrsr  11113  ltsosr  11116  0lt1sr  11117  0idsr  11119  1idsr  11120  ltasr  11122  recexsrlem  11125  mulgt0sr  11127  ltpsrpr  11131  map2psrpr  11132
  Copyright terms: Public domain W3C validator