MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  addcompr Structured version   Visualization version   GIF version

Theorem addcompr 11018
Description: Addition of positive reals is commutative. Proposition 9-3.5(ii) of [Gleason] p. 123. (Contributed by NM, 19-Nov-1995.) (New usage is discouraged.)
Assertion
Ref Expression
addcompr (𝐴 +P 𝐵) = (𝐵 +P 𝐴)

Proof of Theorem addcompr
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 plpv 11007 . . 3 ((𝐴P𝐵P) → (𝐴 +P 𝐵) = {𝑥 ∣ ∃𝑧𝐴𝑦𝐵 𝑥 = (𝑧 +Q 𝑦)})
2 plpv 11007 . . . . 5 ((𝐵P𝐴P) → (𝐵 +P 𝐴) = {𝑥 ∣ ∃𝑦𝐵𝑧𝐴 𝑥 = (𝑦 +Q 𝑧)})
3 addcomnq 10948 . . . . . . . . 9 (𝑦 +Q 𝑧) = (𝑧 +Q 𝑦)
43eqeq2i 2739 . . . . . . . 8 (𝑥 = (𝑦 +Q 𝑧) ↔ 𝑥 = (𝑧 +Q 𝑦))
542rexbii 3123 . . . . . . 7 (∃𝑦𝐵𝑧𝐴 𝑥 = (𝑦 +Q 𝑧) ↔ ∃𝑦𝐵𝑧𝐴 𝑥 = (𝑧 +Q 𝑦))
6 rexcom 3281 . . . . . . 7 (∃𝑦𝐵𝑧𝐴 𝑥 = (𝑧 +Q 𝑦) ↔ ∃𝑧𝐴𝑦𝐵 𝑥 = (𝑧 +Q 𝑦))
75, 6bitri 275 . . . . . 6 (∃𝑦𝐵𝑧𝐴 𝑥 = (𝑦 +Q 𝑧) ↔ ∃𝑧𝐴𝑦𝐵 𝑥 = (𝑧 +Q 𝑦))
87abbii 2796 . . . . 5 {𝑥 ∣ ∃𝑦𝐵𝑧𝐴 𝑥 = (𝑦 +Q 𝑧)} = {𝑥 ∣ ∃𝑧𝐴𝑦𝐵 𝑥 = (𝑧 +Q 𝑦)}
92, 8eqtrdi 2782 . . . 4 ((𝐵P𝐴P) → (𝐵 +P 𝐴) = {𝑥 ∣ ∃𝑧𝐴𝑦𝐵 𝑥 = (𝑧 +Q 𝑦)})
109ancoms 458 . . 3 ((𝐴P𝐵P) → (𝐵 +P 𝐴) = {𝑥 ∣ ∃𝑧𝐴𝑦𝐵 𝑥 = (𝑧 +Q 𝑦)})
111, 10eqtr4d 2769 . 2 ((𝐴P𝐵P) → (𝐴 +P 𝐵) = (𝐵 +P 𝐴))
12 dmplp 11009 . . 3 dom +P = (P × P)
1312ndmovcom 7591 . 2 (¬ (𝐴P𝐵P) → (𝐴 +P 𝐵) = (𝐵 +P 𝐴))
1411, 13pm2.61i 182 1 (𝐴 +P 𝐵) = (𝐵 +P 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wa 395   = wceq 1533  wcel 2098  {cab 2703  wrex 3064  (class class class)co 7405   +Q cplq 10852  Pcnp 10856   +P cpp 10858
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2697  ax-sep 5292  ax-nul 5299  ax-pow 5356  ax-pr 5420  ax-un 7722  ax-inf2 9638
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2704  df-cleq 2718  df-clel 2804  df-nfc 2879  df-ne 2935  df-ral 3056  df-rex 3065  df-rmo 3370  df-reu 3371  df-rab 3427  df-v 3470  df-sbc 3773  df-csb 3889  df-dif 3946  df-un 3948  df-in 3950  df-ss 3960  df-pss 3962  df-nul 4318  df-if 4524  df-pw 4599  df-sn 4624  df-pr 4626  df-op 4630  df-uni 4903  df-iun 4992  df-br 5142  df-opab 5204  df-mpt 5225  df-tr 5259  df-id 5567  df-eprel 5573  df-po 5581  df-so 5582  df-fr 5624  df-we 5626  df-xp 5675  df-rel 5676  df-cnv 5677  df-co 5678  df-dm 5679  df-rn 5680  df-res 5681  df-ima 5682  df-pred 6294  df-ord 6361  df-on 6362  df-lim 6363  df-suc 6364  df-iota 6489  df-fun 6539  df-fn 6540  df-f 6541  df-f1 6542  df-fo 6543  df-f1o 6544  df-fv 6545  df-ov 7408  df-oprab 7409  df-mpo 7410  df-om 7853  df-1st 7974  df-2nd 7975  df-frecs 8267  df-wrecs 8298  df-recs 8372  df-rdg 8411  df-1o 8467  df-oadd 8471  df-omul 8472  df-er 8705  df-ni 10869  df-pli 10870  df-mi 10871  df-lti 10872  df-plpq 10905  df-enq 10908  df-nq 10909  df-erq 10910  df-plq 10911  df-1nq 10913  df-np 10978  df-plp 10980
This theorem is referenced by:  enrer  11060  addcmpblnr  11066  mulcmpblnrlem  11067  ltsrpr  11074  addcomsr  11084  mulcomsr  11086  mulasssr  11087  distrsr  11088  ltsosr  11091  0lt1sr  11092  0idsr  11094  1idsr  11095  ltasr  11097  recexsrlem  11100  mulgt0sr  11102  ltpsrpr  11106  map2psrpr  11107
  Copyright terms: Public domain W3C validator