MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  addcompr Structured version   Visualization version   GIF version

Theorem addcompr 11016
Description: Addition of positive reals is commutative. Proposition 9-3.5(ii) of [Gleason] p. 123. (Contributed by NM, 19-Nov-1995.) (New usage is discouraged.)
Assertion
Ref Expression
addcompr (𝐴 +P 𝐵) = (𝐵 +P 𝐴)

Proof of Theorem addcompr
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 plpv 11005 . . 3 ((𝐴P𝐵P) → (𝐴 +P 𝐵) = {𝑥 ∣ ∃𝑧𝐴𝑦𝐵 𝑥 = (𝑧 +Q 𝑦)})
2 plpv 11005 . . . . 5 ((𝐵P𝐴P) → (𝐵 +P 𝐴) = {𝑥 ∣ ∃𝑦𝐵𝑧𝐴 𝑥 = (𝑦 +Q 𝑧)})
3 addcomnq 10946 . . . . . . . . 9 (𝑦 +Q 𝑧) = (𝑧 +Q 𝑦)
43eqeq2i 2746 . . . . . . . 8 (𝑥 = (𝑦 +Q 𝑧) ↔ 𝑥 = (𝑧 +Q 𝑦))
542rexbii 3130 . . . . . . 7 (∃𝑦𝐵𝑧𝐴 𝑥 = (𝑦 +Q 𝑧) ↔ ∃𝑦𝐵𝑧𝐴 𝑥 = (𝑧 +Q 𝑦))
6 rexcom 3288 . . . . . . 7 (∃𝑦𝐵𝑧𝐴 𝑥 = (𝑧 +Q 𝑦) ↔ ∃𝑧𝐴𝑦𝐵 𝑥 = (𝑧 +Q 𝑦))
75, 6bitri 275 . . . . . 6 (∃𝑦𝐵𝑧𝐴 𝑥 = (𝑦 +Q 𝑧) ↔ ∃𝑧𝐴𝑦𝐵 𝑥 = (𝑧 +Q 𝑦))
87abbii 2803 . . . . 5 {𝑥 ∣ ∃𝑦𝐵𝑧𝐴 𝑥 = (𝑦 +Q 𝑧)} = {𝑥 ∣ ∃𝑧𝐴𝑦𝐵 𝑥 = (𝑧 +Q 𝑦)}
92, 8eqtrdi 2789 . . . 4 ((𝐵P𝐴P) → (𝐵 +P 𝐴) = {𝑥 ∣ ∃𝑧𝐴𝑦𝐵 𝑥 = (𝑧 +Q 𝑦)})
109ancoms 460 . . 3 ((𝐴P𝐵P) → (𝐵 +P 𝐴) = {𝑥 ∣ ∃𝑧𝐴𝑦𝐵 𝑥 = (𝑧 +Q 𝑦)})
111, 10eqtr4d 2776 . 2 ((𝐴P𝐵P) → (𝐴 +P 𝐵) = (𝐵 +P 𝐴))
12 dmplp 11007 . . 3 dom +P = (P × P)
1312ndmovcom 7594 . 2 (¬ (𝐴P𝐵P) → (𝐴 +P 𝐵) = (𝐵 +P 𝐴))
1411, 13pm2.61i 182 1 (𝐴 +P 𝐵) = (𝐵 +P 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wa 397   = wceq 1542  wcel 2107  {cab 2710  wrex 3071  (class class class)co 7409   +Q cplq 10850  Pcnp 10854   +P cpp 10856
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-sep 5300  ax-nul 5307  ax-pow 5364  ax-pr 5428  ax-un 7725  ax-inf2 9636
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2942  df-ral 3063  df-rex 3072  df-rmo 3377  df-reu 3378  df-rab 3434  df-v 3477  df-sbc 3779  df-csb 3895  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-pss 3968  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4910  df-iun 5000  df-br 5150  df-opab 5212  df-mpt 5233  df-tr 5267  df-id 5575  df-eprel 5581  df-po 5589  df-so 5590  df-fr 5632  df-we 5634  df-xp 5683  df-rel 5684  df-cnv 5685  df-co 5686  df-dm 5687  df-rn 5688  df-res 5689  df-ima 5690  df-pred 6301  df-ord 6368  df-on 6369  df-lim 6370  df-suc 6371  df-iota 6496  df-fun 6546  df-fn 6547  df-f 6548  df-f1 6549  df-fo 6550  df-f1o 6551  df-fv 6552  df-ov 7412  df-oprab 7413  df-mpo 7414  df-om 7856  df-1st 7975  df-2nd 7976  df-frecs 8266  df-wrecs 8297  df-recs 8371  df-rdg 8410  df-1o 8466  df-oadd 8470  df-omul 8471  df-er 8703  df-ni 10867  df-pli 10868  df-mi 10869  df-lti 10870  df-plpq 10903  df-enq 10906  df-nq 10907  df-erq 10908  df-plq 10909  df-1nq 10911  df-np 10976  df-plp 10978
This theorem is referenced by:  enrer  11058  addcmpblnr  11064  mulcmpblnrlem  11065  ltsrpr  11072  addcomsr  11082  mulcomsr  11084  mulasssr  11085  distrsr  11086  ltsosr  11089  0lt1sr  11090  0idsr  11092  1idsr  11093  ltasr  11095  recexsrlem  11098  mulgt0sr  11100  ltpsrpr  11104  map2psrpr  11105
  Copyright terms: Public domain W3C validator