MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mulcomnq Structured version   Visualization version   GIF version

Theorem mulcomnq 10110
Description: Multiplication of positive fractions is commutative. (Contributed by NM, 31-Aug-1995.) (Revised by Mario Carneiro, 28-Apr-2013.) (New usage is discouraged.)
Assertion
Ref Expression
mulcomnq (𝐴 ·Q 𝐵) = (𝐵 ·Q 𝐴)

Proof of Theorem mulcomnq
StepHypRef Expression
1 mulcompq 10109 . . . 4 (𝐴 ·pQ 𝐵) = (𝐵 ·pQ 𝐴)
21fveq2i 6449 . . 3 ([Q]‘(𝐴 ·pQ 𝐵)) = ([Q]‘(𝐵 ·pQ 𝐴))
3 mulpqnq 10098 . . 3 ((𝐴Q𝐵Q) → (𝐴 ·Q 𝐵) = ([Q]‘(𝐴 ·pQ 𝐵)))
4 mulpqnq 10098 . . . 4 ((𝐵Q𝐴Q) → (𝐵 ·Q 𝐴) = ([Q]‘(𝐵 ·pQ 𝐴)))
54ancoms 452 . . 3 ((𝐴Q𝐵Q) → (𝐵 ·Q 𝐴) = ([Q]‘(𝐵 ·pQ 𝐴)))
62, 3, 53eqtr4a 2839 . 2 ((𝐴Q𝐵Q) → (𝐴 ·Q 𝐵) = (𝐵 ·Q 𝐴))
7 mulnqf 10106 . . . 4 ·Q :(Q × Q)⟶Q
87fdmi 6301 . . 3 dom ·Q = (Q × Q)
98ndmovcom 7098 . 2 (¬ (𝐴Q𝐵Q) → (𝐴 ·Q 𝐵) = (𝐵 ·Q 𝐴))
106, 9pm2.61i 177 1 (𝐴 ·Q 𝐵) = (𝐵 ·Q 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wa 386   = wceq 1601  wcel 2106   × cxp 5353  cfv 6135  (class class class)co 6922   ·pQ cmpq 10006  Qcnq 10009  [Q]cerq 10011   ·Q cmq 10013
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1839  ax-4 1853  ax-5 1953  ax-6 2021  ax-7 2054  ax-8 2108  ax-9 2115  ax-10 2134  ax-11 2149  ax-12 2162  ax-13 2333  ax-ext 2753  ax-sep 5017  ax-nul 5025  ax-pow 5077  ax-pr 5138  ax-un 7226
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 837  df-3or 1072  df-3an 1073  df-tru 1605  df-ex 1824  df-nf 1828  df-sb 2012  df-mo 2550  df-eu 2586  df-clab 2763  df-cleq 2769  df-clel 2773  df-nfc 2920  df-ne 2969  df-ral 3094  df-rex 3095  df-reu 3096  df-rmo 3097  df-rab 3098  df-v 3399  df-sbc 3652  df-csb 3751  df-dif 3794  df-un 3796  df-in 3798  df-ss 3805  df-pss 3807  df-nul 4141  df-if 4307  df-pw 4380  df-sn 4398  df-pr 4400  df-tp 4402  df-op 4404  df-uni 4672  df-iun 4755  df-br 4887  df-opab 4949  df-mpt 4966  df-tr 4988  df-id 5261  df-eprel 5266  df-po 5274  df-so 5275  df-fr 5314  df-we 5316  df-xp 5361  df-rel 5362  df-cnv 5363  df-co 5364  df-dm 5365  df-rn 5366  df-res 5367  df-ima 5368  df-pred 5933  df-ord 5979  df-on 5980  df-lim 5981  df-suc 5982  df-iota 6099  df-fun 6137  df-fn 6138  df-f 6139  df-f1 6140  df-fo 6141  df-f1o 6142  df-fv 6143  df-ov 6925  df-oprab 6926  df-mpt2 6927  df-om 7344  df-1st 7445  df-2nd 7446  df-wrecs 7689  df-recs 7751  df-rdg 7789  df-1o 7843  df-oadd 7847  df-omul 7848  df-er 8026  df-ni 10029  df-mi 10031  df-lti 10032  df-mpq 10066  df-enq 10068  df-nq 10069  df-erq 10070  df-mq 10072  df-1nq 10073
This theorem is referenced by:  recmulnq  10121  recrecnq  10124  halfnq  10133  ltrnq  10136  addclprlem1  10173  addclprlem2  10174  mulclprlem  10176  mulclpr  10177  mulcompr  10180  distrlem4pr  10183  1idpr  10186  prlem934  10190  prlem936  10204  reclem3pr  10206  reclem4pr  10207
  Copyright terms: Public domain W3C validator