| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > mulcomnq | Structured version Visualization version GIF version | ||
| Description: Multiplication of positive fractions is commutative. (Contributed by NM, 31-Aug-1995.) (Revised by Mario Carneiro, 28-Apr-2013.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| mulcomnq | ⊢ (𝐴 ·Q 𝐵) = (𝐵 ·Q 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mulcompq 10905 | . . . 4 ⊢ (𝐴 ·pQ 𝐵) = (𝐵 ·pQ 𝐴) | |
| 2 | 1 | fveq2i 6861 | . . 3 ⊢ ([Q]‘(𝐴 ·pQ 𝐵)) = ([Q]‘(𝐵 ·pQ 𝐴)) |
| 3 | mulpqnq 10894 | . . 3 ⊢ ((𝐴 ∈ Q ∧ 𝐵 ∈ Q) → (𝐴 ·Q 𝐵) = ([Q]‘(𝐴 ·pQ 𝐵))) | |
| 4 | mulpqnq 10894 | . . . 4 ⊢ ((𝐵 ∈ Q ∧ 𝐴 ∈ Q) → (𝐵 ·Q 𝐴) = ([Q]‘(𝐵 ·pQ 𝐴))) | |
| 5 | 4 | ancoms 458 | . . 3 ⊢ ((𝐴 ∈ Q ∧ 𝐵 ∈ Q) → (𝐵 ·Q 𝐴) = ([Q]‘(𝐵 ·pQ 𝐴))) |
| 6 | 2, 3, 5 | 3eqtr4a 2790 | . 2 ⊢ ((𝐴 ∈ Q ∧ 𝐵 ∈ Q) → (𝐴 ·Q 𝐵) = (𝐵 ·Q 𝐴)) |
| 7 | mulnqf 10902 | . . . 4 ⊢ ·Q :(Q × Q)⟶Q | |
| 8 | 7 | fdmi 6699 | . . 3 ⊢ dom ·Q = (Q × Q) |
| 9 | 8 | ndmovcom 7576 | . 2 ⊢ (¬ (𝐴 ∈ Q ∧ 𝐵 ∈ Q) → (𝐴 ·Q 𝐵) = (𝐵 ·Q 𝐴)) |
| 10 | 6, 9 | pm2.61i 182 | 1 ⊢ (𝐴 ·Q 𝐵) = (𝐵 ·Q 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: ∧ wa 395 = wceq 1540 ∈ wcel 2109 × cxp 5636 ‘cfv 6511 (class class class)co 7387 ·pQ cmpq 10802 Qcnq 10805 [Q]cerq 10807 ·Q cmq 10809 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pr 5387 ax-un 7711 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rmo 3354 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3934 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-tr 5215 df-id 5533 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5591 df-we 5593 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-pred 6274 df-ord 6335 df-on 6336 df-lim 6337 df-suc 6338 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-ov 7390 df-oprab 7391 df-mpo 7392 df-om 7843 df-1st 7968 df-2nd 7969 df-frecs 8260 df-wrecs 8291 df-recs 8340 df-rdg 8378 df-1o 8434 df-oadd 8438 df-omul 8439 df-er 8671 df-ni 10825 df-mi 10827 df-lti 10828 df-mpq 10862 df-enq 10864 df-nq 10865 df-erq 10866 df-mq 10868 df-1nq 10869 |
| This theorem is referenced by: recmulnq 10917 recrecnq 10920 halfnq 10929 ltrnq 10932 addclprlem1 10969 addclprlem2 10970 mulclprlem 10972 mulclpr 10973 mulcompr 10976 distrlem4pr 10979 1idpr 10982 prlem934 10986 prlem936 11000 reclem3pr 11002 reclem4pr 11003 |
| Copyright terms: Public domain | W3C validator |