MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mulcomnq Structured version   Visualization version   GIF version

Theorem mulcomnq 10866
Description: Multiplication of positive fractions is commutative. (Contributed by NM, 31-Aug-1995.) (Revised by Mario Carneiro, 28-Apr-2013.) (New usage is discouraged.)
Assertion
Ref Expression
mulcomnq (𝐴 ·Q 𝐵) = (𝐵 ·Q 𝐴)

Proof of Theorem mulcomnq
StepHypRef Expression
1 mulcompq 10865 . . . 4 (𝐴 ·pQ 𝐵) = (𝐵 ·pQ 𝐴)
21fveq2i 6829 . . 3 ([Q]‘(𝐴 ·pQ 𝐵)) = ([Q]‘(𝐵 ·pQ 𝐴))
3 mulpqnq 10854 . . 3 ((𝐴Q𝐵Q) → (𝐴 ·Q 𝐵) = ([Q]‘(𝐴 ·pQ 𝐵)))
4 mulpqnq 10854 . . . 4 ((𝐵Q𝐴Q) → (𝐵 ·Q 𝐴) = ([Q]‘(𝐵 ·pQ 𝐴)))
54ancoms 458 . . 3 ((𝐴Q𝐵Q) → (𝐵 ·Q 𝐴) = ([Q]‘(𝐵 ·pQ 𝐴)))
62, 3, 53eqtr4a 2790 . 2 ((𝐴Q𝐵Q) → (𝐴 ·Q 𝐵) = (𝐵 ·Q 𝐴))
7 mulnqf 10862 . . . 4 ·Q :(Q × Q)⟶Q
87fdmi 6667 . . 3 dom ·Q = (Q × Q)
98ndmovcom 7540 . 2 (¬ (𝐴Q𝐵Q) → (𝐴 ·Q 𝐵) = (𝐵 ·Q 𝐴))
106, 9pm2.61i 182 1 (𝐴 ·Q 𝐵) = (𝐵 ·Q 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wa 395   = wceq 1540  wcel 2109   × cxp 5621  cfv 6486  (class class class)co 7353   ·pQ cmpq 10762  Qcnq 10765  [Q]cerq 10767   ·Q cmq 10769
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5238  ax-nul 5248  ax-pr 5374  ax-un 7675
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rmo 3345  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-pss 3925  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-iun 4946  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5518  df-eprel 5523  df-po 5531  df-so 5532  df-fr 5576  df-we 5578  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-ov 7356  df-oprab 7357  df-mpo 7358  df-om 7807  df-1st 7931  df-2nd 7932  df-frecs 8221  df-wrecs 8252  df-recs 8301  df-rdg 8339  df-1o 8395  df-oadd 8399  df-omul 8400  df-er 8632  df-ni 10785  df-mi 10787  df-lti 10788  df-mpq 10822  df-enq 10824  df-nq 10825  df-erq 10826  df-mq 10828  df-1nq 10829
This theorem is referenced by:  recmulnq  10877  recrecnq  10880  halfnq  10889  ltrnq  10892  addclprlem1  10929  addclprlem2  10930  mulclprlem  10932  mulclpr  10933  mulcompr  10936  distrlem4pr  10939  1idpr  10942  prlem934  10946  prlem936  10960  reclem3pr  10962  reclem4pr  10963
  Copyright terms: Public domain W3C validator