![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > mulcomnq | Structured version Visualization version GIF version |
Description: Multiplication of positive fractions is commutative. (Contributed by NM, 31-Aug-1995.) (Revised by Mario Carneiro, 28-Apr-2013.) (New usage is discouraged.) |
Ref | Expression |
---|---|
mulcomnq | ⊢ (𝐴 ·Q 𝐵) = (𝐵 ·Q 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mulcompq 10109 | . . . 4 ⊢ (𝐴 ·pQ 𝐵) = (𝐵 ·pQ 𝐴) | |
2 | 1 | fveq2i 6449 | . . 3 ⊢ ([Q]‘(𝐴 ·pQ 𝐵)) = ([Q]‘(𝐵 ·pQ 𝐴)) |
3 | mulpqnq 10098 | . . 3 ⊢ ((𝐴 ∈ Q ∧ 𝐵 ∈ Q) → (𝐴 ·Q 𝐵) = ([Q]‘(𝐴 ·pQ 𝐵))) | |
4 | mulpqnq 10098 | . . . 4 ⊢ ((𝐵 ∈ Q ∧ 𝐴 ∈ Q) → (𝐵 ·Q 𝐴) = ([Q]‘(𝐵 ·pQ 𝐴))) | |
5 | 4 | ancoms 452 | . . 3 ⊢ ((𝐴 ∈ Q ∧ 𝐵 ∈ Q) → (𝐵 ·Q 𝐴) = ([Q]‘(𝐵 ·pQ 𝐴))) |
6 | 2, 3, 5 | 3eqtr4a 2839 | . 2 ⊢ ((𝐴 ∈ Q ∧ 𝐵 ∈ Q) → (𝐴 ·Q 𝐵) = (𝐵 ·Q 𝐴)) |
7 | mulnqf 10106 | . . . 4 ⊢ ·Q :(Q × Q)⟶Q | |
8 | 7 | fdmi 6301 | . . 3 ⊢ dom ·Q = (Q × Q) |
9 | 8 | ndmovcom 7098 | . 2 ⊢ (¬ (𝐴 ∈ Q ∧ 𝐵 ∈ Q) → (𝐴 ·Q 𝐵) = (𝐵 ·Q 𝐴)) |
10 | 6, 9 | pm2.61i 177 | 1 ⊢ (𝐴 ·Q 𝐵) = (𝐵 ·Q 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 386 = wceq 1601 ∈ wcel 2106 × cxp 5353 ‘cfv 6135 (class class class)co 6922 ·pQ cmpq 10006 Qcnq 10009 [Q]cerq 10011 ·Q cmq 10013 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1839 ax-4 1853 ax-5 1953 ax-6 2021 ax-7 2054 ax-8 2108 ax-9 2115 ax-10 2134 ax-11 2149 ax-12 2162 ax-13 2333 ax-ext 2753 ax-sep 5017 ax-nul 5025 ax-pow 5077 ax-pr 5138 ax-un 7226 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 837 df-3or 1072 df-3an 1073 df-tru 1605 df-ex 1824 df-nf 1828 df-sb 2012 df-mo 2550 df-eu 2586 df-clab 2763 df-cleq 2769 df-clel 2773 df-nfc 2920 df-ne 2969 df-ral 3094 df-rex 3095 df-reu 3096 df-rmo 3097 df-rab 3098 df-v 3399 df-sbc 3652 df-csb 3751 df-dif 3794 df-un 3796 df-in 3798 df-ss 3805 df-pss 3807 df-nul 4141 df-if 4307 df-pw 4380 df-sn 4398 df-pr 4400 df-tp 4402 df-op 4404 df-uni 4672 df-iun 4755 df-br 4887 df-opab 4949 df-mpt 4966 df-tr 4988 df-id 5261 df-eprel 5266 df-po 5274 df-so 5275 df-fr 5314 df-we 5316 df-xp 5361 df-rel 5362 df-cnv 5363 df-co 5364 df-dm 5365 df-rn 5366 df-res 5367 df-ima 5368 df-pred 5933 df-ord 5979 df-on 5980 df-lim 5981 df-suc 5982 df-iota 6099 df-fun 6137 df-fn 6138 df-f 6139 df-f1 6140 df-fo 6141 df-f1o 6142 df-fv 6143 df-ov 6925 df-oprab 6926 df-mpt2 6927 df-om 7344 df-1st 7445 df-2nd 7446 df-wrecs 7689 df-recs 7751 df-rdg 7789 df-1o 7843 df-oadd 7847 df-omul 7848 df-er 8026 df-ni 10029 df-mi 10031 df-lti 10032 df-mpq 10066 df-enq 10068 df-nq 10069 df-erq 10070 df-mq 10072 df-1nq 10073 |
This theorem is referenced by: recmulnq 10121 recrecnq 10124 halfnq 10133 ltrnq 10136 addclprlem1 10173 addclprlem2 10174 mulclprlem 10176 mulclpr 10177 mulcompr 10180 distrlem4pr 10183 1idpr 10186 prlem934 10190 prlem936 10204 reclem3pr 10206 reclem4pr 10207 |
Copyright terms: Public domain | W3C validator |