MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mulcompr Structured version   Visualization version   GIF version

Theorem mulcompr 11057
Description: Multiplication of positive reals is commutative. Proposition 9-3.7(ii) of [Gleason] p. 124. (Contributed by NM, 19-Nov-1995.) (New usage is discouraged.)
Assertion
Ref Expression
mulcompr (𝐴 ·P 𝐵) = (𝐵 ·P 𝐴)

Proof of Theorem mulcompr
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 mpv 11045 . . 3 ((𝐴P𝐵P) → (𝐴 ·P 𝐵) = {𝑥 ∣ ∃𝑧𝐴𝑦𝐵 𝑥 = (𝑧 ·Q 𝑦)})
2 mpv 11045 . . . . 5 ((𝐵P𝐴P) → (𝐵 ·P 𝐴) = {𝑥 ∣ ∃𝑦𝐵𝑧𝐴 𝑥 = (𝑦 ·Q 𝑧)})
3 mulcomnq 10987 . . . . . . . . 9 (𝑦 ·Q 𝑧) = (𝑧 ·Q 𝑦)
43eqeq2i 2739 . . . . . . . 8 (𝑥 = (𝑦 ·Q 𝑧) ↔ 𝑥 = (𝑧 ·Q 𝑦))
542rexbii 3119 . . . . . . 7 (∃𝑦𝐵𝑧𝐴 𝑥 = (𝑦 ·Q 𝑧) ↔ ∃𝑦𝐵𝑧𝐴 𝑥 = (𝑧 ·Q 𝑦))
6 rexcom 3278 . . . . . . 7 (∃𝑦𝐵𝑧𝐴 𝑥 = (𝑧 ·Q 𝑦) ↔ ∃𝑧𝐴𝑦𝐵 𝑥 = (𝑧 ·Q 𝑦))
75, 6bitri 274 . . . . . 6 (∃𝑦𝐵𝑧𝐴 𝑥 = (𝑦 ·Q 𝑧) ↔ ∃𝑧𝐴𝑦𝐵 𝑥 = (𝑧 ·Q 𝑦))
87abbii 2796 . . . . 5 {𝑥 ∣ ∃𝑦𝐵𝑧𝐴 𝑥 = (𝑦 ·Q 𝑧)} = {𝑥 ∣ ∃𝑧𝐴𝑦𝐵 𝑥 = (𝑧 ·Q 𝑦)}
92, 8eqtrdi 2782 . . . 4 ((𝐵P𝐴P) → (𝐵 ·P 𝐴) = {𝑥 ∣ ∃𝑧𝐴𝑦𝐵 𝑥 = (𝑧 ·Q 𝑦)})
109ancoms 457 . . 3 ((𝐴P𝐵P) → (𝐵 ·P 𝐴) = {𝑥 ∣ ∃𝑧𝐴𝑦𝐵 𝑥 = (𝑧 ·Q 𝑦)})
111, 10eqtr4d 2769 . 2 ((𝐴P𝐵P) → (𝐴 ·P 𝐵) = (𝐵 ·P 𝐴))
12 dmmp 11047 . . 3 dom ·P = (P × P)
1312ndmovcom 7605 . 2 (¬ (𝐴P𝐵P) → (𝐴 ·P 𝐵) = (𝐵 ·P 𝐴))
1411, 13pm2.61i 182 1 (𝐴 ·P 𝐵) = (𝐵 ·P 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wa 394   = wceq 1534  wcel 2099  {cab 2703  wrex 3060  (class class class)co 7416   ·Q cmq 10890  Pcnp 10893   ·P cmp 10896
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2697  ax-sep 5296  ax-nul 5303  ax-pow 5361  ax-pr 5425  ax-un 7738  ax-inf2 9677
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2529  df-eu 2558  df-clab 2704  df-cleq 2718  df-clel 2803  df-nfc 2878  df-ne 2931  df-ral 3052  df-rex 3061  df-rmo 3364  df-reu 3365  df-rab 3420  df-v 3464  df-sbc 3776  df-csb 3892  df-dif 3949  df-un 3951  df-in 3953  df-ss 3963  df-pss 3966  df-nul 4323  df-if 4524  df-pw 4599  df-sn 4624  df-pr 4626  df-op 4630  df-uni 4906  df-iun 4995  df-br 5146  df-opab 5208  df-mpt 5229  df-tr 5263  df-id 5572  df-eprel 5578  df-po 5586  df-so 5587  df-fr 5629  df-we 5631  df-xp 5680  df-rel 5681  df-cnv 5682  df-co 5683  df-dm 5684  df-rn 5685  df-res 5686  df-ima 5687  df-pred 6304  df-ord 6371  df-on 6372  df-lim 6373  df-suc 6374  df-iota 6498  df-fun 6548  df-fn 6549  df-f 6550  df-f1 6551  df-fo 6552  df-f1o 6553  df-fv 6554  df-ov 7419  df-oprab 7420  df-mpo 7421  df-om 7869  df-1st 7995  df-2nd 7996  df-frecs 8288  df-wrecs 8319  df-recs 8393  df-rdg 8432  df-1o 8488  df-oadd 8492  df-omul 8493  df-er 8726  df-ni 10906  df-mi 10908  df-lti 10909  df-mpq 10943  df-enq 10945  df-nq 10946  df-erq 10947  df-mq 10949  df-1nq 10950  df-np 11015  df-mp 11018
This theorem is referenced by:  mulcmpblnrlem  11104  mulcomsr  11123  mulasssr  11124  m1m1sr  11127  recexsrlem  11137  mulgt0sr  11139
  Copyright terms: Public domain W3C validator