MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mulcompr Structured version   Visualization version   GIF version

Theorem mulcompr 10710
Description: Multiplication of positive reals is commutative. Proposition 9-3.7(ii) of [Gleason] p. 124. (Contributed by NM, 19-Nov-1995.) (New usage is discouraged.)
Assertion
Ref Expression
mulcompr (𝐴 ·P 𝐵) = (𝐵 ·P 𝐴)

Proof of Theorem mulcompr
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 mpv 10698 . . 3 ((𝐴P𝐵P) → (𝐴 ·P 𝐵) = {𝑥 ∣ ∃𝑧𝐴𝑦𝐵 𝑥 = (𝑧 ·Q 𝑦)})
2 mpv 10698 . . . . 5 ((𝐵P𝐴P) → (𝐵 ·P 𝐴) = {𝑥 ∣ ∃𝑦𝐵𝑧𝐴 𝑥 = (𝑦 ·Q 𝑧)})
3 mulcomnq 10640 . . . . . . . . 9 (𝑦 ·Q 𝑧) = (𝑧 ·Q 𝑦)
43eqeq2i 2751 . . . . . . . 8 (𝑥 = (𝑦 ·Q 𝑧) ↔ 𝑥 = (𝑧 ·Q 𝑦))
542rexbii 3178 . . . . . . 7 (∃𝑦𝐵𝑧𝐴 𝑥 = (𝑦 ·Q 𝑧) ↔ ∃𝑦𝐵𝑧𝐴 𝑥 = (𝑧 ·Q 𝑦))
6 rexcom 3281 . . . . . . 7 (∃𝑦𝐵𝑧𝐴 𝑥 = (𝑧 ·Q 𝑦) ↔ ∃𝑧𝐴𝑦𝐵 𝑥 = (𝑧 ·Q 𝑦))
75, 6bitri 274 . . . . . 6 (∃𝑦𝐵𝑧𝐴 𝑥 = (𝑦 ·Q 𝑧) ↔ ∃𝑧𝐴𝑦𝐵 𝑥 = (𝑧 ·Q 𝑦))
87abbii 2809 . . . . 5 {𝑥 ∣ ∃𝑦𝐵𝑧𝐴 𝑥 = (𝑦 ·Q 𝑧)} = {𝑥 ∣ ∃𝑧𝐴𝑦𝐵 𝑥 = (𝑧 ·Q 𝑦)}
92, 8eqtrdi 2795 . . . 4 ((𝐵P𝐴P) → (𝐵 ·P 𝐴) = {𝑥 ∣ ∃𝑧𝐴𝑦𝐵 𝑥 = (𝑧 ·Q 𝑦)})
109ancoms 458 . . 3 ((𝐴P𝐵P) → (𝐵 ·P 𝐴) = {𝑥 ∣ ∃𝑧𝐴𝑦𝐵 𝑥 = (𝑧 ·Q 𝑦)})
111, 10eqtr4d 2781 . 2 ((𝐴P𝐵P) → (𝐴 ·P 𝐵) = (𝐵 ·P 𝐴))
12 dmmp 10700 . . 3 dom ·P = (P × P)
1312ndmovcom 7437 . 2 (¬ (𝐴P𝐵P) → (𝐴 ·P 𝐵) = (𝐵 ·P 𝐴))
1411, 13pm2.61i 182 1 (𝐴 ·P 𝐵) = (𝐵 ·P 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wa 395   = wceq 1539  wcel 2108  {cab 2715  wrex 3064  (class class class)co 7255   ·Q cmq 10543  Pcnp 10546   ·P cmp 10549
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-inf2 9329
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-1st 7804  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-1o 8267  df-oadd 8271  df-omul 8272  df-er 8456  df-ni 10559  df-mi 10561  df-lti 10562  df-mpq 10596  df-enq 10598  df-nq 10599  df-erq 10600  df-mq 10602  df-1nq 10603  df-np 10668  df-mp 10671
This theorem is referenced by:  mulcmpblnrlem  10757  mulcomsr  10776  mulasssr  10777  m1m1sr  10780  recexsrlem  10790  mulgt0sr  10792
  Copyright terms: Public domain W3C validator