| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > mulcompr | Structured version Visualization version GIF version | ||
| Description: Multiplication of positive reals is commutative. Proposition 9-3.7(ii) of [Gleason] p. 124. (Contributed by NM, 19-Nov-1995.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| mulcompr | ⊢ (𝐴 ·P 𝐵) = (𝐵 ·P 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mpv 10902 | . . 3 ⊢ ((𝐴 ∈ P ∧ 𝐵 ∈ P) → (𝐴 ·P 𝐵) = {𝑥 ∣ ∃𝑧 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝑥 = (𝑧 ·Q 𝑦)}) | |
| 2 | mpv 10902 | . . . . 5 ⊢ ((𝐵 ∈ P ∧ 𝐴 ∈ P) → (𝐵 ·P 𝐴) = {𝑥 ∣ ∃𝑦 ∈ 𝐵 ∃𝑧 ∈ 𝐴 𝑥 = (𝑦 ·Q 𝑧)}) | |
| 3 | mulcomnq 10844 | . . . . . . . . 9 ⊢ (𝑦 ·Q 𝑧) = (𝑧 ·Q 𝑦) | |
| 4 | 3 | eqeq2i 2744 | . . . . . . . 8 ⊢ (𝑥 = (𝑦 ·Q 𝑧) ↔ 𝑥 = (𝑧 ·Q 𝑦)) |
| 5 | 4 | 2rexbii 3108 | . . . . . . 7 ⊢ (∃𝑦 ∈ 𝐵 ∃𝑧 ∈ 𝐴 𝑥 = (𝑦 ·Q 𝑧) ↔ ∃𝑦 ∈ 𝐵 ∃𝑧 ∈ 𝐴 𝑥 = (𝑧 ·Q 𝑦)) |
| 6 | rexcom 3261 | . . . . . . 7 ⊢ (∃𝑦 ∈ 𝐵 ∃𝑧 ∈ 𝐴 𝑥 = (𝑧 ·Q 𝑦) ↔ ∃𝑧 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝑥 = (𝑧 ·Q 𝑦)) | |
| 7 | 5, 6 | bitri 275 | . . . . . 6 ⊢ (∃𝑦 ∈ 𝐵 ∃𝑧 ∈ 𝐴 𝑥 = (𝑦 ·Q 𝑧) ↔ ∃𝑧 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝑥 = (𝑧 ·Q 𝑦)) |
| 8 | 7 | abbii 2798 | . . . . 5 ⊢ {𝑥 ∣ ∃𝑦 ∈ 𝐵 ∃𝑧 ∈ 𝐴 𝑥 = (𝑦 ·Q 𝑧)} = {𝑥 ∣ ∃𝑧 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝑥 = (𝑧 ·Q 𝑦)} |
| 9 | 2, 8 | eqtrdi 2782 | . . . 4 ⊢ ((𝐵 ∈ P ∧ 𝐴 ∈ P) → (𝐵 ·P 𝐴) = {𝑥 ∣ ∃𝑧 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝑥 = (𝑧 ·Q 𝑦)}) |
| 10 | 9 | ancoms 458 | . . 3 ⊢ ((𝐴 ∈ P ∧ 𝐵 ∈ P) → (𝐵 ·P 𝐴) = {𝑥 ∣ ∃𝑧 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝑥 = (𝑧 ·Q 𝑦)}) |
| 11 | 1, 10 | eqtr4d 2769 | . 2 ⊢ ((𝐴 ∈ P ∧ 𝐵 ∈ P) → (𝐴 ·P 𝐵) = (𝐵 ·P 𝐴)) |
| 12 | dmmp 10904 | . . 3 ⊢ dom ·P = (P × P) | |
| 13 | 12 | ndmovcom 7533 | . 2 ⊢ (¬ (𝐴 ∈ P ∧ 𝐵 ∈ P) → (𝐴 ·P 𝐵) = (𝐵 ·P 𝐴)) |
| 14 | 11, 13 | pm2.61i 182 | 1 ⊢ (𝐴 ·P 𝐵) = (𝐵 ·P 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: ∧ wa 395 = wceq 1541 ∈ wcel 2111 {cab 2709 ∃wrex 3056 (class class class)co 7346 ·Q cmq 10747 Pcnp 10750 ·P cmp 10753 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5234 ax-nul 5244 ax-pow 5303 ax-pr 5370 ax-un 7668 ax-inf2 9531 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3742 df-csb 3851 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-pss 3922 df-nul 4284 df-if 4476 df-pw 4552 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-iun 4943 df-br 5092 df-opab 5154 df-mpt 5173 df-tr 5199 df-id 5511 df-eprel 5516 df-po 5524 df-so 5525 df-fr 5569 df-we 5571 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-rn 5627 df-res 5628 df-ima 5629 df-pred 6248 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-ov 7349 df-oprab 7350 df-mpo 7351 df-om 7797 df-1st 7921 df-2nd 7922 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-rdg 8329 df-1o 8385 df-oadd 8389 df-omul 8390 df-er 8622 df-ni 10763 df-mi 10765 df-lti 10766 df-mpq 10800 df-enq 10802 df-nq 10803 df-erq 10804 df-mq 10806 df-1nq 10807 df-np 10872 df-mp 10875 |
| This theorem is referenced by: mulcmpblnrlem 10961 mulcomsr 10980 mulasssr 10981 m1m1sr 10984 recexsrlem 10994 mulgt0sr 10996 |
| Copyright terms: Public domain | W3C validator |