![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > mulcompr | Structured version Visualization version GIF version |
Description: Multiplication of positive reals is commutative. Proposition 9-3.7(ii) of [Gleason] p. 124. (Contributed by NM, 19-Nov-1995.) (New usage is discouraged.) |
Ref | Expression |
---|---|
mulcompr | ⊢ (𝐴 ·P 𝐵) = (𝐵 ·P 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mpv 11045 | . . 3 ⊢ ((𝐴 ∈ P ∧ 𝐵 ∈ P) → (𝐴 ·P 𝐵) = {𝑥 ∣ ∃𝑧 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝑥 = (𝑧 ·Q 𝑦)}) | |
2 | mpv 11045 | . . . . 5 ⊢ ((𝐵 ∈ P ∧ 𝐴 ∈ P) → (𝐵 ·P 𝐴) = {𝑥 ∣ ∃𝑦 ∈ 𝐵 ∃𝑧 ∈ 𝐴 𝑥 = (𝑦 ·Q 𝑧)}) | |
3 | mulcomnq 10987 | . . . . . . . . 9 ⊢ (𝑦 ·Q 𝑧) = (𝑧 ·Q 𝑦) | |
4 | 3 | eqeq2i 2739 | . . . . . . . 8 ⊢ (𝑥 = (𝑦 ·Q 𝑧) ↔ 𝑥 = (𝑧 ·Q 𝑦)) |
5 | 4 | 2rexbii 3119 | . . . . . . 7 ⊢ (∃𝑦 ∈ 𝐵 ∃𝑧 ∈ 𝐴 𝑥 = (𝑦 ·Q 𝑧) ↔ ∃𝑦 ∈ 𝐵 ∃𝑧 ∈ 𝐴 𝑥 = (𝑧 ·Q 𝑦)) |
6 | rexcom 3278 | . . . . . . 7 ⊢ (∃𝑦 ∈ 𝐵 ∃𝑧 ∈ 𝐴 𝑥 = (𝑧 ·Q 𝑦) ↔ ∃𝑧 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝑥 = (𝑧 ·Q 𝑦)) | |
7 | 5, 6 | bitri 274 | . . . . . 6 ⊢ (∃𝑦 ∈ 𝐵 ∃𝑧 ∈ 𝐴 𝑥 = (𝑦 ·Q 𝑧) ↔ ∃𝑧 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝑥 = (𝑧 ·Q 𝑦)) |
8 | 7 | abbii 2796 | . . . . 5 ⊢ {𝑥 ∣ ∃𝑦 ∈ 𝐵 ∃𝑧 ∈ 𝐴 𝑥 = (𝑦 ·Q 𝑧)} = {𝑥 ∣ ∃𝑧 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝑥 = (𝑧 ·Q 𝑦)} |
9 | 2, 8 | eqtrdi 2782 | . . . 4 ⊢ ((𝐵 ∈ P ∧ 𝐴 ∈ P) → (𝐵 ·P 𝐴) = {𝑥 ∣ ∃𝑧 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝑥 = (𝑧 ·Q 𝑦)}) |
10 | 9 | ancoms 457 | . . 3 ⊢ ((𝐴 ∈ P ∧ 𝐵 ∈ P) → (𝐵 ·P 𝐴) = {𝑥 ∣ ∃𝑧 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝑥 = (𝑧 ·Q 𝑦)}) |
11 | 1, 10 | eqtr4d 2769 | . 2 ⊢ ((𝐴 ∈ P ∧ 𝐵 ∈ P) → (𝐴 ·P 𝐵) = (𝐵 ·P 𝐴)) |
12 | dmmp 11047 | . . 3 ⊢ dom ·P = (P × P) | |
13 | 12 | ndmovcom 7605 | . 2 ⊢ (¬ (𝐴 ∈ P ∧ 𝐵 ∈ P) → (𝐴 ·P 𝐵) = (𝐵 ·P 𝐴)) |
14 | 11, 13 | pm2.61i 182 | 1 ⊢ (𝐴 ·P 𝐵) = (𝐵 ·P 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 394 = wceq 1534 ∈ wcel 2099 {cab 2703 ∃wrex 3060 (class class class)co 7416 ·Q cmq 10890 Pcnp 10893 ·P cmp 10896 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2697 ax-sep 5296 ax-nul 5303 ax-pow 5361 ax-pr 5425 ax-un 7738 ax-inf2 9677 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2529 df-eu 2558 df-clab 2704 df-cleq 2718 df-clel 2803 df-nfc 2878 df-ne 2931 df-ral 3052 df-rex 3061 df-rmo 3364 df-reu 3365 df-rab 3420 df-v 3464 df-sbc 3776 df-csb 3892 df-dif 3949 df-un 3951 df-in 3953 df-ss 3963 df-pss 3966 df-nul 4323 df-if 4524 df-pw 4599 df-sn 4624 df-pr 4626 df-op 4630 df-uni 4906 df-iun 4995 df-br 5146 df-opab 5208 df-mpt 5229 df-tr 5263 df-id 5572 df-eprel 5578 df-po 5586 df-so 5587 df-fr 5629 df-we 5631 df-xp 5680 df-rel 5681 df-cnv 5682 df-co 5683 df-dm 5684 df-rn 5685 df-res 5686 df-ima 5687 df-pred 6304 df-ord 6371 df-on 6372 df-lim 6373 df-suc 6374 df-iota 6498 df-fun 6548 df-fn 6549 df-f 6550 df-f1 6551 df-fo 6552 df-f1o 6553 df-fv 6554 df-ov 7419 df-oprab 7420 df-mpo 7421 df-om 7869 df-1st 7995 df-2nd 7996 df-frecs 8288 df-wrecs 8319 df-recs 8393 df-rdg 8432 df-1o 8488 df-oadd 8492 df-omul 8493 df-er 8726 df-ni 10906 df-mi 10908 df-lti 10909 df-mpq 10943 df-enq 10945 df-nq 10946 df-erq 10947 df-mq 10949 df-1nq 10950 df-np 11015 df-mp 11018 |
This theorem is referenced by: mulcmpblnrlem 11104 mulcomsr 11123 mulasssr 11124 m1m1sr 11127 recexsrlem 11137 mulgt0sr 11139 |
Copyright terms: Public domain | W3C validator |