MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mulcompr Structured version   Visualization version   GIF version

Theorem mulcompr 10443
Description: Multiplication of positive reals is commutative. Proposition 9-3.7(ii) of [Gleason] p. 124. (Contributed by NM, 19-Nov-1995.) (New usage is discouraged.)
Assertion
Ref Expression
mulcompr (𝐴 ·P 𝐵) = (𝐵 ·P 𝐴)

Proof of Theorem mulcompr
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 mpv 10431 . . 3 ((𝐴P𝐵P) → (𝐴 ·P 𝐵) = {𝑥 ∣ ∃𝑧𝐴𝑦𝐵 𝑥 = (𝑧 ·Q 𝑦)})
2 mpv 10431 . . . . 5 ((𝐵P𝐴P) → (𝐵 ·P 𝐴) = {𝑥 ∣ ∃𝑦𝐵𝑧𝐴 𝑥 = (𝑦 ·Q 𝑧)})
3 mulcomnq 10373 . . . . . . . . 9 (𝑦 ·Q 𝑧) = (𝑧 ·Q 𝑦)
43eqeq2i 2837 . . . . . . . 8 (𝑥 = (𝑦 ·Q 𝑧) ↔ 𝑥 = (𝑧 ·Q 𝑦))
542rexbii 3242 . . . . . . 7 (∃𝑦𝐵𝑧𝐴 𝑥 = (𝑦 ·Q 𝑧) ↔ ∃𝑦𝐵𝑧𝐴 𝑥 = (𝑧 ·Q 𝑦))
6 rexcom 3346 . . . . . . 7 (∃𝑦𝐵𝑧𝐴 𝑥 = (𝑧 ·Q 𝑦) ↔ ∃𝑧𝐴𝑦𝐵 𝑥 = (𝑧 ·Q 𝑦))
75, 6bitri 278 . . . . . 6 (∃𝑦𝐵𝑧𝐴 𝑥 = (𝑦 ·Q 𝑧) ↔ ∃𝑧𝐴𝑦𝐵 𝑥 = (𝑧 ·Q 𝑦))
87abbii 2889 . . . . 5 {𝑥 ∣ ∃𝑦𝐵𝑧𝐴 𝑥 = (𝑦 ·Q 𝑧)} = {𝑥 ∣ ∃𝑧𝐴𝑦𝐵 𝑥 = (𝑧 ·Q 𝑦)}
92, 8syl6eq 2875 . . . 4 ((𝐵P𝐴P) → (𝐵 ·P 𝐴) = {𝑥 ∣ ∃𝑧𝐴𝑦𝐵 𝑥 = (𝑧 ·Q 𝑦)})
109ancoms 462 . . 3 ((𝐴P𝐵P) → (𝐵 ·P 𝐴) = {𝑥 ∣ ∃𝑧𝐴𝑦𝐵 𝑥 = (𝑧 ·Q 𝑦)})
111, 10eqtr4d 2862 . 2 ((𝐴P𝐵P) → (𝐴 ·P 𝐵) = (𝐵 ·P 𝐴))
12 dmmp 10433 . . 3 dom ·P = (P × P)
1312ndmovcom 7329 . 2 (¬ (𝐴P𝐵P) → (𝐴 ·P 𝐵) = (𝐵 ·P 𝐴))
1411, 13pm2.61i 185 1 (𝐴 ·P 𝐵) = (𝐵 ·P 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wa 399   = wceq 1538  wcel 2115  {cab 2802  wrex 3134  (class class class)co 7149   ·Q cmq 10276  Pcnp 10279   ·P cmp 10282
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2117  ax-9 2125  ax-10 2146  ax-11 2162  ax-12 2179  ax-ext 2796  ax-sep 5189  ax-nul 5196  ax-pow 5253  ax-pr 5317  ax-un 7455  ax-inf2 9101
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2071  df-mo 2624  df-eu 2655  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2964  df-ne 3015  df-ral 3138  df-rex 3139  df-reu 3140  df-rmo 3141  df-rab 3142  df-v 3482  df-sbc 3759  df-csb 3867  df-dif 3922  df-un 3924  df-in 3926  df-ss 3936  df-pss 3938  df-nul 4277  df-if 4451  df-pw 4524  df-sn 4551  df-pr 4553  df-tp 4555  df-op 4557  df-uni 4825  df-iun 4907  df-br 5053  df-opab 5115  df-mpt 5133  df-tr 5159  df-id 5447  df-eprel 5452  df-po 5461  df-so 5462  df-fr 5501  df-we 5503  df-xp 5548  df-rel 5549  df-cnv 5550  df-co 5551  df-dm 5552  df-rn 5553  df-res 5554  df-ima 5555  df-pred 6135  df-ord 6181  df-on 6182  df-lim 6183  df-suc 6184  df-iota 6302  df-fun 6345  df-fn 6346  df-f 6347  df-f1 6348  df-fo 6349  df-f1o 6350  df-fv 6351  df-ov 7152  df-oprab 7153  df-mpo 7154  df-om 7575  df-1st 7684  df-2nd 7685  df-wrecs 7943  df-recs 8004  df-rdg 8042  df-1o 8098  df-oadd 8102  df-omul 8103  df-er 8285  df-ni 10292  df-mi 10294  df-lti 10295  df-mpq 10329  df-enq 10331  df-nq 10332  df-erq 10333  df-mq 10335  df-1nq 10336  df-np 10401  df-mp 10404
This theorem is referenced by:  mulcmpblnrlem  10490  mulcomsr  10509  mulasssr  10510  m1m1sr  10513  recexsrlem  10523  mulgt0sr  10525
  Copyright terms: Public domain W3C validator