![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > snstriedgval | Structured version Visualization version GIF version |
Description: The set of indexed edges of a graph without edges represented as an extensible structure with vertices as base set and no indexed edges. See iedgvalsnop 28894 for the (degenerate) case where 𝑉 = (Base‘ndx). (Contributed by AV, 24-Sep-2020.) |
Ref | Expression |
---|---|
snstrvtxval.v | ⊢ 𝑉 ∈ V |
snstrvtxval.g | ⊢ 𝐺 = {⟨(Base‘ndx), 𝑉⟩} |
Ref | Expression |
---|---|
snstriedgval | ⊢ (𝑉 ≠ (Base‘ndx) → (iEdg‘𝐺) = ∅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | iedgval 28853 | . . 3 ⊢ (iEdg‘𝐺) = if(𝐺 ∈ (V × V), (2nd ‘𝐺), (.ef‘𝐺)) | |
2 | 1 | a1i 11 | . 2 ⊢ (𝑉 ≠ (Base‘ndx) → (iEdg‘𝐺) = if(𝐺 ∈ (V × V), (2nd ‘𝐺), (.ef‘𝐺))) |
3 | necom 2984 | . . . 4 ⊢ (𝑉 ≠ (Base‘ndx) ↔ (Base‘ndx) ≠ 𝑉) | |
4 | fvex 6903 | . . . . 5 ⊢ (Base‘ndx) ∈ V | |
5 | snstrvtxval.v | . . . . 5 ⊢ 𝑉 ∈ V | |
6 | snstrvtxval.g | . . . . 5 ⊢ 𝐺 = {⟨(Base‘ndx), 𝑉⟩} | |
7 | 4, 5, 6 | funsndifnop 7154 | . . . 4 ⊢ ((Base‘ndx) ≠ 𝑉 → ¬ 𝐺 ∈ (V × V)) |
8 | 3, 7 | sylbi 216 | . . 3 ⊢ (𝑉 ≠ (Base‘ndx) → ¬ 𝐺 ∈ (V × V)) |
9 | 8 | iffalsed 4536 | . 2 ⊢ (𝑉 ≠ (Base‘ndx) → if(𝐺 ∈ (V × V), (2nd ‘𝐺), (.ef‘𝐺)) = (.ef‘𝐺)) |
10 | snex 5428 | . . . . . 6 ⊢ {⟨(Base‘ndx), 𝑉⟩} ∈ V | |
11 | 10 | a1i 11 | . . . . 5 ⊢ (𝐺 = {⟨(Base‘ndx), 𝑉⟩} → {⟨(Base‘ndx), 𝑉⟩} ∈ V) |
12 | 6, 11 | eqeltrid 2829 | . . . 4 ⊢ (𝐺 = {⟨(Base‘ndx), 𝑉⟩} → 𝐺 ∈ V) |
13 | edgfndxid 28843 | . . . 4 ⊢ (𝐺 ∈ V → (.ef‘𝐺) = (𝐺‘(.ef‘ndx))) | |
14 | 6, 12, 13 | mp2b 10 | . . 3 ⊢ (.ef‘𝐺) = (𝐺‘(.ef‘ndx)) |
15 | basendxnedgfndx 28847 | . . . . . . . 8 ⊢ (Base‘ndx) ≠ (.ef‘ndx) | |
16 | 15 | nesymi 2988 | . . . . . . 7 ⊢ ¬ (.ef‘ndx) = (Base‘ndx) |
17 | 16 | a1i 11 | . . . . . 6 ⊢ (𝑉 ≠ (Base‘ndx) → ¬ (.ef‘ndx) = (Base‘ndx)) |
18 | fvex 6903 | . . . . . . 7 ⊢ (.ef‘ndx) ∈ V | |
19 | 18 | elsn 4640 | . . . . . 6 ⊢ ((.ef‘ndx) ∈ {(Base‘ndx)} ↔ (.ef‘ndx) = (Base‘ndx)) |
20 | 17, 19 | sylnibr 328 | . . . . 5 ⊢ (𝑉 ≠ (Base‘ndx) → ¬ (.ef‘ndx) ∈ {(Base‘ndx)}) |
21 | 6 | dmeqi 5902 | . . . . . 6 ⊢ dom 𝐺 = dom {⟨(Base‘ndx), 𝑉⟩} |
22 | dmsnopg 6213 | . . . . . . 7 ⊢ (𝑉 ∈ V → dom {⟨(Base‘ndx), 𝑉⟩} = {(Base‘ndx)}) | |
23 | 5, 22 | mp1i 13 | . . . . . 6 ⊢ (𝑉 ≠ (Base‘ndx) → dom {⟨(Base‘ndx), 𝑉⟩} = {(Base‘ndx)}) |
24 | 21, 23 | eqtrid 2777 | . . . . 5 ⊢ (𝑉 ≠ (Base‘ndx) → dom 𝐺 = {(Base‘ndx)}) |
25 | 20, 24 | neleqtrrd 2848 | . . . 4 ⊢ (𝑉 ≠ (Base‘ndx) → ¬ (.ef‘ndx) ∈ dom 𝐺) |
26 | ndmfv 6925 | . . . 4 ⊢ (¬ (.ef‘ndx) ∈ dom 𝐺 → (𝐺‘(.ef‘ndx)) = ∅) | |
27 | 25, 26 | syl 17 | . . 3 ⊢ (𝑉 ≠ (Base‘ndx) → (𝐺‘(.ef‘ndx)) = ∅) |
28 | 14, 27 | eqtrid 2777 | . 2 ⊢ (𝑉 ≠ (Base‘ndx) → (.ef‘𝐺) = ∅) |
29 | 2, 9, 28 | 3eqtrd 2769 | 1 ⊢ (𝑉 ≠ (Base‘ndx) → (iEdg‘𝐺) = ∅) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 = wceq 1533 ∈ wcel 2098 ≠ wne 2930 Vcvv 3463 ∅c0 4319 ifcif 4525 {csn 4625 ⟨cop 4631 × cxp 5671 dom cdm 5673 ‘cfv 6543 2nd c2nd 7986 ndxcnx 17156 Basecbs 17174 .efcedgf 28838 iEdgciedg 28849 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2696 ax-sep 5295 ax-nul 5302 ax-pow 5360 ax-pr 5424 ax-un 7735 ax-cnex 11189 ax-resscn 11190 ax-1cn 11191 ax-icn 11192 ax-addcl 11193 ax-addrcl 11194 ax-mulcl 11195 ax-mulrcl 11196 ax-mulcom 11197 ax-addass 11198 ax-mulass 11199 ax-distr 11200 ax-i2m1 11201 ax-1ne0 11202 ax-1rid 11203 ax-rnegex 11204 ax-rrecex 11205 ax-cnre 11206 ax-pre-lttri 11207 ax-pre-lttrn 11208 ax-pre-ltadd 11209 ax-pre-mulgt0 11210 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2703 df-cleq 2717 df-clel 2802 df-nfc 2877 df-ne 2931 df-nel 3037 df-ral 3052 df-rex 3061 df-reu 3365 df-rab 3420 df-v 3465 df-sbc 3771 df-csb 3887 df-dif 3944 df-un 3946 df-in 3948 df-ss 3958 df-pss 3961 df-nul 4320 df-if 4526 df-pw 4601 df-sn 4626 df-pr 4628 df-op 4632 df-uni 4905 df-iun 4994 df-br 5145 df-opab 5207 df-mpt 5228 df-tr 5262 df-id 5571 df-eprel 5577 df-po 5585 df-so 5586 df-fr 5628 df-we 5630 df-xp 5679 df-rel 5680 df-cnv 5681 df-co 5682 df-dm 5683 df-rn 5684 df-res 5685 df-ima 5686 df-pred 6301 df-ord 6368 df-on 6369 df-lim 6370 df-suc 6371 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-riota 7369 df-ov 7416 df-oprab 7417 df-mpo 7418 df-om 7866 df-2nd 7988 df-frecs 8280 df-wrecs 8311 df-recs 8385 df-rdg 8424 df-er 8718 df-en 8958 df-dom 8959 df-sdom 8960 df-pnf 11275 df-mnf 11276 df-xr 11277 df-ltxr 11278 df-le 11279 df-sub 11471 df-neg 11472 df-nn 12238 df-2 12300 df-3 12301 df-4 12302 df-5 12303 df-6 12304 df-7 12305 df-8 12306 df-9 12307 df-n0 12498 df-z 12584 df-dec 12703 df-slot 17145 df-ndx 17157 df-base 17175 df-edgf 28839 df-iedg 28851 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |