MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  snstriedgval Structured version   Visualization version   GIF version

Theorem snstriedgval 28890
Description: The set of indexed edges of a graph without edges represented as an extensible structure with vertices as base set and no indexed edges. See iedgvalsnop 28894 for the (degenerate) case where 𝑉 = (Base‘ndx). (Contributed by AV, 24-Sep-2020.)
Hypotheses
Ref Expression
snstrvtxval.v 𝑉 ∈ V
snstrvtxval.g 𝐺 = {⟨(Base‘ndx), 𝑉⟩}
Assertion
Ref Expression
snstriedgval (𝑉 ≠ (Base‘ndx) → (iEdg‘𝐺) = ∅)

Proof of Theorem snstriedgval
StepHypRef Expression
1 iedgval 28853 . . 3 (iEdg‘𝐺) = if(𝐺 ∈ (V × V), (2nd𝐺), (.ef‘𝐺))
21a1i 11 . 2 (𝑉 ≠ (Base‘ndx) → (iEdg‘𝐺) = if(𝐺 ∈ (V × V), (2nd𝐺), (.ef‘𝐺)))
3 necom 2984 . . . 4 (𝑉 ≠ (Base‘ndx) ↔ (Base‘ndx) ≠ 𝑉)
4 fvex 6903 . . . . 5 (Base‘ndx) ∈ V
5 snstrvtxval.v . . . . 5 𝑉 ∈ V
6 snstrvtxval.g . . . . 5 𝐺 = {⟨(Base‘ndx), 𝑉⟩}
74, 5, 6funsndifnop 7154 . . . 4 ((Base‘ndx) ≠ 𝑉 → ¬ 𝐺 ∈ (V × V))
83, 7sylbi 216 . . 3 (𝑉 ≠ (Base‘ndx) → ¬ 𝐺 ∈ (V × V))
98iffalsed 4536 . 2 (𝑉 ≠ (Base‘ndx) → if(𝐺 ∈ (V × V), (2nd𝐺), (.ef‘𝐺)) = (.ef‘𝐺))
10 snex 5428 . . . . . 6 {⟨(Base‘ndx), 𝑉⟩} ∈ V
1110a1i 11 . . . . 5 (𝐺 = {⟨(Base‘ndx), 𝑉⟩} → {⟨(Base‘ndx), 𝑉⟩} ∈ V)
126, 11eqeltrid 2829 . . . 4 (𝐺 = {⟨(Base‘ndx), 𝑉⟩} → 𝐺 ∈ V)
13 edgfndxid 28843 . . . 4 (𝐺 ∈ V → (.ef‘𝐺) = (𝐺‘(.ef‘ndx)))
146, 12, 13mp2b 10 . . 3 (.ef‘𝐺) = (𝐺‘(.ef‘ndx))
15 basendxnedgfndx 28847 . . . . . . . 8 (Base‘ndx) ≠ (.ef‘ndx)
1615nesymi 2988 . . . . . . 7 ¬ (.ef‘ndx) = (Base‘ndx)
1716a1i 11 . . . . . 6 (𝑉 ≠ (Base‘ndx) → ¬ (.ef‘ndx) = (Base‘ndx))
18 fvex 6903 . . . . . . 7 (.ef‘ndx) ∈ V
1918elsn 4640 . . . . . 6 ((.ef‘ndx) ∈ {(Base‘ndx)} ↔ (.ef‘ndx) = (Base‘ndx))
2017, 19sylnibr 328 . . . . 5 (𝑉 ≠ (Base‘ndx) → ¬ (.ef‘ndx) ∈ {(Base‘ndx)})
216dmeqi 5902 . . . . . 6 dom 𝐺 = dom {⟨(Base‘ndx), 𝑉⟩}
22 dmsnopg 6213 . . . . . . 7 (𝑉 ∈ V → dom {⟨(Base‘ndx), 𝑉⟩} = {(Base‘ndx)})
235, 22mp1i 13 . . . . . 6 (𝑉 ≠ (Base‘ndx) → dom {⟨(Base‘ndx), 𝑉⟩} = {(Base‘ndx)})
2421, 23eqtrid 2777 . . . . 5 (𝑉 ≠ (Base‘ndx) → dom 𝐺 = {(Base‘ndx)})
2520, 24neleqtrrd 2848 . . . 4 (𝑉 ≠ (Base‘ndx) → ¬ (.ef‘ndx) ∈ dom 𝐺)
26 ndmfv 6925 . . . 4 (¬ (.ef‘ndx) ∈ dom 𝐺 → (𝐺‘(.ef‘ndx)) = ∅)
2725, 26syl 17 . . 3 (𝑉 ≠ (Base‘ndx) → (𝐺‘(.ef‘ndx)) = ∅)
2814, 27eqtrid 2777 . 2 (𝑉 ≠ (Base‘ndx) → (.ef‘𝐺) = ∅)
292, 9, 283eqtrd 2769 1 (𝑉 ≠ (Base‘ndx) → (iEdg‘𝐺) = ∅)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4   = wceq 1533  wcel 2098  wne 2930  Vcvv 3463  c0 4319  ifcif 4525  {csn 4625  cop 4631   × cxp 5671  dom cdm 5673  cfv 6543  2nd c2nd 7986  ndxcnx 17156  Basecbs 17174  .efcedgf 28838  iEdgciedg 28849
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2696  ax-sep 5295  ax-nul 5302  ax-pow 5360  ax-pr 5424  ax-un 7735  ax-cnex 11189  ax-resscn 11190  ax-1cn 11191  ax-icn 11192  ax-addcl 11193  ax-addrcl 11194  ax-mulcl 11195  ax-mulrcl 11196  ax-mulcom 11197  ax-addass 11198  ax-mulass 11199  ax-distr 11200  ax-i2m1 11201  ax-1ne0 11202  ax-1rid 11203  ax-rnegex 11204  ax-rrecex 11205  ax-cnre 11206  ax-pre-lttri 11207  ax-pre-lttrn 11208  ax-pre-ltadd 11209  ax-pre-mulgt0 11210
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2703  df-cleq 2717  df-clel 2802  df-nfc 2877  df-ne 2931  df-nel 3037  df-ral 3052  df-rex 3061  df-reu 3365  df-rab 3420  df-v 3465  df-sbc 3771  df-csb 3887  df-dif 3944  df-un 3946  df-in 3948  df-ss 3958  df-pss 3961  df-nul 4320  df-if 4526  df-pw 4601  df-sn 4626  df-pr 4628  df-op 4632  df-uni 4905  df-iun 4994  df-br 5145  df-opab 5207  df-mpt 5228  df-tr 5262  df-id 5571  df-eprel 5577  df-po 5585  df-so 5586  df-fr 5628  df-we 5630  df-xp 5679  df-rel 5680  df-cnv 5681  df-co 5682  df-dm 5683  df-rn 5684  df-res 5685  df-ima 5686  df-pred 6301  df-ord 6368  df-on 6369  df-lim 6370  df-suc 6371  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-riota 7369  df-ov 7416  df-oprab 7417  df-mpo 7418  df-om 7866  df-2nd 7988  df-frecs 8280  df-wrecs 8311  df-recs 8385  df-rdg 8424  df-er 8718  df-en 8958  df-dom 8959  df-sdom 8960  df-pnf 11275  df-mnf 11276  df-xr 11277  df-ltxr 11278  df-le 11279  df-sub 11471  df-neg 11472  df-nn 12238  df-2 12300  df-3 12301  df-4 12302  df-5 12303  df-6 12304  df-7 12305  df-8 12306  df-9 12307  df-n0 12498  df-z 12584  df-dec 12703  df-slot 17145  df-ndx 17157  df-base 17175  df-edgf 28839  df-iedg 28851
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator