MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  snstriedgval Structured version   Visualization version   GIF version

Theorem snstriedgval 28965
Description: The set of indexed edges of a graph without edges represented as an extensible structure with vertices as base set and no indexed edges. See iedgvalsnop 28969 for the (degenerate) case where 𝑉 = (Base‘ndx). (Contributed by AV, 24-Sep-2020.)
Hypotheses
Ref Expression
snstrvtxval.v 𝑉 ∈ V
snstrvtxval.g 𝐺 = {⟨(Base‘ndx), 𝑉⟩}
Assertion
Ref Expression
snstriedgval (𝑉 ≠ (Base‘ndx) → (iEdg‘𝐺) = ∅)

Proof of Theorem snstriedgval
StepHypRef Expression
1 iedgval 28928 . . 3 (iEdg‘𝐺) = if(𝐺 ∈ (V × V), (2nd𝐺), (.ef‘𝐺))
21a1i 11 . 2 (𝑉 ≠ (Base‘ndx) → (iEdg‘𝐺) = if(𝐺 ∈ (V × V), (2nd𝐺), (.ef‘𝐺)))
3 necom 2978 . . . 4 (𝑉 ≠ (Base‘ndx) ↔ (Base‘ndx) ≠ 𝑉)
4 fvex 6871 . . . . 5 (Base‘ndx) ∈ V
5 snstrvtxval.v . . . . 5 𝑉 ∈ V
6 snstrvtxval.g . . . . 5 𝐺 = {⟨(Base‘ndx), 𝑉⟩}
74, 5, 6funsndifnop 7123 . . . 4 ((Base‘ndx) ≠ 𝑉 → ¬ 𝐺 ∈ (V × V))
83, 7sylbi 217 . . 3 (𝑉 ≠ (Base‘ndx) → ¬ 𝐺 ∈ (V × V))
98iffalsed 4499 . 2 (𝑉 ≠ (Base‘ndx) → if(𝐺 ∈ (V × V), (2nd𝐺), (.ef‘𝐺)) = (.ef‘𝐺))
10 snex 5391 . . . . . 6 {⟨(Base‘ndx), 𝑉⟩} ∈ V
1110a1i 11 . . . . 5 (𝐺 = {⟨(Base‘ndx), 𝑉⟩} → {⟨(Base‘ndx), 𝑉⟩} ∈ V)
126, 11eqeltrid 2832 . . . 4 (𝐺 = {⟨(Base‘ndx), 𝑉⟩} → 𝐺 ∈ V)
13 edgfndxid 28920 . . . 4 (𝐺 ∈ V → (.ef‘𝐺) = (𝐺‘(.ef‘ndx)))
146, 12, 13mp2b 10 . . 3 (.ef‘𝐺) = (𝐺‘(.ef‘ndx))
15 basendxnedgfndx 28922 . . . . . . . 8 (Base‘ndx) ≠ (.ef‘ndx)
1615nesymi 2982 . . . . . . 7 ¬ (.ef‘ndx) = (Base‘ndx)
1716a1i 11 . . . . . 6 (𝑉 ≠ (Base‘ndx) → ¬ (.ef‘ndx) = (Base‘ndx))
18 fvex 6871 . . . . . . 7 (.ef‘ndx) ∈ V
1918elsn 4604 . . . . . 6 ((.ef‘ndx) ∈ {(Base‘ndx)} ↔ (.ef‘ndx) = (Base‘ndx))
2017, 19sylnibr 329 . . . . 5 (𝑉 ≠ (Base‘ndx) → ¬ (.ef‘ndx) ∈ {(Base‘ndx)})
216dmeqi 5868 . . . . . 6 dom 𝐺 = dom {⟨(Base‘ndx), 𝑉⟩}
22 dmsnopg 6186 . . . . . . 7 (𝑉 ∈ V → dom {⟨(Base‘ndx), 𝑉⟩} = {(Base‘ndx)})
235, 22mp1i 13 . . . . . 6 (𝑉 ≠ (Base‘ndx) → dom {⟨(Base‘ndx), 𝑉⟩} = {(Base‘ndx)})
2421, 23eqtrid 2776 . . . . 5 (𝑉 ≠ (Base‘ndx) → dom 𝐺 = {(Base‘ndx)})
2520, 24neleqtrrd 2851 . . . 4 (𝑉 ≠ (Base‘ndx) → ¬ (.ef‘ndx) ∈ dom 𝐺)
26 ndmfv 6893 . . . 4 (¬ (.ef‘ndx) ∈ dom 𝐺 → (𝐺‘(.ef‘ndx)) = ∅)
2725, 26syl 17 . . 3 (𝑉 ≠ (Base‘ndx) → (𝐺‘(.ef‘ndx)) = ∅)
2814, 27eqtrid 2776 . 2 (𝑉 ≠ (Base‘ndx) → (.ef‘𝐺) = ∅)
292, 9, 283eqtrd 2768 1 (𝑉 ≠ (Base‘ndx) → (iEdg‘𝐺) = ∅)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4   = wceq 1540  wcel 2109  wne 2925  Vcvv 3447  c0 4296  ifcif 4488  {csn 4589  cop 4595   × cxp 5636  dom cdm 5638  cfv 6511  2nd c2nd 7967  ndxcnx 17163  Basecbs 17179  .efcedgf 28915  iEdgciedg 28924
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-cnex 11124  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-om 7843  df-2nd 7969  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-er 8671  df-en 8919  df-dom 8920  df-sdom 8921  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-nn 12187  df-2 12249  df-3 12250  df-4 12251  df-5 12252  df-6 12253  df-7 12254  df-8 12255  df-9 12256  df-n0 12443  df-z 12530  df-dec 12650  df-slot 17152  df-ndx 17164  df-base 17180  df-edgf 28916  df-iedg 28926
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator