MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  snstriedgval Structured version   Visualization version   GIF version

Theorem snstriedgval 26822
Description: The set of indexed edges of a graph without edges represented as an extensible structure with vertices as base set and no indexed edges. See iedgvalsnop 26826 for the (degenerate) case where 𝑉 = (Base‘ndx). (Contributed by AV, 24-Sep-2020.)
Hypotheses
Ref Expression
snstrvtxval.v 𝑉 ∈ V
snstrvtxval.g 𝐺 = {⟨(Base‘ndx), 𝑉⟩}
Assertion
Ref Expression
snstriedgval (𝑉 ≠ (Base‘ndx) → (iEdg‘𝐺) = ∅)

Proof of Theorem snstriedgval
StepHypRef Expression
1 iedgval 26785 . . 3 (iEdg‘𝐺) = if(𝐺 ∈ (V × V), (2nd𝐺), (.ef‘𝐺))
21a1i 11 . 2 (𝑉 ≠ (Base‘ndx) → (iEdg‘𝐺) = if(𝐺 ∈ (V × V), (2nd𝐺), (.ef‘𝐺)))
3 necom 3069 . . . 4 (𝑉 ≠ (Base‘ndx) ↔ (Base‘ndx) ≠ 𝑉)
4 fvex 6682 . . . . 5 (Base‘ndx) ∈ V
5 snstrvtxval.v . . . . 5 𝑉 ∈ V
6 snstrvtxval.g . . . . 5 𝐺 = {⟨(Base‘ndx), 𝑉⟩}
74, 5, 6funsndifnop 6912 . . . 4 ((Base‘ndx) ≠ 𝑉 → ¬ 𝐺 ∈ (V × V))
83, 7sylbi 219 . . 3 (𝑉 ≠ (Base‘ndx) → ¬ 𝐺 ∈ (V × V))
98iffalsed 4477 . 2 (𝑉 ≠ (Base‘ndx) → if(𝐺 ∈ (V × V), (2nd𝐺), (.ef‘𝐺)) = (.ef‘𝐺))
10 snex 5331 . . . . . 6 {⟨(Base‘ndx), 𝑉⟩} ∈ V
1110a1i 11 . . . . 5 (𝐺 = {⟨(Base‘ndx), 𝑉⟩} → {⟨(Base‘ndx), 𝑉⟩} ∈ V)
126, 11eqeltrid 2917 . . . 4 (𝐺 = {⟨(Base‘ndx), 𝑉⟩} → 𝐺 ∈ V)
13 edgfndxid 26777 . . . 4 (𝐺 ∈ V → (.ef‘𝐺) = (𝐺‘(.ef‘ndx)))
146, 12, 13mp2b 10 . . 3 (.ef‘𝐺) = (𝐺‘(.ef‘ndx))
15 slotsbaseefdif 26779 . . . . . . . 8 (Base‘ndx) ≠ (.ef‘ndx)
1615nesymi 3073 . . . . . . 7 ¬ (.ef‘ndx) = (Base‘ndx)
1716a1i 11 . . . . . 6 (𝑉 ≠ (Base‘ndx) → ¬ (.ef‘ndx) = (Base‘ndx))
18 fvex 6682 . . . . . . 7 (.ef‘ndx) ∈ V
1918elsn 4581 . . . . . 6 ((.ef‘ndx) ∈ {(Base‘ndx)} ↔ (.ef‘ndx) = (Base‘ndx))
2017, 19sylnibr 331 . . . . 5 (𝑉 ≠ (Base‘ndx) → ¬ (.ef‘ndx) ∈ {(Base‘ndx)})
216dmeqi 5772 . . . . . 6 dom 𝐺 = dom {⟨(Base‘ndx), 𝑉⟩}
22 dmsnopg 6069 . . . . . . 7 (𝑉 ∈ V → dom {⟨(Base‘ndx), 𝑉⟩} = {(Base‘ndx)})
235, 22mp1i 13 . . . . . 6 (𝑉 ≠ (Base‘ndx) → dom {⟨(Base‘ndx), 𝑉⟩} = {(Base‘ndx)})
2421, 23syl5eq 2868 . . . . 5 (𝑉 ≠ (Base‘ndx) → dom 𝐺 = {(Base‘ndx)})
2520, 24neleqtrrd 2935 . . . 4 (𝑉 ≠ (Base‘ndx) → ¬ (.ef‘ndx) ∈ dom 𝐺)
26 ndmfv 6699 . . . 4 (¬ (.ef‘ndx) ∈ dom 𝐺 → (𝐺‘(.ef‘ndx)) = ∅)
2725, 26syl 17 . . 3 (𝑉 ≠ (Base‘ndx) → (𝐺‘(.ef‘ndx)) = ∅)
2814, 27syl5eq 2868 . 2 (𝑉 ≠ (Base‘ndx) → (.ef‘𝐺) = ∅)
292, 9, 283eqtrd 2860 1 (𝑉 ≠ (Base‘ndx) → (iEdg‘𝐺) = ∅)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4   = wceq 1533  wcel 2110  wne 3016  Vcvv 3494  c0 4290  ifcif 4466  {csn 4566  cop 4572   × cxp 5552  dom cdm 5554  cfv 6354  2nd c2nd 7687  ndxcnx 16479  Basecbs 16482  .efcedgf 26773  iEdgciedg 26781
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2157  ax-12 2173  ax-ext 2793  ax-sep 5202  ax-nul 5209  ax-pow 5265  ax-pr 5329  ax-un 7460  ax-cnex 10592  ax-resscn 10593  ax-1cn 10594  ax-icn 10595  ax-addcl 10596  ax-addrcl 10597  ax-mulcl 10598  ax-mulrcl 10599  ax-mulcom 10600  ax-addass 10601  ax-mulass 10602  ax-distr 10603  ax-i2m1 10604  ax-1ne0 10605  ax-1rid 10606  ax-rnegex 10607  ax-rrecex 10608  ax-cnre 10609  ax-pre-lttri 10610  ax-pre-lttrn 10611  ax-pre-ltadd 10612  ax-pre-mulgt0 10613
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1536  df-fal 1546  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rab 3147  df-v 3496  df-sbc 3772  df-csb 3883  df-dif 3938  df-un 3940  df-in 3942  df-ss 3951  df-pss 3953  df-nul 4291  df-if 4467  df-pw 4540  df-sn 4567  df-pr 4569  df-tp 4571  df-op 4573  df-uni 4838  df-iun 4920  df-br 5066  df-opab 5128  df-mpt 5146  df-tr 5172  df-id 5459  df-eprel 5464  df-po 5473  df-so 5474  df-fr 5513  df-we 5515  df-xp 5560  df-rel 5561  df-cnv 5562  df-co 5563  df-dm 5564  df-rn 5565  df-res 5566  df-ima 5567  df-pred 6147  df-ord 6193  df-on 6194  df-lim 6195  df-suc 6196  df-iota 6313  df-fun 6356  df-fn 6357  df-f 6358  df-f1 6359  df-fo 6360  df-f1o 6361  df-fv 6362  df-riota 7113  df-ov 7158  df-oprab 7159  df-mpo 7160  df-om 7580  df-wrecs 7946  df-recs 8007  df-rdg 8045  df-er 8288  df-en 8509  df-dom 8510  df-sdom 8511  df-pnf 10676  df-mnf 10677  df-xr 10678  df-ltxr 10679  df-le 10680  df-sub 10871  df-neg 10872  df-nn 11638  df-2 11699  df-3 11700  df-4 11701  df-5 11702  df-6 11703  df-7 11704  df-8 11705  df-9 11706  df-n0 11897  df-z 11981  df-dec 12098  df-ndx 16485  df-slot 16486  df-base 16488  df-edgf 26774  df-iedg 26783
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator