![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > snstriedgval | Structured version Visualization version GIF version |
Description: The set of indexed edges of a graph without edges represented as an extensible structure with vertices as base set and no indexed edges. See iedgvalsnop 26347 for the (degenerate) case where 𝑉 = (Base‘ndx). (Contributed by AV, 24-Sep-2020.) |
Ref | Expression |
---|---|
snstrvtxval.v | ⊢ 𝑉 ∈ V |
snstrvtxval.g | ⊢ 𝐺 = {〈(Base‘ndx), 𝑉〉} |
Ref | Expression |
---|---|
snstriedgval | ⊢ (𝑉 ≠ (Base‘ndx) → (iEdg‘𝐺) = ∅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | iedgval 26306 | . . 3 ⊢ (iEdg‘𝐺) = if(𝐺 ∈ (V × V), (2nd ‘𝐺), (.ef‘𝐺)) | |
2 | 1 | a1i 11 | . 2 ⊢ (𝑉 ≠ (Base‘ndx) → (iEdg‘𝐺) = if(𝐺 ∈ (V × V), (2nd ‘𝐺), (.ef‘𝐺))) |
3 | necom 3052 | . . . 4 ⊢ (𝑉 ≠ (Base‘ndx) ↔ (Base‘ndx) ≠ 𝑉) | |
4 | fvex 6450 | . . . . 5 ⊢ (Base‘ndx) ∈ V | |
5 | snstrvtxval.v | . . . . 5 ⊢ 𝑉 ∈ V | |
6 | snstrvtxval.g | . . . . 5 ⊢ 𝐺 = {〈(Base‘ndx), 𝑉〉} | |
7 | 4, 5, 6 | funsndifnop 6672 | . . . 4 ⊢ ((Base‘ndx) ≠ 𝑉 → ¬ 𝐺 ∈ (V × V)) |
8 | 3, 7 | sylbi 209 | . . 3 ⊢ (𝑉 ≠ (Base‘ndx) → ¬ 𝐺 ∈ (V × V)) |
9 | 8 | iffalsed 4319 | . 2 ⊢ (𝑉 ≠ (Base‘ndx) → if(𝐺 ∈ (V × V), (2nd ‘𝐺), (.ef‘𝐺)) = (.ef‘𝐺)) |
10 | snex 5131 | . . . . . 6 ⊢ {〈(Base‘ndx), 𝑉〉} ∈ V | |
11 | 10 | a1i 11 | . . . . 5 ⊢ (𝐺 = {〈(Base‘ndx), 𝑉〉} → {〈(Base‘ndx), 𝑉〉} ∈ V) |
12 | 6, 11 | syl5eqel 2910 | . . . 4 ⊢ (𝐺 = {〈(Base‘ndx), 𝑉〉} → 𝐺 ∈ V) |
13 | edgfndxid 26298 | . . . 4 ⊢ (𝐺 ∈ V → (.ef‘𝐺) = (𝐺‘(.ef‘ndx))) | |
14 | 6, 12, 13 | mp2b 10 | . . 3 ⊢ (.ef‘𝐺) = (𝐺‘(.ef‘ndx)) |
15 | slotsbaseefdif 26300 | . . . . . . . 8 ⊢ (Base‘ndx) ≠ (.ef‘ndx) | |
16 | 15 | nesymi 3056 | . . . . . . 7 ⊢ ¬ (.ef‘ndx) = (Base‘ndx) |
17 | 16 | a1i 11 | . . . . . 6 ⊢ (𝑉 ≠ (Base‘ndx) → ¬ (.ef‘ndx) = (Base‘ndx)) |
18 | fvex 6450 | . . . . . . 7 ⊢ (.ef‘ndx) ∈ V | |
19 | 18 | elsn 4414 | . . . . . 6 ⊢ ((.ef‘ndx) ∈ {(Base‘ndx)} ↔ (.ef‘ndx) = (Base‘ndx)) |
20 | 17, 19 | sylnibr 321 | . . . . 5 ⊢ (𝑉 ≠ (Base‘ndx) → ¬ (.ef‘ndx) ∈ {(Base‘ndx)}) |
21 | 6 | dmeqi 5561 | . . . . . 6 ⊢ dom 𝐺 = dom {〈(Base‘ndx), 𝑉〉} |
22 | dmsnopg 5851 | . . . . . . 7 ⊢ (𝑉 ∈ V → dom {〈(Base‘ndx), 𝑉〉} = {(Base‘ndx)}) | |
23 | 5, 22 | mp1i 13 | . . . . . 6 ⊢ (𝑉 ≠ (Base‘ndx) → dom {〈(Base‘ndx), 𝑉〉} = {(Base‘ndx)}) |
24 | 21, 23 | syl5eq 2873 | . . . . 5 ⊢ (𝑉 ≠ (Base‘ndx) → dom 𝐺 = {(Base‘ndx)}) |
25 | 20, 24 | neleqtrrd 2928 | . . . 4 ⊢ (𝑉 ≠ (Base‘ndx) → ¬ (.ef‘ndx) ∈ dom 𝐺) |
26 | ndmfv 6467 | . . . 4 ⊢ (¬ (.ef‘ndx) ∈ dom 𝐺 → (𝐺‘(.ef‘ndx)) = ∅) | |
27 | 25, 26 | syl 17 | . . 3 ⊢ (𝑉 ≠ (Base‘ndx) → (𝐺‘(.ef‘ndx)) = ∅) |
28 | 14, 27 | syl5eq 2873 | . 2 ⊢ (𝑉 ≠ (Base‘ndx) → (.ef‘𝐺) = ∅) |
29 | 2, 9, 28 | 3eqtrd 2865 | 1 ⊢ (𝑉 ≠ (Base‘ndx) → (iEdg‘𝐺) = ∅) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 = wceq 1656 ∈ wcel 2164 ≠ wne 2999 Vcvv 3414 ∅c0 4146 ifcif 4308 {csn 4399 〈cop 4405 × cxp 5344 dom cdm 5346 ‘cfv 6127 2nd c2nd 7432 ndxcnx 16226 Basecbs 16229 .efcedgf 26294 iEdgciedg 26302 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1894 ax-4 1908 ax-5 2009 ax-6 2075 ax-7 2112 ax-8 2166 ax-9 2173 ax-10 2192 ax-11 2207 ax-12 2220 ax-13 2389 ax-ext 2803 ax-sep 5007 ax-nul 5015 ax-pow 5067 ax-pr 5129 ax-un 7214 ax-cnex 10315 ax-resscn 10316 ax-1cn 10317 ax-icn 10318 ax-addcl 10319 ax-addrcl 10320 ax-mulcl 10321 ax-mulrcl 10322 ax-mulcom 10323 ax-addass 10324 ax-mulass 10325 ax-distr 10326 ax-i2m1 10327 ax-1ne0 10328 ax-1rid 10329 ax-rnegex 10330 ax-rrecex 10331 ax-cnre 10332 ax-pre-lttri 10333 ax-pre-lttrn 10334 ax-pre-ltadd 10335 ax-pre-mulgt0 10336 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 879 df-3or 1112 df-3an 1113 df-tru 1660 df-fal 1670 df-ex 1879 df-nf 1883 df-sb 2068 df-mo 2605 df-eu 2640 df-clab 2812 df-cleq 2818 df-clel 2821 df-nfc 2958 df-ne 3000 df-nel 3103 df-ral 3122 df-rex 3123 df-reu 3124 df-rab 3126 df-v 3416 df-sbc 3663 df-csb 3758 df-dif 3801 df-un 3803 df-in 3805 df-ss 3812 df-pss 3814 df-nul 4147 df-if 4309 df-pw 4382 df-sn 4400 df-pr 4402 df-tp 4404 df-op 4406 df-uni 4661 df-iun 4744 df-br 4876 df-opab 4938 df-mpt 4955 df-tr 4978 df-id 5252 df-eprel 5257 df-po 5265 df-so 5266 df-fr 5305 df-we 5307 df-xp 5352 df-rel 5353 df-cnv 5354 df-co 5355 df-dm 5356 df-rn 5357 df-res 5358 df-ima 5359 df-pred 5924 df-ord 5970 df-on 5971 df-lim 5972 df-suc 5973 df-iota 6090 df-fun 6129 df-fn 6130 df-f 6131 df-f1 6132 df-fo 6133 df-f1o 6134 df-fv 6135 df-riota 6871 df-ov 6913 df-oprab 6914 df-mpt2 6915 df-om 7332 df-wrecs 7677 df-recs 7739 df-rdg 7777 df-er 8014 df-en 8229 df-dom 8230 df-sdom 8231 df-pnf 10400 df-mnf 10401 df-xr 10402 df-ltxr 10403 df-le 10404 df-sub 10594 df-neg 10595 df-nn 11358 df-2 11421 df-3 11422 df-4 11423 df-5 11424 df-6 11425 df-7 11426 df-8 11427 df-9 11428 df-n0 11626 df-z 11712 df-dec 11829 df-ndx 16232 df-slot 16233 df-base 16235 df-edgf 26295 df-iedg 26304 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |