| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > snstriedgval | Structured version Visualization version GIF version | ||
| Description: The set of indexed edges of a graph without edges represented as an extensible structure with vertices as base set and no indexed edges. See iedgvalsnop 28987 for the (degenerate) case where 𝑉 = (Base‘ndx). (Contributed by AV, 24-Sep-2020.) |
| Ref | Expression |
|---|---|
| snstrvtxval.v | ⊢ 𝑉 ∈ V |
| snstrvtxval.g | ⊢ 𝐺 = {〈(Base‘ndx), 𝑉〉} |
| Ref | Expression |
|---|---|
| snstriedgval | ⊢ (𝑉 ≠ (Base‘ndx) → (iEdg‘𝐺) = ∅) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | iedgval 28946 | . . 3 ⊢ (iEdg‘𝐺) = if(𝐺 ∈ (V × V), (2nd ‘𝐺), (.ef‘𝐺)) | |
| 2 | 1 | a1i 11 | . 2 ⊢ (𝑉 ≠ (Base‘ndx) → (iEdg‘𝐺) = if(𝐺 ∈ (V × V), (2nd ‘𝐺), (.ef‘𝐺))) |
| 3 | necom 2978 | . . . 4 ⊢ (𝑉 ≠ (Base‘ndx) ↔ (Base‘ndx) ≠ 𝑉) | |
| 4 | fvex 6835 | . . . . 5 ⊢ (Base‘ndx) ∈ V | |
| 5 | snstrvtxval.v | . . . . 5 ⊢ 𝑉 ∈ V | |
| 6 | snstrvtxval.g | . . . . 5 ⊢ 𝐺 = {〈(Base‘ndx), 𝑉〉} | |
| 7 | 4, 5, 6 | funsndifnop 7085 | . . . 4 ⊢ ((Base‘ndx) ≠ 𝑉 → ¬ 𝐺 ∈ (V × V)) |
| 8 | 3, 7 | sylbi 217 | . . 3 ⊢ (𝑉 ≠ (Base‘ndx) → ¬ 𝐺 ∈ (V × V)) |
| 9 | 8 | iffalsed 4487 | . 2 ⊢ (𝑉 ≠ (Base‘ndx) → if(𝐺 ∈ (V × V), (2nd ‘𝐺), (.ef‘𝐺)) = (.ef‘𝐺)) |
| 10 | snex 5375 | . . . . . 6 ⊢ {〈(Base‘ndx), 𝑉〉} ∈ V | |
| 11 | 10 | a1i 11 | . . . . 5 ⊢ (𝐺 = {〈(Base‘ndx), 𝑉〉} → {〈(Base‘ndx), 𝑉〉} ∈ V) |
| 12 | 6, 11 | eqeltrid 2832 | . . . 4 ⊢ (𝐺 = {〈(Base‘ndx), 𝑉〉} → 𝐺 ∈ V) |
| 13 | edgfndxid 28938 | . . . 4 ⊢ (𝐺 ∈ V → (.ef‘𝐺) = (𝐺‘(.ef‘ndx))) | |
| 14 | 6, 12, 13 | mp2b 10 | . . 3 ⊢ (.ef‘𝐺) = (𝐺‘(.ef‘ndx)) |
| 15 | basendxnedgfndx 28940 | . . . . . . . 8 ⊢ (Base‘ndx) ≠ (.ef‘ndx) | |
| 16 | 15 | nesymi 2982 | . . . . . . 7 ⊢ ¬ (.ef‘ndx) = (Base‘ndx) |
| 17 | 16 | a1i 11 | . . . . . 6 ⊢ (𝑉 ≠ (Base‘ndx) → ¬ (.ef‘ndx) = (Base‘ndx)) |
| 18 | fvex 6835 | . . . . . . 7 ⊢ (.ef‘ndx) ∈ V | |
| 19 | 18 | elsn 4592 | . . . . . 6 ⊢ ((.ef‘ndx) ∈ {(Base‘ndx)} ↔ (.ef‘ndx) = (Base‘ndx)) |
| 20 | 17, 19 | sylnibr 329 | . . . . 5 ⊢ (𝑉 ≠ (Base‘ndx) → ¬ (.ef‘ndx) ∈ {(Base‘ndx)}) |
| 21 | 6 | dmeqi 5847 | . . . . . 6 ⊢ dom 𝐺 = dom {〈(Base‘ndx), 𝑉〉} |
| 22 | dmsnopg 6162 | . . . . . . 7 ⊢ (𝑉 ∈ V → dom {〈(Base‘ndx), 𝑉〉} = {(Base‘ndx)}) | |
| 23 | 5, 22 | mp1i 13 | . . . . . 6 ⊢ (𝑉 ≠ (Base‘ndx) → dom {〈(Base‘ndx), 𝑉〉} = {(Base‘ndx)}) |
| 24 | 21, 23 | eqtrid 2776 | . . . . 5 ⊢ (𝑉 ≠ (Base‘ndx) → dom 𝐺 = {(Base‘ndx)}) |
| 25 | 20, 24 | neleqtrrd 2851 | . . . 4 ⊢ (𝑉 ≠ (Base‘ndx) → ¬ (.ef‘ndx) ∈ dom 𝐺) |
| 26 | ndmfv 6855 | . . . 4 ⊢ (¬ (.ef‘ndx) ∈ dom 𝐺 → (𝐺‘(.ef‘ndx)) = ∅) | |
| 27 | 25, 26 | syl 17 | . . 3 ⊢ (𝑉 ≠ (Base‘ndx) → (𝐺‘(.ef‘ndx)) = ∅) |
| 28 | 14, 27 | eqtrid 2776 | . 2 ⊢ (𝑉 ≠ (Base‘ndx) → (.ef‘𝐺) = ∅) |
| 29 | 2, 9, 28 | 3eqtrd 2768 | 1 ⊢ (𝑉 ≠ (Base‘ndx) → (iEdg‘𝐺) = ∅) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 = wceq 1540 ∈ wcel 2109 ≠ wne 2925 Vcvv 3436 ∅c0 4284 ifcif 4476 {csn 4577 〈cop 4583 × cxp 5617 dom cdm 5619 ‘cfv 6482 2nd c2nd 7923 ndxcnx 17104 Basecbs 17120 .efcedgf 28933 iEdgciedg 28942 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5235 ax-nul 5245 ax-pow 5304 ax-pr 5371 ax-un 7671 ax-cnex 11065 ax-resscn 11066 ax-1cn 11067 ax-icn 11068 ax-addcl 11069 ax-addrcl 11070 ax-mulcl 11071 ax-mulrcl 11072 ax-mulcom 11073 ax-addass 11074 ax-mulass 11075 ax-distr 11076 ax-i2m1 11077 ax-1ne0 11078 ax-1rid 11079 ax-rnegex 11080 ax-rrecex 11081 ax-cnre 11082 ax-pre-lttri 11083 ax-pre-lttrn 11084 ax-pre-ltadd 11085 ax-pre-mulgt0 11086 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-reu 3344 df-rab 3395 df-v 3438 df-sbc 3743 df-csb 3852 df-dif 3906 df-un 3908 df-in 3910 df-ss 3920 df-pss 3923 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4859 df-iun 4943 df-br 5093 df-opab 5155 df-mpt 5174 df-tr 5200 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-pred 6249 df-ord 6310 df-on 6311 df-lim 6312 df-suc 6313 df-iota 6438 df-fun 6484 df-fn 6485 df-f 6486 df-f1 6487 df-fo 6488 df-f1o 6489 df-fv 6490 df-riota 7306 df-ov 7352 df-oprab 7353 df-mpo 7354 df-om 7800 df-2nd 7925 df-frecs 8214 df-wrecs 8245 df-recs 8294 df-rdg 8332 df-er 8625 df-en 8873 df-dom 8874 df-sdom 8875 df-pnf 11151 df-mnf 11152 df-xr 11153 df-ltxr 11154 df-le 11155 df-sub 11349 df-neg 11350 df-nn 12129 df-2 12191 df-3 12192 df-4 12193 df-5 12194 df-6 12195 df-7 12196 df-8 12197 df-9 12198 df-n0 12385 df-z 12472 df-dec 12592 df-slot 17093 df-ndx 17105 df-base 17121 df-edgf 28934 df-iedg 28944 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |