| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > snstriedgval | Structured version Visualization version GIF version | ||
| Description: The set of indexed edges of a graph without edges represented as an extensible structure with vertices as base set and no indexed edges. See iedgvalsnop 29021 for the (degenerate) case where 𝑉 = (Base‘ndx). (Contributed by AV, 24-Sep-2020.) |
| Ref | Expression |
|---|---|
| snstrvtxval.v | ⊢ 𝑉 ∈ V |
| snstrvtxval.g | ⊢ 𝐺 = {〈(Base‘ndx), 𝑉〉} |
| Ref | Expression |
|---|---|
| snstriedgval | ⊢ (𝑉 ≠ (Base‘ndx) → (iEdg‘𝐺) = ∅) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | iedgval 28980 | . . 3 ⊢ (iEdg‘𝐺) = if(𝐺 ∈ (V × V), (2nd ‘𝐺), (.ef‘𝐺)) | |
| 2 | 1 | a1i 11 | . 2 ⊢ (𝑉 ≠ (Base‘ndx) → (iEdg‘𝐺) = if(𝐺 ∈ (V × V), (2nd ‘𝐺), (.ef‘𝐺))) |
| 3 | necom 2985 | . . . 4 ⊢ (𝑉 ≠ (Base‘ndx) ↔ (Base‘ndx) ≠ 𝑉) | |
| 4 | fvex 6889 | . . . . 5 ⊢ (Base‘ndx) ∈ V | |
| 5 | snstrvtxval.v | . . . . 5 ⊢ 𝑉 ∈ V | |
| 6 | snstrvtxval.g | . . . . 5 ⊢ 𝐺 = {〈(Base‘ndx), 𝑉〉} | |
| 7 | 4, 5, 6 | funsndifnop 7141 | . . . 4 ⊢ ((Base‘ndx) ≠ 𝑉 → ¬ 𝐺 ∈ (V × V)) |
| 8 | 3, 7 | sylbi 217 | . . 3 ⊢ (𝑉 ≠ (Base‘ndx) → ¬ 𝐺 ∈ (V × V)) |
| 9 | 8 | iffalsed 4511 | . 2 ⊢ (𝑉 ≠ (Base‘ndx) → if(𝐺 ∈ (V × V), (2nd ‘𝐺), (.ef‘𝐺)) = (.ef‘𝐺)) |
| 10 | snex 5406 | . . . . . 6 ⊢ {〈(Base‘ndx), 𝑉〉} ∈ V | |
| 11 | 10 | a1i 11 | . . . . 5 ⊢ (𝐺 = {〈(Base‘ndx), 𝑉〉} → {〈(Base‘ndx), 𝑉〉} ∈ V) |
| 12 | 6, 11 | eqeltrid 2838 | . . . 4 ⊢ (𝐺 = {〈(Base‘ndx), 𝑉〉} → 𝐺 ∈ V) |
| 13 | edgfndxid 28972 | . . . 4 ⊢ (𝐺 ∈ V → (.ef‘𝐺) = (𝐺‘(.ef‘ndx))) | |
| 14 | 6, 12, 13 | mp2b 10 | . . 3 ⊢ (.ef‘𝐺) = (𝐺‘(.ef‘ndx)) |
| 15 | basendxnedgfndx 28974 | . . . . . . . 8 ⊢ (Base‘ndx) ≠ (.ef‘ndx) | |
| 16 | 15 | nesymi 2989 | . . . . . . 7 ⊢ ¬ (.ef‘ndx) = (Base‘ndx) |
| 17 | 16 | a1i 11 | . . . . . 6 ⊢ (𝑉 ≠ (Base‘ndx) → ¬ (.ef‘ndx) = (Base‘ndx)) |
| 18 | fvex 6889 | . . . . . . 7 ⊢ (.ef‘ndx) ∈ V | |
| 19 | 18 | elsn 4616 | . . . . . 6 ⊢ ((.ef‘ndx) ∈ {(Base‘ndx)} ↔ (.ef‘ndx) = (Base‘ndx)) |
| 20 | 17, 19 | sylnibr 329 | . . . . 5 ⊢ (𝑉 ≠ (Base‘ndx) → ¬ (.ef‘ndx) ∈ {(Base‘ndx)}) |
| 21 | 6 | dmeqi 5884 | . . . . . 6 ⊢ dom 𝐺 = dom {〈(Base‘ndx), 𝑉〉} |
| 22 | dmsnopg 6202 | . . . . . . 7 ⊢ (𝑉 ∈ V → dom {〈(Base‘ndx), 𝑉〉} = {(Base‘ndx)}) | |
| 23 | 5, 22 | mp1i 13 | . . . . . 6 ⊢ (𝑉 ≠ (Base‘ndx) → dom {〈(Base‘ndx), 𝑉〉} = {(Base‘ndx)}) |
| 24 | 21, 23 | eqtrid 2782 | . . . . 5 ⊢ (𝑉 ≠ (Base‘ndx) → dom 𝐺 = {(Base‘ndx)}) |
| 25 | 20, 24 | neleqtrrd 2857 | . . . 4 ⊢ (𝑉 ≠ (Base‘ndx) → ¬ (.ef‘ndx) ∈ dom 𝐺) |
| 26 | ndmfv 6911 | . . . 4 ⊢ (¬ (.ef‘ndx) ∈ dom 𝐺 → (𝐺‘(.ef‘ndx)) = ∅) | |
| 27 | 25, 26 | syl 17 | . . 3 ⊢ (𝑉 ≠ (Base‘ndx) → (𝐺‘(.ef‘ndx)) = ∅) |
| 28 | 14, 27 | eqtrid 2782 | . 2 ⊢ (𝑉 ≠ (Base‘ndx) → (.ef‘𝐺) = ∅) |
| 29 | 2, 9, 28 | 3eqtrd 2774 | 1 ⊢ (𝑉 ≠ (Base‘ndx) → (iEdg‘𝐺) = ∅) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 = wceq 1540 ∈ wcel 2108 ≠ wne 2932 Vcvv 3459 ∅c0 4308 ifcif 4500 {csn 4601 〈cop 4607 × cxp 5652 dom cdm 5654 ‘cfv 6531 2nd c2nd 7987 ndxcnx 17212 Basecbs 17228 .efcedgf 28967 iEdgciedg 28976 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7729 ax-cnex 11185 ax-resscn 11186 ax-1cn 11187 ax-icn 11188 ax-addcl 11189 ax-addrcl 11190 ax-mulcl 11191 ax-mulrcl 11192 ax-mulcom 11193 ax-addass 11194 ax-mulass 11195 ax-distr 11196 ax-i2m1 11197 ax-1ne0 11198 ax-1rid 11199 ax-rnegex 11200 ax-rrecex 11201 ax-cnre 11202 ax-pre-lttri 11203 ax-pre-lttrn 11204 ax-pre-ltadd 11205 ax-pre-mulgt0 11206 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-nel 3037 df-ral 3052 df-rex 3061 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-pss 3946 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-iun 4969 df-br 5120 df-opab 5182 df-mpt 5202 df-tr 5230 df-id 5548 df-eprel 5553 df-po 5561 df-so 5562 df-fr 5606 df-we 5608 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-pred 6290 df-ord 6355 df-on 6356 df-lim 6357 df-suc 6358 df-iota 6484 df-fun 6533 df-fn 6534 df-f 6535 df-f1 6536 df-fo 6537 df-f1o 6538 df-fv 6539 df-riota 7362 df-ov 7408 df-oprab 7409 df-mpo 7410 df-om 7862 df-2nd 7989 df-frecs 8280 df-wrecs 8311 df-recs 8385 df-rdg 8424 df-er 8719 df-en 8960 df-dom 8961 df-sdom 8962 df-pnf 11271 df-mnf 11272 df-xr 11273 df-ltxr 11274 df-le 11275 df-sub 11468 df-neg 11469 df-nn 12241 df-2 12303 df-3 12304 df-4 12305 df-5 12306 df-6 12307 df-7 12308 df-8 12309 df-9 12310 df-n0 12502 df-z 12589 df-dec 12709 df-slot 17201 df-ndx 17213 df-base 17229 df-edgf 28968 df-iedg 28978 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |