![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > snstriedgval | Structured version Visualization version GIF version |
Description: The set of indexed edges of a graph without edges represented as an extensible structure with vertices as base set and no indexed edges. See iedgvalsnop 28291 for the (degenerate) case where 𝑉 = (Base‘ndx). (Contributed by AV, 24-Sep-2020.) |
Ref | Expression |
---|---|
snstrvtxval.v | ⊢ 𝑉 ∈ V |
snstrvtxval.g | ⊢ 𝐺 = {⟨(Base‘ndx), 𝑉⟩} |
Ref | Expression |
---|---|
snstriedgval | ⊢ (𝑉 ≠ (Base‘ndx) → (iEdg‘𝐺) = ∅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | iedgval 28250 | . . 3 ⊢ (iEdg‘𝐺) = if(𝐺 ∈ (V × V), (2nd ‘𝐺), (.ef‘𝐺)) | |
2 | 1 | a1i 11 | . 2 ⊢ (𝑉 ≠ (Base‘ndx) → (iEdg‘𝐺) = if(𝐺 ∈ (V × V), (2nd ‘𝐺), (.ef‘𝐺))) |
3 | necom 2994 | . . . 4 ⊢ (𝑉 ≠ (Base‘ndx) ↔ (Base‘ndx) ≠ 𝑉) | |
4 | fvex 6901 | . . . . 5 ⊢ (Base‘ndx) ∈ V | |
5 | snstrvtxval.v | . . . . 5 ⊢ 𝑉 ∈ V | |
6 | snstrvtxval.g | . . . . 5 ⊢ 𝐺 = {⟨(Base‘ndx), 𝑉⟩} | |
7 | 4, 5, 6 | funsndifnop 7145 | . . . 4 ⊢ ((Base‘ndx) ≠ 𝑉 → ¬ 𝐺 ∈ (V × V)) |
8 | 3, 7 | sylbi 216 | . . 3 ⊢ (𝑉 ≠ (Base‘ndx) → ¬ 𝐺 ∈ (V × V)) |
9 | 8 | iffalsed 4538 | . 2 ⊢ (𝑉 ≠ (Base‘ndx) → if(𝐺 ∈ (V × V), (2nd ‘𝐺), (.ef‘𝐺)) = (.ef‘𝐺)) |
10 | snex 5430 | . . . . . 6 ⊢ {⟨(Base‘ndx), 𝑉⟩} ∈ V | |
11 | 10 | a1i 11 | . . . . 5 ⊢ (𝐺 = {⟨(Base‘ndx), 𝑉⟩} → {⟨(Base‘ndx), 𝑉⟩} ∈ V) |
12 | 6, 11 | eqeltrid 2837 | . . . 4 ⊢ (𝐺 = {⟨(Base‘ndx), 𝑉⟩} → 𝐺 ∈ V) |
13 | edgfndxid 28240 | . . . 4 ⊢ (𝐺 ∈ V → (.ef‘𝐺) = (𝐺‘(.ef‘ndx))) | |
14 | 6, 12, 13 | mp2b 10 | . . 3 ⊢ (.ef‘𝐺) = (𝐺‘(.ef‘ndx)) |
15 | basendxnedgfndx 28244 | . . . . . . . 8 ⊢ (Base‘ndx) ≠ (.ef‘ndx) | |
16 | 15 | nesymi 2998 | . . . . . . 7 ⊢ ¬ (.ef‘ndx) = (Base‘ndx) |
17 | 16 | a1i 11 | . . . . . 6 ⊢ (𝑉 ≠ (Base‘ndx) → ¬ (.ef‘ndx) = (Base‘ndx)) |
18 | fvex 6901 | . . . . . . 7 ⊢ (.ef‘ndx) ∈ V | |
19 | 18 | elsn 4642 | . . . . . 6 ⊢ ((.ef‘ndx) ∈ {(Base‘ndx)} ↔ (.ef‘ndx) = (Base‘ndx)) |
20 | 17, 19 | sylnibr 328 | . . . . 5 ⊢ (𝑉 ≠ (Base‘ndx) → ¬ (.ef‘ndx) ∈ {(Base‘ndx)}) |
21 | 6 | dmeqi 5902 | . . . . . 6 ⊢ dom 𝐺 = dom {⟨(Base‘ndx), 𝑉⟩} |
22 | dmsnopg 6209 | . . . . . . 7 ⊢ (𝑉 ∈ V → dom {⟨(Base‘ndx), 𝑉⟩} = {(Base‘ndx)}) | |
23 | 5, 22 | mp1i 13 | . . . . . 6 ⊢ (𝑉 ≠ (Base‘ndx) → dom {⟨(Base‘ndx), 𝑉⟩} = {(Base‘ndx)}) |
24 | 21, 23 | eqtrid 2784 | . . . . 5 ⊢ (𝑉 ≠ (Base‘ndx) → dom 𝐺 = {(Base‘ndx)}) |
25 | 20, 24 | neleqtrrd 2856 | . . . 4 ⊢ (𝑉 ≠ (Base‘ndx) → ¬ (.ef‘ndx) ∈ dom 𝐺) |
26 | ndmfv 6923 | . . . 4 ⊢ (¬ (.ef‘ndx) ∈ dom 𝐺 → (𝐺‘(.ef‘ndx)) = ∅) | |
27 | 25, 26 | syl 17 | . . 3 ⊢ (𝑉 ≠ (Base‘ndx) → (𝐺‘(.ef‘ndx)) = ∅) |
28 | 14, 27 | eqtrid 2784 | . 2 ⊢ (𝑉 ≠ (Base‘ndx) → (.ef‘𝐺) = ∅) |
29 | 2, 9, 28 | 3eqtrd 2776 | 1 ⊢ (𝑉 ≠ (Base‘ndx) → (iEdg‘𝐺) = ∅) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 = wceq 1541 ∈ wcel 2106 ≠ wne 2940 Vcvv 3474 ∅c0 4321 ifcif 4527 {csn 4627 ⟨cop 4633 × cxp 5673 dom cdm 5675 ‘cfv 6540 2nd c2nd 7970 ndxcnx 17122 Basecbs 17140 .efcedgf 28235 iEdgciedg 28246 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-sep 5298 ax-nul 5305 ax-pow 5362 ax-pr 5426 ax-un 7721 ax-cnex 11162 ax-resscn 11163 ax-1cn 11164 ax-icn 11165 ax-addcl 11166 ax-addrcl 11167 ax-mulcl 11168 ax-mulrcl 11169 ax-mulcom 11170 ax-addass 11171 ax-mulass 11172 ax-distr 11173 ax-i2m1 11174 ax-1ne0 11175 ax-1rid 11176 ax-rnegex 11177 ax-rrecex 11178 ax-cnre 11179 ax-pre-lttri 11180 ax-pre-lttrn 11181 ax-pre-ltadd 11182 ax-pre-mulgt0 11183 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-pss 3966 df-nul 4322 df-if 4528 df-pw 4603 df-sn 4628 df-pr 4630 df-op 4634 df-uni 4908 df-iun 4998 df-br 5148 df-opab 5210 df-mpt 5231 df-tr 5265 df-id 5573 df-eprel 5579 df-po 5587 df-so 5588 df-fr 5630 df-we 5632 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-rn 5686 df-res 5687 df-ima 5688 df-pred 6297 df-ord 6364 df-on 6365 df-lim 6366 df-suc 6367 df-iota 6492 df-fun 6542 df-fn 6543 df-f 6544 df-f1 6545 df-fo 6546 df-f1o 6547 df-fv 6548 df-riota 7361 df-ov 7408 df-oprab 7409 df-mpo 7410 df-om 7852 df-2nd 7972 df-frecs 8262 df-wrecs 8293 df-recs 8367 df-rdg 8406 df-er 8699 df-en 8936 df-dom 8937 df-sdom 8938 df-pnf 11246 df-mnf 11247 df-xr 11248 df-ltxr 11249 df-le 11250 df-sub 11442 df-neg 11443 df-nn 12209 df-2 12271 df-3 12272 df-4 12273 df-5 12274 df-6 12275 df-7 12276 df-8 12277 df-9 12278 df-n0 12469 df-z 12555 df-dec 12674 df-slot 17111 df-ndx 17123 df-base 17141 df-edgf 28236 df-iedg 28248 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |