MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  snstriedgval Structured version   Visualization version   GIF version

Theorem snstriedgval 26343
Description: The set of indexed edges of a graph without edges represented as an extensible structure with vertices as base set and no indexed edges. See iedgvalsnop 26347 for the (degenerate) case where 𝑉 = (Base‘ndx). (Contributed by AV, 24-Sep-2020.)
Hypotheses
Ref Expression
snstrvtxval.v 𝑉 ∈ V
snstrvtxval.g 𝐺 = {⟨(Base‘ndx), 𝑉⟩}
Assertion
Ref Expression
snstriedgval (𝑉 ≠ (Base‘ndx) → (iEdg‘𝐺) = ∅)

Proof of Theorem snstriedgval
StepHypRef Expression
1 iedgval 26306 . . 3 (iEdg‘𝐺) = if(𝐺 ∈ (V × V), (2nd𝐺), (.ef‘𝐺))
21a1i 11 . 2 (𝑉 ≠ (Base‘ndx) → (iEdg‘𝐺) = if(𝐺 ∈ (V × V), (2nd𝐺), (.ef‘𝐺)))
3 necom 3052 . . . 4 (𝑉 ≠ (Base‘ndx) ↔ (Base‘ndx) ≠ 𝑉)
4 fvex 6450 . . . . 5 (Base‘ndx) ∈ V
5 snstrvtxval.v . . . . 5 𝑉 ∈ V
6 snstrvtxval.g . . . . 5 𝐺 = {⟨(Base‘ndx), 𝑉⟩}
74, 5, 6funsndifnop 6672 . . . 4 ((Base‘ndx) ≠ 𝑉 → ¬ 𝐺 ∈ (V × V))
83, 7sylbi 209 . . 3 (𝑉 ≠ (Base‘ndx) → ¬ 𝐺 ∈ (V × V))
98iffalsed 4319 . 2 (𝑉 ≠ (Base‘ndx) → if(𝐺 ∈ (V × V), (2nd𝐺), (.ef‘𝐺)) = (.ef‘𝐺))
10 snex 5131 . . . . . 6 {⟨(Base‘ndx), 𝑉⟩} ∈ V
1110a1i 11 . . . . 5 (𝐺 = {⟨(Base‘ndx), 𝑉⟩} → {⟨(Base‘ndx), 𝑉⟩} ∈ V)
126, 11syl5eqel 2910 . . . 4 (𝐺 = {⟨(Base‘ndx), 𝑉⟩} → 𝐺 ∈ V)
13 edgfndxid 26298 . . . 4 (𝐺 ∈ V → (.ef‘𝐺) = (𝐺‘(.ef‘ndx)))
146, 12, 13mp2b 10 . . 3 (.ef‘𝐺) = (𝐺‘(.ef‘ndx))
15 slotsbaseefdif 26300 . . . . . . . 8 (Base‘ndx) ≠ (.ef‘ndx)
1615nesymi 3056 . . . . . . 7 ¬ (.ef‘ndx) = (Base‘ndx)
1716a1i 11 . . . . . 6 (𝑉 ≠ (Base‘ndx) → ¬ (.ef‘ndx) = (Base‘ndx))
18 fvex 6450 . . . . . . 7 (.ef‘ndx) ∈ V
1918elsn 4414 . . . . . 6 ((.ef‘ndx) ∈ {(Base‘ndx)} ↔ (.ef‘ndx) = (Base‘ndx))
2017, 19sylnibr 321 . . . . 5 (𝑉 ≠ (Base‘ndx) → ¬ (.ef‘ndx) ∈ {(Base‘ndx)})
216dmeqi 5561 . . . . . 6 dom 𝐺 = dom {⟨(Base‘ndx), 𝑉⟩}
22 dmsnopg 5851 . . . . . . 7 (𝑉 ∈ V → dom {⟨(Base‘ndx), 𝑉⟩} = {(Base‘ndx)})
235, 22mp1i 13 . . . . . 6 (𝑉 ≠ (Base‘ndx) → dom {⟨(Base‘ndx), 𝑉⟩} = {(Base‘ndx)})
2421, 23syl5eq 2873 . . . . 5 (𝑉 ≠ (Base‘ndx) → dom 𝐺 = {(Base‘ndx)})
2520, 24neleqtrrd 2928 . . . 4 (𝑉 ≠ (Base‘ndx) → ¬ (.ef‘ndx) ∈ dom 𝐺)
26 ndmfv 6467 . . . 4 (¬ (.ef‘ndx) ∈ dom 𝐺 → (𝐺‘(.ef‘ndx)) = ∅)
2725, 26syl 17 . . 3 (𝑉 ≠ (Base‘ndx) → (𝐺‘(.ef‘ndx)) = ∅)
2814, 27syl5eq 2873 . 2 (𝑉 ≠ (Base‘ndx) → (.ef‘𝐺) = ∅)
292, 9, 283eqtrd 2865 1 (𝑉 ≠ (Base‘ndx) → (iEdg‘𝐺) = ∅)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4   = wceq 1656  wcel 2164  wne 2999  Vcvv 3414  c0 4146  ifcif 4308  {csn 4399  cop 4405   × cxp 5344  dom cdm 5346  cfv 6127  2nd c2nd 7432  ndxcnx 16226  Basecbs 16229  .efcedgf 26294  iEdgciedg 26302
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1894  ax-4 1908  ax-5 2009  ax-6 2075  ax-7 2112  ax-8 2166  ax-9 2173  ax-10 2192  ax-11 2207  ax-12 2220  ax-13 2389  ax-ext 2803  ax-sep 5007  ax-nul 5015  ax-pow 5067  ax-pr 5129  ax-un 7214  ax-cnex 10315  ax-resscn 10316  ax-1cn 10317  ax-icn 10318  ax-addcl 10319  ax-addrcl 10320  ax-mulcl 10321  ax-mulrcl 10322  ax-mulcom 10323  ax-addass 10324  ax-mulass 10325  ax-distr 10326  ax-i2m1 10327  ax-1ne0 10328  ax-1rid 10329  ax-rnegex 10330  ax-rrecex 10331  ax-cnre 10332  ax-pre-lttri 10333  ax-pre-lttrn 10334  ax-pre-ltadd 10335  ax-pre-mulgt0 10336
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 879  df-3or 1112  df-3an 1113  df-tru 1660  df-fal 1670  df-ex 1879  df-nf 1883  df-sb 2068  df-mo 2605  df-eu 2640  df-clab 2812  df-cleq 2818  df-clel 2821  df-nfc 2958  df-ne 3000  df-nel 3103  df-ral 3122  df-rex 3123  df-reu 3124  df-rab 3126  df-v 3416  df-sbc 3663  df-csb 3758  df-dif 3801  df-un 3803  df-in 3805  df-ss 3812  df-pss 3814  df-nul 4147  df-if 4309  df-pw 4382  df-sn 4400  df-pr 4402  df-tp 4404  df-op 4406  df-uni 4661  df-iun 4744  df-br 4876  df-opab 4938  df-mpt 4955  df-tr 4978  df-id 5252  df-eprel 5257  df-po 5265  df-so 5266  df-fr 5305  df-we 5307  df-xp 5352  df-rel 5353  df-cnv 5354  df-co 5355  df-dm 5356  df-rn 5357  df-res 5358  df-ima 5359  df-pred 5924  df-ord 5970  df-on 5971  df-lim 5972  df-suc 5973  df-iota 6090  df-fun 6129  df-fn 6130  df-f 6131  df-f1 6132  df-fo 6133  df-f1o 6134  df-fv 6135  df-riota 6871  df-ov 6913  df-oprab 6914  df-mpt2 6915  df-om 7332  df-wrecs 7677  df-recs 7739  df-rdg 7777  df-er 8014  df-en 8229  df-dom 8230  df-sdom 8231  df-pnf 10400  df-mnf 10401  df-xr 10402  df-ltxr 10403  df-le 10404  df-sub 10594  df-neg 10595  df-nn 11358  df-2 11421  df-3 11422  df-4 11423  df-5 11424  df-6 11425  df-7 11426  df-8 11427  df-9 11428  df-n0 11626  df-z 11712  df-dec 11829  df-ndx 16232  df-slot 16233  df-base 16235  df-edgf 26295  df-iedg 26304
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator