Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lindssn Structured version   Visualization version   GIF version

Theorem lindssn 33393
Description: Any singleton of a nonzero element is an independent set. (Contributed by Thierry Arnoux, 5-Aug-2023.)
Hypotheses
Ref Expression
lindssn.1 𝐵 = (Base‘𝑊)
lindssn.2 0 = (0g𝑊)
Assertion
Ref Expression
lindssn ((𝑊 ∈ LVec ∧ 𝑋𝐵𝑋0 ) → {𝑋} ∈ (LIndS‘𝑊))

Proof of Theorem lindssn
Dummy variables 𝑦 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simp1 1136 . 2 ((𝑊 ∈ LVec ∧ 𝑋𝐵𝑋0 ) → 𝑊 ∈ LVec)
2 snssi 4784 . . 3 (𝑋𝐵 → {𝑋} ⊆ 𝐵)
323ad2ant2 1134 . 2 ((𝑊 ∈ LVec ∧ 𝑋𝐵𝑋0 ) → {𝑋} ⊆ 𝐵)
4 simpr 484 . . . . . . . . . 10 (((𝑊 ∈ LVec ∧ 𝑋𝐵𝑋0 ) ∧ 𝑦 ∈ ((Base‘(Scalar‘𝑊)) ∖ {(0g‘(Scalar‘𝑊))})) → 𝑦 ∈ ((Base‘(Scalar‘𝑊)) ∖ {(0g‘(Scalar‘𝑊))}))
5 eldifsni 4766 . . . . . . . . . 10 (𝑦 ∈ ((Base‘(Scalar‘𝑊)) ∖ {(0g‘(Scalar‘𝑊))}) → 𝑦 ≠ (0g‘(Scalar‘𝑊)))
64, 5syl 17 . . . . . . . . 9 (((𝑊 ∈ LVec ∧ 𝑋𝐵𝑋0 ) ∧ 𝑦 ∈ ((Base‘(Scalar‘𝑊)) ∖ {(0g‘(Scalar‘𝑊))})) → 𝑦 ≠ (0g‘(Scalar‘𝑊)))
76neneqd 2937 . . . . . . . 8 (((𝑊 ∈ LVec ∧ 𝑋𝐵𝑋0 ) ∧ 𝑦 ∈ ((Base‘(Scalar‘𝑊)) ∖ {(0g‘(Scalar‘𝑊))})) → ¬ 𝑦 = (0g‘(Scalar‘𝑊)))
8 simpl3 1194 . . . . . . . . 9 (((𝑊 ∈ LVec ∧ 𝑋𝐵𝑋0 ) ∧ 𝑦 ∈ ((Base‘(Scalar‘𝑊)) ∖ {(0g‘(Scalar‘𝑊))})) → 𝑋0 )
98neneqd 2937 . . . . . . . 8 (((𝑊 ∈ LVec ∧ 𝑋𝐵𝑋0 ) ∧ 𝑦 ∈ ((Base‘(Scalar‘𝑊)) ∖ {(0g‘(Scalar‘𝑊))})) → ¬ 𝑋 = 0 )
10 ioran 985 . . . . . . . 8 (¬ (𝑦 = (0g‘(Scalar‘𝑊)) ∨ 𝑋 = 0 ) ↔ (¬ 𝑦 = (0g‘(Scalar‘𝑊)) ∧ ¬ 𝑋 = 0 ))
117, 9, 10sylanbrc 583 . . . . . . 7 (((𝑊 ∈ LVec ∧ 𝑋𝐵𝑋0 ) ∧ 𝑦 ∈ ((Base‘(Scalar‘𝑊)) ∖ {(0g‘(Scalar‘𝑊))})) → ¬ (𝑦 = (0g‘(Scalar‘𝑊)) ∨ 𝑋 = 0 ))
12 lindssn.1 . . . . . . . . 9 𝐵 = (Base‘𝑊)
13 eqid 2735 . . . . . . . . 9 ( ·𝑠𝑊) = ( ·𝑠𝑊)
14 eqid 2735 . . . . . . . . 9 (Scalar‘𝑊) = (Scalar‘𝑊)
15 eqid 2735 . . . . . . . . 9 (Base‘(Scalar‘𝑊)) = (Base‘(Scalar‘𝑊))
16 eqid 2735 . . . . . . . . 9 (0g‘(Scalar‘𝑊)) = (0g‘(Scalar‘𝑊))
17 lindssn.2 . . . . . . . . 9 0 = (0g𝑊)
181adantr 480 . . . . . . . . 9 (((𝑊 ∈ LVec ∧ 𝑋𝐵𝑋0 ) ∧ 𝑦 ∈ ((Base‘(Scalar‘𝑊)) ∖ {(0g‘(Scalar‘𝑊))})) → 𝑊 ∈ LVec)
194eldifad 3938 . . . . . . . . 9 (((𝑊 ∈ LVec ∧ 𝑋𝐵𝑋0 ) ∧ 𝑦 ∈ ((Base‘(Scalar‘𝑊)) ∖ {(0g‘(Scalar‘𝑊))})) → 𝑦 ∈ (Base‘(Scalar‘𝑊)))
20 simpl2 1193 . . . . . . . . 9 (((𝑊 ∈ LVec ∧ 𝑋𝐵𝑋0 ) ∧ 𝑦 ∈ ((Base‘(Scalar‘𝑊)) ∖ {(0g‘(Scalar‘𝑊))})) → 𝑋𝐵)
2112, 13, 14, 15, 16, 17, 18, 19, 20lvecvs0or 21069 . . . . . . . 8 (((𝑊 ∈ LVec ∧ 𝑋𝐵𝑋0 ) ∧ 𝑦 ∈ ((Base‘(Scalar‘𝑊)) ∖ {(0g‘(Scalar‘𝑊))})) → ((𝑦( ·𝑠𝑊)𝑋) = 0 ↔ (𝑦 = (0g‘(Scalar‘𝑊)) ∨ 𝑋 = 0 )))
2221necon3abid 2968 . . . . . . 7 (((𝑊 ∈ LVec ∧ 𝑋𝐵𝑋0 ) ∧ 𝑦 ∈ ((Base‘(Scalar‘𝑊)) ∖ {(0g‘(Scalar‘𝑊))})) → ((𝑦( ·𝑠𝑊)𝑋) ≠ 0 ↔ ¬ (𝑦 = (0g‘(Scalar‘𝑊)) ∨ 𝑋 = 0 )))
2311, 22mpbird 257 . . . . . 6 (((𝑊 ∈ LVec ∧ 𝑋𝐵𝑋0 ) ∧ 𝑦 ∈ ((Base‘(Scalar‘𝑊)) ∖ {(0g‘(Scalar‘𝑊))})) → (𝑦( ·𝑠𝑊)𝑋) ≠ 0 )
24 nelsn 4642 . . . . . 6 ((𝑦( ·𝑠𝑊)𝑋) ≠ 0 → ¬ (𝑦( ·𝑠𝑊)𝑋) ∈ { 0 })
2523, 24syl 17 . . . . 5 (((𝑊 ∈ LVec ∧ 𝑋𝐵𝑋0 ) ∧ 𝑦 ∈ ((Base‘(Scalar‘𝑊)) ∖ {(0g‘(Scalar‘𝑊))})) → ¬ (𝑦( ·𝑠𝑊)𝑋) ∈ { 0 })
26 difid 4351 . . . . . . . 8 ({𝑋} ∖ {𝑋}) = ∅
2726a1i 11 . . . . . . 7 (((𝑊 ∈ LVec ∧ 𝑋𝐵𝑋0 ) ∧ 𝑦 ∈ ((Base‘(Scalar‘𝑊)) ∖ {(0g‘(Scalar‘𝑊))})) → ({𝑋} ∖ {𝑋}) = ∅)
2827fveq2d 6880 . . . . . 6 (((𝑊 ∈ LVec ∧ 𝑋𝐵𝑋0 ) ∧ 𝑦 ∈ ((Base‘(Scalar‘𝑊)) ∖ {(0g‘(Scalar‘𝑊))})) → ((LSpan‘𝑊)‘({𝑋} ∖ {𝑋})) = ((LSpan‘𝑊)‘∅))
29 lveclmod 21064 . . . . . . . 8 (𝑊 ∈ LVec → 𝑊 ∈ LMod)
30 eqid 2735 . . . . . . . . 9 (LSpan‘𝑊) = (LSpan‘𝑊)
3117, 30lsp0 20966 . . . . . . . 8 (𝑊 ∈ LMod → ((LSpan‘𝑊)‘∅) = { 0 })
321, 29, 313syl 18 . . . . . . 7 ((𝑊 ∈ LVec ∧ 𝑋𝐵𝑋0 ) → ((LSpan‘𝑊)‘∅) = { 0 })
3332adantr 480 . . . . . 6 (((𝑊 ∈ LVec ∧ 𝑋𝐵𝑋0 ) ∧ 𝑦 ∈ ((Base‘(Scalar‘𝑊)) ∖ {(0g‘(Scalar‘𝑊))})) → ((LSpan‘𝑊)‘∅) = { 0 })
3428, 33eqtrd 2770 . . . . 5 (((𝑊 ∈ LVec ∧ 𝑋𝐵𝑋0 ) ∧ 𝑦 ∈ ((Base‘(Scalar‘𝑊)) ∖ {(0g‘(Scalar‘𝑊))})) → ((LSpan‘𝑊)‘({𝑋} ∖ {𝑋})) = { 0 })
3525, 34neleqtrrd 2857 . . . 4 (((𝑊 ∈ LVec ∧ 𝑋𝐵𝑋0 ) ∧ 𝑦 ∈ ((Base‘(Scalar‘𝑊)) ∖ {(0g‘(Scalar‘𝑊))})) → ¬ (𝑦( ·𝑠𝑊)𝑋) ∈ ((LSpan‘𝑊)‘({𝑋} ∖ {𝑋})))
3635ralrimiva 3132 . . 3 ((𝑊 ∈ LVec ∧ 𝑋𝐵𝑋0 ) → ∀𝑦 ∈ ((Base‘(Scalar‘𝑊)) ∖ {(0g‘(Scalar‘𝑊))}) ¬ (𝑦( ·𝑠𝑊)𝑋) ∈ ((LSpan‘𝑊)‘({𝑋} ∖ {𝑋})))
37 oveq2 7413 . . . . . . . 8 (𝑥 = 𝑋 → (𝑦( ·𝑠𝑊)𝑥) = (𝑦( ·𝑠𝑊)𝑋))
38 sneq 4611 . . . . . . . . . 10 (𝑥 = 𝑋 → {𝑥} = {𝑋})
3938difeq2d 4101 . . . . . . . . 9 (𝑥 = 𝑋 → ({𝑋} ∖ {𝑥}) = ({𝑋} ∖ {𝑋}))
4039fveq2d 6880 . . . . . . . 8 (𝑥 = 𝑋 → ((LSpan‘𝑊)‘({𝑋} ∖ {𝑥})) = ((LSpan‘𝑊)‘({𝑋} ∖ {𝑋})))
4137, 40eleq12d 2828 . . . . . . 7 (𝑥 = 𝑋 → ((𝑦( ·𝑠𝑊)𝑥) ∈ ((LSpan‘𝑊)‘({𝑋} ∖ {𝑥})) ↔ (𝑦( ·𝑠𝑊)𝑋) ∈ ((LSpan‘𝑊)‘({𝑋} ∖ {𝑋}))))
4241notbid 318 . . . . . 6 (𝑥 = 𝑋 → (¬ (𝑦( ·𝑠𝑊)𝑥) ∈ ((LSpan‘𝑊)‘({𝑋} ∖ {𝑥})) ↔ ¬ (𝑦( ·𝑠𝑊)𝑋) ∈ ((LSpan‘𝑊)‘({𝑋} ∖ {𝑋}))))
4342ralbidv 3163 . . . . 5 (𝑥 = 𝑋 → (∀𝑦 ∈ ((Base‘(Scalar‘𝑊)) ∖ {(0g‘(Scalar‘𝑊))}) ¬ (𝑦( ·𝑠𝑊)𝑥) ∈ ((LSpan‘𝑊)‘({𝑋} ∖ {𝑥})) ↔ ∀𝑦 ∈ ((Base‘(Scalar‘𝑊)) ∖ {(0g‘(Scalar‘𝑊))}) ¬ (𝑦( ·𝑠𝑊)𝑋) ∈ ((LSpan‘𝑊)‘({𝑋} ∖ {𝑋}))))
4443ralsng 4651 . . . 4 (𝑋𝐵 → (∀𝑥 ∈ {𝑋}∀𝑦 ∈ ((Base‘(Scalar‘𝑊)) ∖ {(0g‘(Scalar‘𝑊))}) ¬ (𝑦( ·𝑠𝑊)𝑥) ∈ ((LSpan‘𝑊)‘({𝑋} ∖ {𝑥})) ↔ ∀𝑦 ∈ ((Base‘(Scalar‘𝑊)) ∖ {(0g‘(Scalar‘𝑊))}) ¬ (𝑦( ·𝑠𝑊)𝑋) ∈ ((LSpan‘𝑊)‘({𝑋} ∖ {𝑋}))))
45443ad2ant2 1134 . . 3 ((𝑊 ∈ LVec ∧ 𝑋𝐵𝑋0 ) → (∀𝑥 ∈ {𝑋}∀𝑦 ∈ ((Base‘(Scalar‘𝑊)) ∖ {(0g‘(Scalar‘𝑊))}) ¬ (𝑦( ·𝑠𝑊)𝑥) ∈ ((LSpan‘𝑊)‘({𝑋} ∖ {𝑥})) ↔ ∀𝑦 ∈ ((Base‘(Scalar‘𝑊)) ∖ {(0g‘(Scalar‘𝑊))}) ¬ (𝑦( ·𝑠𝑊)𝑋) ∈ ((LSpan‘𝑊)‘({𝑋} ∖ {𝑋}))))
4636, 45mpbird 257 . 2 ((𝑊 ∈ LVec ∧ 𝑋𝐵𝑋0 ) → ∀𝑥 ∈ {𝑋}∀𝑦 ∈ ((Base‘(Scalar‘𝑊)) ∖ {(0g‘(Scalar‘𝑊))}) ¬ (𝑦( ·𝑠𝑊)𝑥) ∈ ((LSpan‘𝑊)‘({𝑋} ∖ {𝑥})))
4712, 13, 30, 14, 15, 16islinds2 21773 . . 3 (𝑊 ∈ LVec → ({𝑋} ∈ (LIndS‘𝑊) ↔ ({𝑋} ⊆ 𝐵 ∧ ∀𝑥 ∈ {𝑋}∀𝑦 ∈ ((Base‘(Scalar‘𝑊)) ∖ {(0g‘(Scalar‘𝑊))}) ¬ (𝑦( ·𝑠𝑊)𝑥) ∈ ((LSpan‘𝑊)‘({𝑋} ∖ {𝑥})))))
4847biimpar 477 . 2 ((𝑊 ∈ LVec ∧ ({𝑋} ⊆ 𝐵 ∧ ∀𝑥 ∈ {𝑋}∀𝑦 ∈ ((Base‘(Scalar‘𝑊)) ∖ {(0g‘(Scalar‘𝑊))}) ¬ (𝑦( ·𝑠𝑊)𝑥) ∈ ((LSpan‘𝑊)‘({𝑋} ∖ {𝑥})))) → {𝑋} ∈ (LIndS‘𝑊))
491, 3, 46, 48syl12anc 836 1 ((𝑊 ∈ LVec ∧ 𝑋𝐵𝑋0 ) → {𝑋} ∈ (LIndS‘𝑊))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 847  w3a 1086   = wceq 1540  wcel 2108  wne 2932  wral 3051  cdif 3923  wss 3926  c0 4308  {csn 4601  cfv 6531  (class class class)co 7405  Basecbs 17228  Scalarcsca 17274   ·𝑠 cvsca 17275  0gc0g 17453  LModclmod 20817  LSpanclspn 20928  LVecclvec 21060  LIndSclinds 21765
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-rep 5249  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7729  ax-cnex 11185  ax-resscn 11186  ax-1cn 11187  ax-icn 11188  ax-addcl 11189  ax-addrcl 11190  ax-mulcl 11191  ax-mulrcl 11192  ax-mulcom 11193  ax-addass 11194  ax-mulass 11195  ax-distr 11196  ax-i2m1 11197  ax-1ne0 11198  ax-1rid 11199  ax-rnegex 11200  ax-rrecex 11201  ax-cnre 11202  ax-pre-lttri 11203  ax-pre-lttrn 11204  ax-pre-ltadd 11205  ax-pre-mulgt0 11206
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-nel 3037  df-ral 3052  df-rex 3061  df-rmo 3359  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-int 4923  df-iun 4969  df-br 5120  df-opab 5182  df-mpt 5202  df-tr 5230  df-id 5548  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-we 5608  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-pred 6290  df-ord 6355  df-on 6356  df-lim 6357  df-suc 6358  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-f1 6536  df-fo 6537  df-f1o 6538  df-fv 6539  df-riota 7362  df-ov 7408  df-oprab 7409  df-mpo 7410  df-om 7862  df-1st 7988  df-2nd 7989  df-tpos 8225  df-frecs 8280  df-wrecs 8311  df-recs 8385  df-rdg 8424  df-er 8719  df-en 8960  df-dom 8961  df-sdom 8962  df-pnf 11271  df-mnf 11272  df-xr 11273  df-ltxr 11274  df-le 11275  df-sub 11468  df-neg 11469  df-nn 12241  df-2 12303  df-3 12304  df-sets 17183  df-slot 17201  df-ndx 17213  df-base 17229  df-ress 17252  df-plusg 17284  df-mulr 17285  df-0g 17455  df-mgm 18618  df-sgrp 18697  df-mnd 18713  df-grp 18919  df-minusg 18920  df-sbg 18921  df-cmn 19763  df-abl 19764  df-mgp 20101  df-rng 20113  df-ur 20142  df-ring 20195  df-oppr 20297  df-dvdsr 20317  df-unit 20318  df-invr 20348  df-drng 20691  df-lmod 20819  df-lss 20889  df-lsp 20929  df-lvec 21061  df-lindf 21766  df-linds 21767
This theorem is referenced by:  rlmdim  33649  rgmoddimOLD  33650  ccfldextdgrr  33713
  Copyright terms: Public domain W3C validator