![]() |
Mathbox for Rohan Ridenour |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > r1rankcld | Structured version Visualization version GIF version |
Description: Any rank of the cumulative hierarchy is closed under the rank function. (Contributed by Rohan Ridenour, 11-Aug-2023.) |
Ref | Expression |
---|---|
r1rankcld.1 | ⊢ (𝜑 → 𝐴 ∈ (𝑅1‘𝑅)) |
Ref | Expression |
---|---|
r1rankcld | ⊢ (𝜑 → (rank‘𝐴) ∈ (𝑅1‘𝑅)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | onssr1 9867 | . . . 4 ⊢ (𝑅 ∈ dom 𝑅1 → 𝑅 ⊆ (𝑅1‘𝑅)) | |
2 | 1 | adantl 480 | . . 3 ⊢ ((𝜑 ∧ 𝑅 ∈ dom 𝑅1) → 𝑅 ⊆ (𝑅1‘𝑅)) |
3 | r1rankcld.1 | . . . . 5 ⊢ (𝜑 → 𝐴 ∈ (𝑅1‘𝑅)) | |
4 | rankr1ai 9834 | . . . . 5 ⊢ (𝐴 ∈ (𝑅1‘𝑅) → (rank‘𝐴) ∈ 𝑅) | |
5 | 3, 4 | syl 17 | . . . 4 ⊢ (𝜑 → (rank‘𝐴) ∈ 𝑅) |
6 | 5 | adantr 479 | . . 3 ⊢ ((𝜑 ∧ 𝑅 ∈ dom 𝑅1) → (rank‘𝐴) ∈ 𝑅) |
7 | 2, 6 | sseldd 3979 | . 2 ⊢ ((𝜑 ∧ 𝑅 ∈ dom 𝑅1) → (rank‘𝐴) ∈ (𝑅1‘𝑅)) |
8 | 3 | adantr 479 | . . 3 ⊢ ((𝜑 ∧ ¬ 𝑅 ∈ dom 𝑅1) → 𝐴 ∈ (𝑅1‘𝑅)) |
9 | noel 4330 | . . . . . 6 ⊢ ¬ 𝐴 ∈ ∅ | |
10 | 9 | a1i 11 | . . . . 5 ⊢ (¬ 𝑅 ∈ dom 𝑅1 → ¬ 𝐴 ∈ ∅) |
11 | ndmfv 6928 | . . . . 5 ⊢ (¬ 𝑅 ∈ dom 𝑅1 → (𝑅1‘𝑅) = ∅) | |
12 | 10, 11 | neleqtrrd 2849 | . . . 4 ⊢ (¬ 𝑅 ∈ dom 𝑅1 → ¬ 𝐴 ∈ (𝑅1‘𝑅)) |
13 | 12 | adantl 480 | . . 3 ⊢ ((𝜑 ∧ ¬ 𝑅 ∈ dom 𝑅1) → ¬ 𝐴 ∈ (𝑅1‘𝑅)) |
14 | 8, 13 | pm2.21dd 194 | . 2 ⊢ ((𝜑 ∧ ¬ 𝑅 ∈ dom 𝑅1) → (rank‘𝐴) ∈ (𝑅1‘𝑅)) |
15 | 7, 14 | pm2.61dan 811 | 1 ⊢ (𝜑 → (rank‘𝐴) ∈ (𝑅1‘𝑅)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 394 ∈ wcel 2099 ⊆ wss 3946 ∅c0 4322 dom cdm 5674 ‘cfv 6546 𝑅1cr1 9798 rankcrnk 9799 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2697 ax-sep 5296 ax-nul 5303 ax-pow 5361 ax-pr 5425 ax-un 7738 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2529 df-eu 2558 df-clab 2704 df-cleq 2718 df-clel 2803 df-nfc 2878 df-ne 2931 df-ral 3052 df-rex 3061 df-reu 3365 df-rab 3420 df-v 3464 df-sbc 3776 df-csb 3892 df-dif 3949 df-un 3951 df-in 3953 df-ss 3963 df-pss 3966 df-nul 4323 df-if 4524 df-pw 4599 df-sn 4624 df-pr 4626 df-op 4630 df-uni 4906 df-int 4947 df-iun 4995 df-br 5146 df-opab 5208 df-mpt 5229 df-tr 5263 df-id 5572 df-eprel 5578 df-po 5586 df-so 5587 df-fr 5629 df-we 5631 df-xp 5680 df-rel 5681 df-cnv 5682 df-co 5683 df-dm 5684 df-rn 5685 df-res 5686 df-ima 5687 df-pred 6304 df-ord 6371 df-on 6372 df-lim 6373 df-suc 6374 df-iota 6498 df-fun 6548 df-fn 6549 df-f 6550 df-f1 6551 df-fo 6552 df-f1o 6553 df-fv 6554 df-ov 7419 df-om 7869 df-2nd 7996 df-frecs 8288 df-wrecs 8319 df-recs 8393 df-rdg 8432 df-r1 9800 df-rank 9801 |
This theorem is referenced by: grurankcld 43944 |
Copyright terms: Public domain | W3C validator |