| Mathbox for Rohan Ridenour |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > r1rankcld | Structured version Visualization version GIF version | ||
| Description: Any rank of the cumulative hierarchy is closed under the rank function. (Contributed by Rohan Ridenour, 11-Aug-2023.) |
| Ref | Expression |
|---|---|
| r1rankcld.1 | ⊢ (𝜑 → 𝐴 ∈ (𝑅1‘𝑅)) |
| Ref | Expression |
|---|---|
| r1rankcld | ⊢ (𝜑 → (rank‘𝐴) ∈ (𝑅1‘𝑅)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | onssr1 9734 | . . . 4 ⊢ (𝑅 ∈ dom 𝑅1 → 𝑅 ⊆ (𝑅1‘𝑅)) | |
| 2 | 1 | adantl 481 | . . 3 ⊢ ((𝜑 ∧ 𝑅 ∈ dom 𝑅1) → 𝑅 ⊆ (𝑅1‘𝑅)) |
| 3 | r1rankcld.1 | . . . . 5 ⊢ (𝜑 → 𝐴 ∈ (𝑅1‘𝑅)) | |
| 4 | rankr1ai 9701 | . . . . 5 ⊢ (𝐴 ∈ (𝑅1‘𝑅) → (rank‘𝐴) ∈ 𝑅) | |
| 5 | 3, 4 | syl 17 | . . . 4 ⊢ (𝜑 → (rank‘𝐴) ∈ 𝑅) |
| 6 | 5 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ 𝑅 ∈ dom 𝑅1) → (rank‘𝐴) ∈ 𝑅) |
| 7 | 2, 6 | sseldd 3932 | . 2 ⊢ ((𝜑 ∧ 𝑅 ∈ dom 𝑅1) → (rank‘𝐴) ∈ (𝑅1‘𝑅)) |
| 8 | 3 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ ¬ 𝑅 ∈ dom 𝑅1) → 𝐴 ∈ (𝑅1‘𝑅)) |
| 9 | noel 4289 | . . . . . 6 ⊢ ¬ 𝐴 ∈ ∅ | |
| 10 | 9 | a1i 11 | . . . . 5 ⊢ (¬ 𝑅 ∈ dom 𝑅1 → ¬ 𝐴 ∈ ∅) |
| 11 | ndmfv 6863 | . . . . 5 ⊢ (¬ 𝑅 ∈ dom 𝑅1 → (𝑅1‘𝑅) = ∅) | |
| 12 | 10, 11 | neleqtrrd 2856 | . . . 4 ⊢ (¬ 𝑅 ∈ dom 𝑅1 → ¬ 𝐴 ∈ (𝑅1‘𝑅)) |
| 13 | 12 | adantl 481 | . . 3 ⊢ ((𝜑 ∧ ¬ 𝑅 ∈ dom 𝑅1) → ¬ 𝐴 ∈ (𝑅1‘𝑅)) |
| 14 | 8, 13 | pm2.21dd 195 | . 2 ⊢ ((𝜑 ∧ ¬ 𝑅 ∈ dom 𝑅1) → (rank‘𝐴) ∈ (𝑅1‘𝑅)) |
| 15 | 7, 14 | pm2.61dan 812 | 1 ⊢ (𝜑 → (rank‘𝐴) ∈ (𝑅1‘𝑅)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 ∈ wcel 2113 ⊆ wss 3899 ∅c0 4284 dom cdm 5621 ‘cfv 6489 𝑅1cr1 9665 rankcrnk 9666 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7677 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2883 df-ne 2931 df-ral 3050 df-rex 3059 df-reu 3349 df-rab 3398 df-v 3440 df-sbc 3739 df-csb 3848 df-dif 3902 df-un 3904 df-in 3906 df-ss 3916 df-pss 3919 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4861 df-int 4900 df-iun 4945 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5516 df-eprel 5521 df-po 5529 df-so 5530 df-fr 5574 df-we 5576 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-res 5633 df-ima 5634 df-pred 6256 df-ord 6317 df-on 6318 df-lim 6319 df-suc 6320 df-iota 6445 df-fun 6491 df-fn 6492 df-f 6493 df-f1 6494 df-fo 6495 df-f1o 6496 df-fv 6497 df-ov 7358 df-om 7806 df-2nd 7931 df-frecs 8220 df-wrecs 8251 df-recs 8300 df-rdg 8338 df-r1 9667 df-rank 9668 |
| This theorem is referenced by: grurankcld 44340 |
| Copyright terms: Public domain | W3C validator |