Users' Mathboxes Mathbox for Rohan Ridenour < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  r1rankcld Structured version   Visualization version   GIF version

Theorem r1rankcld 40873
Description: Any rank of the cumulative hierarchy is closed under the rank function. (Contributed by Rohan Ridenour, 11-Aug-2023.)
Hypothesis
Ref Expression
r1rankcld.1 (𝜑𝐴 ∈ (𝑅1𝑅))
Assertion
Ref Expression
r1rankcld (𝜑 → (rank‘𝐴) ∈ (𝑅1𝑅))

Proof of Theorem r1rankcld
StepHypRef Expression
1 onssr1 9248 . . . 4 (𝑅 ∈ dom 𝑅1𝑅 ⊆ (𝑅1𝑅))
21adantl 485 . . 3 ((𝜑𝑅 ∈ dom 𝑅1) → 𝑅 ⊆ (𝑅1𝑅))
3 r1rankcld.1 . . . . 5 (𝜑𝐴 ∈ (𝑅1𝑅))
4 rankr1ai 9215 . . . . 5 (𝐴 ∈ (𝑅1𝑅) → (rank‘𝐴) ∈ 𝑅)
53, 4syl 17 . . . 4 (𝜑 → (rank‘𝐴) ∈ 𝑅)
65adantr 484 . . 3 ((𝜑𝑅 ∈ dom 𝑅1) → (rank‘𝐴) ∈ 𝑅)
72, 6sseldd 3943 . 2 ((𝜑𝑅 ∈ dom 𝑅1) → (rank‘𝐴) ∈ (𝑅1𝑅))
83adantr 484 . . 3 ((𝜑 ∧ ¬ 𝑅 ∈ dom 𝑅1) → 𝐴 ∈ (𝑅1𝑅))
9 noel 4269 . . . . . 6 ¬ 𝐴 ∈ ∅
109a1i 11 . . . . 5 𝑅 ∈ dom 𝑅1 → ¬ 𝐴 ∈ ∅)
11 ndmfv 6682 . . . . 5 𝑅 ∈ dom 𝑅1 → (𝑅1𝑅) = ∅)
1210, 11neleqtrrd 2936 . . . 4 𝑅 ∈ dom 𝑅1 → ¬ 𝐴 ∈ (𝑅1𝑅))
1312adantl 485 . . 3 ((𝜑 ∧ ¬ 𝑅 ∈ dom 𝑅1) → ¬ 𝐴 ∈ (𝑅1𝑅))
148, 13pm2.21dd 198 . 2 ((𝜑 ∧ ¬ 𝑅 ∈ dom 𝑅1) → (rank‘𝐴) ∈ (𝑅1𝑅))
157, 14pm2.61dan 812 1 (𝜑 → (rank‘𝐴) ∈ (𝑅1𝑅))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 399  wcel 2114  wss 3908  c0 4265  dom cdm 5532  cfv 6334  𝑅1cr1 9179  rankcrnk 9180
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2178  ax-ext 2794  ax-sep 5179  ax-nul 5186  ax-pow 5243  ax-pr 5307  ax-un 7446
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2622  df-eu 2653  df-clab 2801  df-cleq 2815  df-clel 2894  df-nfc 2962  df-ne 3012  df-ral 3135  df-rex 3136  df-reu 3137  df-rab 3139  df-v 3471  df-sbc 3748  df-csb 3856  df-dif 3911  df-un 3913  df-in 3915  df-ss 3925  df-pss 3927  df-nul 4266  df-if 4440  df-pw 4513  df-sn 4540  df-pr 4542  df-tp 4544  df-op 4546  df-uni 4814  df-int 4852  df-iun 4896  df-br 5043  df-opab 5105  df-mpt 5123  df-tr 5149  df-id 5437  df-eprel 5442  df-po 5451  df-so 5452  df-fr 5491  df-we 5493  df-xp 5538  df-rel 5539  df-cnv 5540  df-co 5541  df-dm 5542  df-rn 5543  df-res 5544  df-ima 5545  df-pred 6126  df-ord 6172  df-on 6173  df-lim 6174  df-suc 6175  df-iota 6293  df-fun 6336  df-fn 6337  df-f 6338  df-f1 6339  df-fo 6340  df-f1o 6341  df-fv 6342  df-om 7566  df-wrecs 7934  df-recs 7995  df-rdg 8033  df-r1 9181  df-rank 9182
This theorem is referenced by:  grurankcld  40875
  Copyright terms: Public domain W3C validator