| Mathbox for Rohan Ridenour |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > r1rankcld | Structured version Visualization version GIF version | ||
| Description: Any rank of the cumulative hierarchy is closed under the rank function. (Contributed by Rohan Ridenour, 11-Aug-2023.) |
| Ref | Expression |
|---|---|
| r1rankcld.1 | ⊢ (𝜑 → 𝐴 ∈ (𝑅1‘𝑅)) |
| Ref | Expression |
|---|---|
| r1rankcld | ⊢ (𝜑 → (rank‘𝐴) ∈ (𝑅1‘𝑅)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | onssr1 9784 | . . . 4 ⊢ (𝑅 ∈ dom 𝑅1 → 𝑅 ⊆ (𝑅1‘𝑅)) | |
| 2 | 1 | adantl 481 | . . 3 ⊢ ((𝜑 ∧ 𝑅 ∈ dom 𝑅1) → 𝑅 ⊆ (𝑅1‘𝑅)) |
| 3 | r1rankcld.1 | . . . . 5 ⊢ (𝜑 → 𝐴 ∈ (𝑅1‘𝑅)) | |
| 4 | rankr1ai 9751 | . . . . 5 ⊢ (𝐴 ∈ (𝑅1‘𝑅) → (rank‘𝐴) ∈ 𝑅) | |
| 5 | 3, 4 | syl 17 | . . . 4 ⊢ (𝜑 → (rank‘𝐴) ∈ 𝑅) |
| 6 | 5 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ 𝑅 ∈ dom 𝑅1) → (rank‘𝐴) ∈ 𝑅) |
| 7 | 2, 6 | sseldd 3947 | . 2 ⊢ ((𝜑 ∧ 𝑅 ∈ dom 𝑅1) → (rank‘𝐴) ∈ (𝑅1‘𝑅)) |
| 8 | 3 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ ¬ 𝑅 ∈ dom 𝑅1) → 𝐴 ∈ (𝑅1‘𝑅)) |
| 9 | noel 4301 | . . . . . 6 ⊢ ¬ 𝐴 ∈ ∅ | |
| 10 | 9 | a1i 11 | . . . . 5 ⊢ (¬ 𝑅 ∈ dom 𝑅1 → ¬ 𝐴 ∈ ∅) |
| 11 | ndmfv 6893 | . . . . 5 ⊢ (¬ 𝑅 ∈ dom 𝑅1 → (𝑅1‘𝑅) = ∅) | |
| 12 | 10, 11 | neleqtrrd 2851 | . . . 4 ⊢ (¬ 𝑅 ∈ dom 𝑅1 → ¬ 𝐴 ∈ (𝑅1‘𝑅)) |
| 13 | 12 | adantl 481 | . . 3 ⊢ ((𝜑 ∧ ¬ 𝑅 ∈ dom 𝑅1) → ¬ 𝐴 ∈ (𝑅1‘𝑅)) |
| 14 | 8, 13 | pm2.21dd 195 | . 2 ⊢ ((𝜑 ∧ ¬ 𝑅 ∈ dom 𝑅1) → (rank‘𝐴) ∈ (𝑅1‘𝑅)) |
| 15 | 7, 14 | pm2.61dan 812 | 1 ⊢ (𝜑 → (rank‘𝐴) ∈ (𝑅1‘𝑅)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 ∈ wcel 2109 ⊆ wss 3914 ∅c0 4296 dom cdm 5638 ‘cfv 6511 𝑅1cr1 9715 rankcrnk 9716 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3934 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-int 4911 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-tr 5215 df-id 5533 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5591 df-we 5593 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-pred 6274 df-ord 6335 df-on 6336 df-lim 6337 df-suc 6338 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-ov 7390 df-om 7843 df-2nd 7969 df-frecs 8260 df-wrecs 8291 df-recs 8340 df-rdg 8378 df-r1 9717 df-rank 9718 |
| This theorem is referenced by: grurankcld 44222 |
| Copyright terms: Public domain | W3C validator |