Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  qqhf Structured version   Visualization version   GIF version

Theorem qqhf 31126
Description: ℚHom as a function. (Contributed by Thierry Arnoux, 28-Oct-2017.)
Hypotheses
Ref Expression
qqhval2.0 𝐵 = (Base‘𝑅)
qqhval2.1 / = (/r𝑅)
qqhval2.2 𝐿 = (ℤRHom‘𝑅)
Assertion
Ref Expression
qqhf ((𝑅 ∈ DivRing ∧ (chr‘𝑅) = 0) → (ℚHom‘𝑅):ℚ⟶𝐵)

Proof of Theorem qqhf
Dummy variable 𝑞 is distinct from all other variables.
StepHypRef Expression
1 qqhval2.0 . . 3 𝐵 = (Base‘𝑅)
2 qqhval2.1 . . 3 / = (/r𝑅)
3 qqhval2.2 . . 3 𝐿 = (ℤRHom‘𝑅)
41, 2, 3qqhval2 31122 . 2 ((𝑅 ∈ DivRing ∧ (chr‘𝑅) = 0) → (ℚHom‘𝑅) = (𝑞 ∈ ℚ ↦ ((𝐿‘(numer‘𝑞)) / (𝐿‘(denom‘𝑞)))))
5 drngring 19438 . . . . 5 (𝑅 ∈ DivRing → 𝑅 ∈ Ring)
65adantr 481 . . . 4 ((𝑅 ∈ DivRing ∧ (chr‘𝑅) = 0) → 𝑅 ∈ Ring)
76adantr 481 . . 3 (((𝑅 ∈ DivRing ∧ (chr‘𝑅) = 0) ∧ 𝑞 ∈ ℚ) → 𝑅 ∈ Ring)
83zrhrhm 20587 . . . . 5 (𝑅 ∈ Ring → 𝐿 ∈ (ℤring RingHom 𝑅))
9 zringbas 20551 . . . . . 6 ℤ = (Base‘ℤring)
109, 1rhmf 19407 . . . . 5 (𝐿 ∈ (ℤring RingHom 𝑅) → 𝐿:ℤ⟶𝐵)
117, 8, 103syl 18 . . . 4 (((𝑅 ∈ DivRing ∧ (chr‘𝑅) = 0) ∧ 𝑞 ∈ ℚ) → 𝐿:ℤ⟶𝐵)
12 qnumcl 16068 . . . . 5 (𝑞 ∈ ℚ → (numer‘𝑞) ∈ ℤ)
1312adantl 482 . . . 4 (((𝑅 ∈ DivRing ∧ (chr‘𝑅) = 0) ∧ 𝑞 ∈ ℚ) → (numer‘𝑞) ∈ ℤ)
1411, 13ffvelrnd 6844 . . 3 (((𝑅 ∈ DivRing ∧ (chr‘𝑅) = 0) ∧ 𝑞 ∈ ℚ) → (𝐿‘(numer‘𝑞)) ∈ 𝐵)
15 simpll 763 . . . 4 (((𝑅 ∈ DivRing ∧ (chr‘𝑅) = 0) ∧ 𝑞 ∈ ℚ) → 𝑅 ∈ DivRing)
16 qdencl 16069 . . . . . . 7 (𝑞 ∈ ℚ → (denom‘𝑞) ∈ ℕ)
1716adantl 482 . . . . . 6 (((𝑅 ∈ DivRing ∧ (chr‘𝑅) = 0) ∧ 𝑞 ∈ ℚ) → (denom‘𝑞) ∈ ℕ)
1817nnzd 12074 . . . . 5 (((𝑅 ∈ DivRing ∧ (chr‘𝑅) = 0) ∧ 𝑞 ∈ ℚ) → (denom‘𝑞) ∈ ℤ)
1911, 18ffvelrnd 6844 . . . 4 (((𝑅 ∈ DivRing ∧ (chr‘𝑅) = 0) ∧ 𝑞 ∈ ℚ) → (𝐿‘(denom‘𝑞)) ∈ 𝐵)
2017nnne0d 11675 . . . . . . . . . 10 (((𝑅 ∈ DivRing ∧ (chr‘𝑅) = 0) ∧ 𝑞 ∈ ℚ) → (denom‘𝑞) ≠ 0)
2120neneqd 3018 . . . . . . . . 9 (((𝑅 ∈ DivRing ∧ (chr‘𝑅) = 0) ∧ 𝑞 ∈ ℚ) → ¬ (denom‘𝑞) = 0)
22 fvex 6676 . . . . . . . . . 10 (denom‘𝑞) ∈ V
2322elsn 4572 . . . . . . . . 9 ((denom‘𝑞) ∈ {0} ↔ (denom‘𝑞) = 0)
2421, 23sylnibr 330 . . . . . . . 8 (((𝑅 ∈ DivRing ∧ (chr‘𝑅) = 0) ∧ 𝑞 ∈ ℚ) → ¬ (denom‘𝑞) ∈ {0})
25 eqid 2818 . . . . . . . . . . . 12 (0g𝑅) = (0g𝑅)
261, 3, 25zrhker 31117 . . . . . . . . . . 11 (𝑅 ∈ Ring → ((chr‘𝑅) = 0 ↔ (𝐿 “ {(0g𝑅)}) = {0}))
2726biimpa 477 . . . . . . . . . 10 ((𝑅 ∈ Ring ∧ (chr‘𝑅) = 0) → (𝐿 “ {(0g𝑅)}) = {0})
285, 27sylan 580 . . . . . . . . 9 ((𝑅 ∈ DivRing ∧ (chr‘𝑅) = 0) → (𝐿 “ {(0g𝑅)}) = {0})
2928adantr 481 . . . . . . . 8 (((𝑅 ∈ DivRing ∧ (chr‘𝑅) = 0) ∧ 𝑞 ∈ ℚ) → (𝐿 “ {(0g𝑅)}) = {0})
3024, 29neleqtrrd 2932 . . . . . . 7 (((𝑅 ∈ DivRing ∧ (chr‘𝑅) = 0) ∧ 𝑞 ∈ ℚ) → ¬ (denom‘𝑞) ∈ (𝐿 “ {(0g𝑅)}))
31 ffn 6507 . . . . . . . . . . . 12 (𝐿:ℤ⟶𝐵𝐿 Fn ℤ)
328, 10, 313syl 18 . . . . . . . . . . 11 (𝑅 ∈ Ring → 𝐿 Fn ℤ)
33 elpreima 6820 . . . . . . . . . . 11 (𝐿 Fn ℤ → ((denom‘𝑞) ∈ (𝐿 “ {(0g𝑅)}) ↔ ((denom‘𝑞) ∈ ℤ ∧ (𝐿‘(denom‘𝑞)) ∈ {(0g𝑅)})))
345, 32, 333syl 18 . . . . . . . . . 10 (𝑅 ∈ DivRing → ((denom‘𝑞) ∈ (𝐿 “ {(0g𝑅)}) ↔ ((denom‘𝑞) ∈ ℤ ∧ (𝐿‘(denom‘𝑞)) ∈ {(0g𝑅)})))
3534biimpar 478 . . . . . . . . 9 ((𝑅 ∈ DivRing ∧ ((denom‘𝑞) ∈ ℤ ∧ (𝐿‘(denom‘𝑞)) ∈ {(0g𝑅)})) → (denom‘𝑞) ∈ (𝐿 “ {(0g𝑅)}))
3635expr 457 . . . . . . . 8 ((𝑅 ∈ DivRing ∧ (denom‘𝑞) ∈ ℤ) → ((𝐿‘(denom‘𝑞)) ∈ {(0g𝑅)} → (denom‘𝑞) ∈ (𝐿 “ {(0g𝑅)})))
3736con3dimp 409 . . . . . . 7 (((𝑅 ∈ DivRing ∧ (denom‘𝑞) ∈ ℤ) ∧ ¬ (denom‘𝑞) ∈ (𝐿 “ {(0g𝑅)})) → ¬ (𝐿‘(denom‘𝑞)) ∈ {(0g𝑅)})
3815, 18, 30, 37syl21anc 833 . . . . . 6 (((𝑅 ∈ DivRing ∧ (chr‘𝑅) = 0) ∧ 𝑞 ∈ ℚ) → ¬ (𝐿‘(denom‘𝑞)) ∈ {(0g𝑅)})
39 fvex 6676 . . . . . . 7 (𝐿‘(denom‘𝑞)) ∈ V
4039elsn 4572 . . . . . 6 ((𝐿‘(denom‘𝑞)) ∈ {(0g𝑅)} ↔ (𝐿‘(denom‘𝑞)) = (0g𝑅))
4138, 40sylnib 329 . . . . 5 (((𝑅 ∈ DivRing ∧ (chr‘𝑅) = 0) ∧ 𝑞 ∈ ℚ) → ¬ (𝐿‘(denom‘𝑞)) = (0g𝑅))
4241neqned 3020 . . . 4 (((𝑅 ∈ DivRing ∧ (chr‘𝑅) = 0) ∧ 𝑞 ∈ ℚ) → (𝐿‘(denom‘𝑞)) ≠ (0g𝑅))
43 eqid 2818 . . . . . 6 (Unit‘𝑅) = (Unit‘𝑅)
441, 43, 25drngunit 19436 . . . . 5 (𝑅 ∈ DivRing → ((𝐿‘(denom‘𝑞)) ∈ (Unit‘𝑅) ↔ ((𝐿‘(denom‘𝑞)) ∈ 𝐵 ∧ (𝐿‘(denom‘𝑞)) ≠ (0g𝑅))))
4544biimpar 478 . . . 4 ((𝑅 ∈ DivRing ∧ ((𝐿‘(denom‘𝑞)) ∈ 𝐵 ∧ (𝐿‘(denom‘𝑞)) ≠ (0g𝑅))) → (𝐿‘(denom‘𝑞)) ∈ (Unit‘𝑅))
4615, 19, 42, 45syl12anc 832 . . 3 (((𝑅 ∈ DivRing ∧ (chr‘𝑅) = 0) ∧ 𝑞 ∈ ℚ) → (𝐿‘(denom‘𝑞)) ∈ (Unit‘𝑅))
471, 43, 2dvrcl 19365 . . 3 ((𝑅 ∈ Ring ∧ (𝐿‘(numer‘𝑞)) ∈ 𝐵 ∧ (𝐿‘(denom‘𝑞)) ∈ (Unit‘𝑅)) → ((𝐿‘(numer‘𝑞)) / (𝐿‘(denom‘𝑞))) ∈ 𝐵)
487, 14, 46, 47syl3anc 1363 . 2 (((𝑅 ∈ DivRing ∧ (chr‘𝑅) = 0) ∧ 𝑞 ∈ ℚ) → ((𝐿‘(numer‘𝑞)) / (𝐿‘(denom‘𝑞))) ∈ 𝐵)
494, 48fmpt3d 6872 1 ((𝑅 ∈ DivRing ∧ (chr‘𝑅) = 0) → (ℚHom‘𝑅):ℚ⟶𝐵)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 207  wa 396   = wceq 1528  wcel 2105  wne 3013  {csn 4557  ccnv 5547  cima 5551   Fn wfn 6343  wf 6344  cfv 6348  (class class class)co 7145  0cc0 10525  cn 11626  cz 11969  cq 12336  numercnumer 16061  denomcdenom 16062  Basecbs 16471  0gc0g 16701  Ringcrg 19226  Unitcui 19318  /rcdvr 19361   RingHom crh 19393  DivRingcdr 19431  ringzring 20545  ℤRHomczrh 20575  chrcchr 20577  ℚHomcqqh 31112
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1787  ax-4 1801  ax-5 1902  ax-6 1961  ax-7 2006  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2151  ax-12 2167  ax-ext 2790  ax-rep 5181  ax-sep 5194  ax-nul 5201  ax-pow 5257  ax-pr 5320  ax-un 7450  ax-cnex 10581  ax-resscn 10582  ax-1cn 10583  ax-icn 10584  ax-addcl 10585  ax-addrcl 10586  ax-mulcl 10587  ax-mulrcl 10588  ax-mulcom 10589  ax-addass 10590  ax-mulass 10591  ax-distr 10592  ax-i2m1 10593  ax-1ne0 10594  ax-1rid 10595  ax-rnegex 10596  ax-rrecex 10597  ax-cnre 10598  ax-pre-lttri 10599  ax-pre-lttrn 10600  ax-pre-ltadd 10601  ax-pre-mulgt0 10602  ax-pre-sup 10603  ax-addf 10604  ax-mulf 10605
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 842  df-3or 1080  df-3an 1081  df-tru 1531  df-ex 1772  df-nf 1776  df-sb 2061  df-mo 2615  df-eu 2647  df-clab 2797  df-cleq 2811  df-clel 2890  df-nfc 2960  df-ne 3014  df-nel 3121  df-ral 3140  df-rex 3141  df-reu 3142  df-rmo 3143  df-rab 3144  df-v 3494  df-sbc 3770  df-csb 3881  df-dif 3936  df-un 3938  df-in 3940  df-ss 3949  df-pss 3951  df-nul 4289  df-if 4464  df-pw 4537  df-sn 4558  df-pr 4560  df-tp 4562  df-op 4564  df-uni 4831  df-int 4868  df-iun 4912  df-br 5058  df-opab 5120  df-mpt 5138  df-tr 5164  df-id 5453  df-eprel 5458  df-po 5467  df-so 5468  df-fr 5507  df-we 5509  df-xp 5554  df-rel 5555  df-cnv 5556  df-co 5557  df-dm 5558  df-rn 5559  df-res 5560  df-ima 5561  df-pred 6141  df-ord 6187  df-on 6188  df-lim 6189  df-suc 6190  df-iota 6307  df-fun 6350  df-fn 6351  df-f 6352  df-f1 6353  df-fo 6354  df-f1o 6355  df-fv 6356  df-riota 7103  df-ov 7148  df-oprab 7149  df-mpo 7150  df-om 7570  df-1st 7678  df-2nd 7679  df-tpos 7881  df-wrecs 7936  df-recs 7997  df-rdg 8035  df-1o 8091  df-oadd 8095  df-er 8278  df-map 8397  df-en 8498  df-dom 8499  df-sdom 8500  df-fin 8501  df-sup 8894  df-inf 8895  df-pnf 10665  df-mnf 10666  df-xr 10667  df-ltxr 10668  df-le 10669  df-sub 10860  df-neg 10861  df-div 11286  df-nn 11627  df-2 11688  df-3 11689  df-4 11690  df-5 11691  df-6 11692  df-7 11693  df-8 11694  df-9 11695  df-n0 11886  df-z 11970  df-dec 12087  df-uz 12232  df-q 12337  df-rp 12378  df-fz 12881  df-fl 13150  df-mod 13226  df-seq 13358  df-exp 13418  df-cj 14446  df-re 14447  df-im 14448  df-sqrt 14582  df-abs 14583  df-dvds 15596  df-gcd 15832  df-numer 16063  df-denom 16064  df-gz 16254  df-struct 16473  df-ndx 16474  df-slot 16475  df-base 16477  df-sets 16478  df-ress 16479  df-plusg 16566  df-mulr 16567  df-starv 16568  df-tset 16572  df-ple 16573  df-ds 16575  df-unif 16576  df-0g 16703  df-mgm 17840  df-sgrp 17889  df-mnd 17900  df-mhm 17944  df-grp 18044  df-minusg 18045  df-sbg 18046  df-mulg 18163  df-subg 18214  df-ghm 18294  df-od 18585  df-cmn 18837  df-mgp 19169  df-ur 19181  df-ring 19228  df-cring 19229  df-oppr 19302  df-dvdsr 19320  df-unit 19321  df-invr 19351  df-dvr 19362  df-rnghom 19396  df-drng 19433  df-subrg 19462  df-cnfld 20474  df-zring 20546  df-zrh 20579  df-chr 20581  df-qqh 31113
This theorem is referenced by:  qqhghm  31128  qqhrhm  31129  qqhcn  31131  qqhucn  31132  qqhre  31160
  Copyright terms: Public domain W3C validator