Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  qqhf Structured version   Visualization version   GIF version

Theorem qqhf 33983
Description: ℚHom as a function. (Contributed by Thierry Arnoux, 28-Oct-2017.)
Hypotheses
Ref Expression
qqhval2.0 𝐵 = (Base‘𝑅)
qqhval2.1 / = (/r𝑅)
qqhval2.2 𝐿 = (ℤRHom‘𝑅)
Assertion
Ref Expression
qqhf ((𝑅 ∈ DivRing ∧ (chr‘𝑅) = 0) → (ℚHom‘𝑅):ℚ⟶𝐵)

Proof of Theorem qqhf
Dummy variable 𝑞 is distinct from all other variables.
StepHypRef Expression
1 qqhval2.0 . . 3 𝐵 = (Base‘𝑅)
2 qqhval2.1 . . 3 / = (/r𝑅)
3 qqhval2.2 . . 3 𝐿 = (ℤRHom‘𝑅)
41, 2, 3qqhval2 33979 . 2 ((𝑅 ∈ DivRing ∧ (chr‘𝑅) = 0) → (ℚHom‘𝑅) = (𝑞 ∈ ℚ ↦ ((𝐿‘(numer‘𝑞)) / (𝐿‘(denom‘𝑞)))))
5 drngring 20652 . . . . 5 (𝑅 ∈ DivRing → 𝑅 ∈ Ring)
65adantr 480 . . . 4 ((𝑅 ∈ DivRing ∧ (chr‘𝑅) = 0) → 𝑅 ∈ Ring)
76adantr 480 . . 3 (((𝑅 ∈ DivRing ∧ (chr‘𝑅) = 0) ∧ 𝑞 ∈ ℚ) → 𝑅 ∈ Ring)
83zrhrhm 21428 . . . . 5 (𝑅 ∈ Ring → 𝐿 ∈ (ℤring RingHom 𝑅))
9 zringbas 21370 . . . . . 6 ℤ = (Base‘ℤring)
109, 1rhmf 20401 . . . . 5 (𝐿 ∈ (ℤring RingHom 𝑅) → 𝐿:ℤ⟶𝐵)
117, 8, 103syl 18 . . . 4 (((𝑅 ∈ DivRing ∧ (chr‘𝑅) = 0) ∧ 𝑞 ∈ ℚ) → 𝐿:ℤ⟶𝐵)
12 qnumcl 16717 . . . . 5 (𝑞 ∈ ℚ → (numer‘𝑞) ∈ ℤ)
1312adantl 481 . . . 4 (((𝑅 ∈ DivRing ∧ (chr‘𝑅) = 0) ∧ 𝑞 ∈ ℚ) → (numer‘𝑞) ∈ ℤ)
1411, 13ffvelcdmd 7060 . . 3 (((𝑅 ∈ DivRing ∧ (chr‘𝑅) = 0) ∧ 𝑞 ∈ ℚ) → (𝐿‘(numer‘𝑞)) ∈ 𝐵)
15 simpll 766 . . . 4 (((𝑅 ∈ DivRing ∧ (chr‘𝑅) = 0) ∧ 𝑞 ∈ ℚ) → 𝑅 ∈ DivRing)
16 qdencl 16718 . . . . . . 7 (𝑞 ∈ ℚ → (denom‘𝑞) ∈ ℕ)
1716adantl 481 . . . . . 6 (((𝑅 ∈ DivRing ∧ (chr‘𝑅) = 0) ∧ 𝑞 ∈ ℚ) → (denom‘𝑞) ∈ ℕ)
1817nnzd 12563 . . . . 5 (((𝑅 ∈ DivRing ∧ (chr‘𝑅) = 0) ∧ 𝑞 ∈ ℚ) → (denom‘𝑞) ∈ ℤ)
1911, 18ffvelcdmd 7060 . . . 4 (((𝑅 ∈ DivRing ∧ (chr‘𝑅) = 0) ∧ 𝑞 ∈ ℚ) → (𝐿‘(denom‘𝑞)) ∈ 𝐵)
2017nnne0d 12243 . . . . . . . . . 10 (((𝑅 ∈ DivRing ∧ (chr‘𝑅) = 0) ∧ 𝑞 ∈ ℚ) → (denom‘𝑞) ≠ 0)
2120neneqd 2931 . . . . . . . . 9 (((𝑅 ∈ DivRing ∧ (chr‘𝑅) = 0) ∧ 𝑞 ∈ ℚ) → ¬ (denom‘𝑞) = 0)
22 fvex 6874 . . . . . . . . . 10 (denom‘𝑞) ∈ V
2322elsn 4607 . . . . . . . . 9 ((denom‘𝑞) ∈ {0} ↔ (denom‘𝑞) = 0)
2421, 23sylnibr 329 . . . . . . . 8 (((𝑅 ∈ DivRing ∧ (chr‘𝑅) = 0) ∧ 𝑞 ∈ ℚ) → ¬ (denom‘𝑞) ∈ {0})
25 eqid 2730 . . . . . . . . . . . 12 (0g𝑅) = (0g𝑅)
261, 3, 25zrhker 33972 . . . . . . . . . . 11 (𝑅 ∈ Ring → ((chr‘𝑅) = 0 ↔ (𝐿 “ {(0g𝑅)}) = {0}))
2726biimpa 476 . . . . . . . . . 10 ((𝑅 ∈ Ring ∧ (chr‘𝑅) = 0) → (𝐿 “ {(0g𝑅)}) = {0})
285, 27sylan 580 . . . . . . . . 9 ((𝑅 ∈ DivRing ∧ (chr‘𝑅) = 0) → (𝐿 “ {(0g𝑅)}) = {0})
2928adantr 480 . . . . . . . 8 (((𝑅 ∈ DivRing ∧ (chr‘𝑅) = 0) ∧ 𝑞 ∈ ℚ) → (𝐿 “ {(0g𝑅)}) = {0})
3024, 29neleqtrrd 2852 . . . . . . 7 (((𝑅 ∈ DivRing ∧ (chr‘𝑅) = 0) ∧ 𝑞 ∈ ℚ) → ¬ (denom‘𝑞) ∈ (𝐿 “ {(0g𝑅)}))
31 ffn 6691 . . . . . . . . . . . 12 (𝐿:ℤ⟶𝐵𝐿 Fn ℤ)
328, 10, 313syl 18 . . . . . . . . . . 11 (𝑅 ∈ Ring → 𝐿 Fn ℤ)
33 elpreima 7033 . . . . . . . . . . 11 (𝐿 Fn ℤ → ((denom‘𝑞) ∈ (𝐿 “ {(0g𝑅)}) ↔ ((denom‘𝑞) ∈ ℤ ∧ (𝐿‘(denom‘𝑞)) ∈ {(0g𝑅)})))
345, 32, 333syl 18 . . . . . . . . . 10 (𝑅 ∈ DivRing → ((denom‘𝑞) ∈ (𝐿 “ {(0g𝑅)}) ↔ ((denom‘𝑞) ∈ ℤ ∧ (𝐿‘(denom‘𝑞)) ∈ {(0g𝑅)})))
3534biimpar 477 . . . . . . . . 9 ((𝑅 ∈ DivRing ∧ ((denom‘𝑞) ∈ ℤ ∧ (𝐿‘(denom‘𝑞)) ∈ {(0g𝑅)})) → (denom‘𝑞) ∈ (𝐿 “ {(0g𝑅)}))
3635expr 456 . . . . . . . 8 ((𝑅 ∈ DivRing ∧ (denom‘𝑞) ∈ ℤ) → ((𝐿‘(denom‘𝑞)) ∈ {(0g𝑅)} → (denom‘𝑞) ∈ (𝐿 “ {(0g𝑅)})))
3736con3dimp 408 . . . . . . 7 (((𝑅 ∈ DivRing ∧ (denom‘𝑞) ∈ ℤ) ∧ ¬ (denom‘𝑞) ∈ (𝐿 “ {(0g𝑅)})) → ¬ (𝐿‘(denom‘𝑞)) ∈ {(0g𝑅)})
3815, 18, 30, 37syl21anc 837 . . . . . 6 (((𝑅 ∈ DivRing ∧ (chr‘𝑅) = 0) ∧ 𝑞 ∈ ℚ) → ¬ (𝐿‘(denom‘𝑞)) ∈ {(0g𝑅)})
39 fvex 6874 . . . . . . 7 (𝐿‘(denom‘𝑞)) ∈ V
4039elsn 4607 . . . . . 6 ((𝐿‘(denom‘𝑞)) ∈ {(0g𝑅)} ↔ (𝐿‘(denom‘𝑞)) = (0g𝑅))
4138, 40sylnib 328 . . . . 5 (((𝑅 ∈ DivRing ∧ (chr‘𝑅) = 0) ∧ 𝑞 ∈ ℚ) → ¬ (𝐿‘(denom‘𝑞)) = (0g𝑅))
4241neqned 2933 . . . 4 (((𝑅 ∈ DivRing ∧ (chr‘𝑅) = 0) ∧ 𝑞 ∈ ℚ) → (𝐿‘(denom‘𝑞)) ≠ (0g𝑅))
43 eqid 2730 . . . . . 6 (Unit‘𝑅) = (Unit‘𝑅)
441, 43, 25drngunit 20650 . . . . 5 (𝑅 ∈ DivRing → ((𝐿‘(denom‘𝑞)) ∈ (Unit‘𝑅) ↔ ((𝐿‘(denom‘𝑞)) ∈ 𝐵 ∧ (𝐿‘(denom‘𝑞)) ≠ (0g𝑅))))
4544biimpar 477 . . . 4 ((𝑅 ∈ DivRing ∧ ((𝐿‘(denom‘𝑞)) ∈ 𝐵 ∧ (𝐿‘(denom‘𝑞)) ≠ (0g𝑅))) → (𝐿‘(denom‘𝑞)) ∈ (Unit‘𝑅))
4615, 19, 42, 45syl12anc 836 . . 3 (((𝑅 ∈ DivRing ∧ (chr‘𝑅) = 0) ∧ 𝑞 ∈ ℚ) → (𝐿‘(denom‘𝑞)) ∈ (Unit‘𝑅))
471, 43, 2dvrcl 20320 . . 3 ((𝑅 ∈ Ring ∧ (𝐿‘(numer‘𝑞)) ∈ 𝐵 ∧ (𝐿‘(denom‘𝑞)) ∈ (Unit‘𝑅)) → ((𝐿‘(numer‘𝑞)) / (𝐿‘(denom‘𝑞))) ∈ 𝐵)
487, 14, 46, 47syl3anc 1373 . 2 (((𝑅 ∈ DivRing ∧ (chr‘𝑅) = 0) ∧ 𝑞 ∈ ℚ) → ((𝐿‘(numer‘𝑞)) / (𝐿‘(denom‘𝑞))) ∈ 𝐵)
494, 48fmpt3d 7091 1 ((𝑅 ∈ DivRing ∧ (chr‘𝑅) = 0) → (ℚHom‘𝑅):ℚ⟶𝐵)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wne 2926  {csn 4592  ccnv 5640  cima 5644   Fn wfn 6509  wf 6510  cfv 6514  (class class class)co 7390  0cc0 11075  cn 12193  cz 12536  cq 12914  numercnumer 16710  denomcdenom 16711  Basecbs 17186  0gc0g 17409  Ringcrg 20149  Unitcui 20271  /rcdvr 20316   RingHom crh 20385  DivRingcdr 20645  ringczring 21363  ℤRHomczrh 21416  chrcchr 21418  ℚHomcqqh 33967
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-cnex 11131  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152  ax-pre-sup 11153  ax-addf 11154  ax-mulf 11155
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-tp 4597  df-op 4599  df-uni 4875  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-om 7846  df-1st 7971  df-2nd 7972  df-tpos 8208  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-1o 8437  df-er 8674  df-map 8804  df-en 8922  df-dom 8923  df-sdom 8924  df-fin 8925  df-sup 9400  df-inf 9401  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415  df-div 11843  df-nn 12194  df-2 12256  df-3 12257  df-4 12258  df-5 12259  df-6 12260  df-7 12261  df-8 12262  df-9 12263  df-n0 12450  df-z 12537  df-dec 12657  df-uz 12801  df-q 12915  df-rp 12959  df-fz 13476  df-fl 13761  df-mod 13839  df-seq 13974  df-exp 14034  df-cj 15072  df-re 15073  df-im 15074  df-sqrt 15208  df-abs 15209  df-dvds 16230  df-gcd 16472  df-numer 16712  df-denom 16713  df-gz 16908  df-struct 17124  df-sets 17141  df-slot 17159  df-ndx 17171  df-base 17187  df-ress 17208  df-plusg 17240  df-mulr 17241  df-starv 17242  df-tset 17246  df-ple 17247  df-ds 17249  df-unif 17250  df-0g 17411  df-mgm 18574  df-sgrp 18653  df-mnd 18669  df-mhm 18717  df-grp 18875  df-minusg 18876  df-sbg 18877  df-mulg 19007  df-subg 19062  df-ghm 19152  df-od 19465  df-cmn 19719  df-abl 19720  df-mgp 20057  df-rng 20069  df-ur 20098  df-ring 20151  df-cring 20152  df-oppr 20253  df-dvdsr 20273  df-unit 20274  df-invr 20304  df-dvr 20317  df-rhm 20388  df-subrng 20462  df-subrg 20486  df-drng 20647  df-cnfld 21272  df-zring 21364  df-zrh 21420  df-chr 21422  df-qqh 33968
This theorem is referenced by:  qqhghm  33985  qqhrhm  33986  qqhcn  33988  qqhucn  33989  qqhre  34017
  Copyright terms: Public domain W3C validator