MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  psgnunilem2 Structured version   Visualization version   GIF version

Theorem psgnunilem2 18299
Description: Lemma for psgnuni 18303. Induction step for moving a transposition as far to the right as possible. (Contributed by Stefan O'Rear, 24-Aug-2015.) (Revised by Mario Carneiro, 28-Feb-2016.)
Hypotheses
Ref Expression
psgnunilem2.g 𝐺 = (SymGrp‘𝐷)
psgnunilem2.t 𝑇 = ran (pmTrsp‘𝐷)
psgnunilem2.d (𝜑𝐷𝑉)
psgnunilem2.w (𝜑𝑊 ∈ Word 𝑇)
psgnunilem2.id (𝜑 → (𝐺 Σg 𝑊) = ( I ↾ 𝐷))
psgnunilem2.l (𝜑 → (♯‘𝑊) = 𝐿)
psgnunilem2.ix (𝜑𝐼 ∈ (0..^𝐿))
psgnunilem2.a (𝜑𝐴 ∈ dom ((𝑊𝐼) ∖ I ))
psgnunilem2.al (𝜑 → ∀𝑘 ∈ (0..^𝐼) ¬ 𝐴 ∈ dom ((𝑊𝑘) ∖ I ))
psgnunilem2.in (𝜑 → ¬ ∃𝑥 ∈ Word 𝑇((♯‘𝑥) = (𝐿 − 2) ∧ (𝐺 Σg 𝑥) = ( I ↾ 𝐷)))
Assertion
Ref Expression
psgnunilem2 (𝜑 → ∃𝑤 ∈ Word 𝑇(((𝐺 Σg 𝑤) = ( I ↾ 𝐷) ∧ (♯‘𝑤) = 𝐿) ∧ ((𝐼 + 1) ∈ (0..^𝐿) ∧ 𝐴 ∈ dom ((𝑤‘(𝐼 + 1)) ∖ I ) ∧ ∀𝑗 ∈ (0..^(𝐼 + 1)) ¬ 𝐴 ∈ dom ((𝑤𝑗) ∖ I ))))
Distinct variable groups:   𝑗,𝑘,𝑤,𝐴   𝑥,𝑗,𝐷,𝑤   𝜑,𝑗   𝑗,𝐺   𝑥,𝑘,𝐺,𝑤   𝑗,𝐼,𝑘,𝑤,𝑥   𝑇,𝑗,𝑤,𝑥   𝑗,𝑊,𝑘,𝑤,𝑥   𝑤,𝐿,𝑥
Allowed substitution hints:   𝜑(𝑥,𝑤,𝑘)   𝐴(𝑥)   𝐷(𝑘)   𝑇(𝑘)   𝐿(𝑗,𝑘)   𝑉(𝑥,𝑤,𝑗,𝑘)

Proof of Theorem psgnunilem2
Dummy variables 𝑟 𝑠 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 psgnunilem2.w . . . . . . 7 (𝜑𝑊 ∈ Word 𝑇)
2 wrd0 13627 . . . . . . 7 ∅ ∈ Word 𝑇
3 splcl 13892 . . . . . . 7 ((𝑊 ∈ Word 𝑇 ∧ ∅ ∈ Word 𝑇) → (𝑊 splice ⟨𝐼, (𝐼 + 2), ∅⟩) ∈ Word 𝑇)
41, 2, 3sylancl 580 . . . . . 6 (𝜑 → (𝑊 splice ⟨𝐼, (𝐼 + 2), ∅⟩) ∈ Word 𝑇)
54adantr 474 . . . . 5 ((𝜑 ∧ ((𝑊𝐼) ∘ (𝑊‘(𝐼 + 1))) = ( I ↾ 𝐷)) → (𝑊 splice ⟨𝐼, (𝐼 + 2), ∅⟩) ∈ Word 𝑇)
6 fzossfz 12807 . . . . . . . . . . 11 (0..^𝐿) ⊆ (0...𝐿)
7 psgnunilem2.ix . . . . . . . . . . 11 (𝜑𝐼 ∈ (0..^𝐿))
86, 7sseldi 3819 . . . . . . . . . 10 (𝜑𝐼 ∈ (0...𝐿))
9 elfznn0 12751 . . . . . . . . . 10 (𝐼 ∈ (0...𝐿) → 𝐼 ∈ ℕ0)
108, 9syl 17 . . . . . . . . 9 (𝜑𝐼 ∈ ℕ0)
11 2nn0 11661 . . . . . . . . . 10 2 ∈ ℕ0
12 nn0addcl 11679 . . . . . . . . . 10 ((𝐼 ∈ ℕ0 ∧ 2 ∈ ℕ0) → (𝐼 + 2) ∈ ℕ0)
1310, 11, 12sylancl 580 . . . . . . . . 9 (𝜑 → (𝐼 + 2) ∈ ℕ0)
1410nn0red 11703 . . . . . . . . . 10 (𝜑𝐼 ∈ ℝ)
15 nn0addge1 11690 . . . . . . . . . 10 ((𝐼 ∈ ℝ ∧ 2 ∈ ℕ0) → 𝐼 ≤ (𝐼 + 2))
1614, 11, 15sylancl 580 . . . . . . . . 9 (𝜑𝐼 ≤ (𝐼 + 2))
17 elfz2nn0 12749 . . . . . . . . 9 (𝐼 ∈ (0...(𝐼 + 2)) ↔ (𝐼 ∈ ℕ0 ∧ (𝐼 + 2) ∈ ℕ0𝐼 ≤ (𝐼 + 2)))
1810, 13, 16, 17syl3anbrc 1400 . . . . . . . 8 (𝜑𝐼 ∈ (0...(𝐼 + 2)))
19 psgnunilem2.g . . . . . . . . . . 11 𝐺 = (SymGrp‘𝐷)
20 psgnunilem2.t . . . . . . . . . . 11 𝑇 = ran (pmTrsp‘𝐷)
21 psgnunilem2.d . . . . . . . . . . 11 (𝜑𝐷𝑉)
22 psgnunilem2.id . . . . . . . . . . 11 (𝜑 → (𝐺 Σg 𝑊) = ( I ↾ 𝐷))
23 psgnunilem2.l . . . . . . . . . . 11 (𝜑 → (♯‘𝑊) = 𝐿)
24 psgnunilem2.a . . . . . . . . . . 11 (𝜑𝐴 ∈ dom ((𝑊𝐼) ∖ I ))
25 psgnunilem2.al . . . . . . . . . . 11 (𝜑 → ∀𝑘 ∈ (0..^𝐼) ¬ 𝐴 ∈ dom ((𝑊𝑘) ∖ I ))
2619, 20, 21, 1, 22, 23, 7, 24, 25psgnunilem5 18297 . . . . . . . . . 10 (𝜑 → (𝐼 + 1) ∈ (0..^𝐿))
27 fzofzp1 12884 . . . . . . . . . 10 ((𝐼 + 1) ∈ (0..^𝐿) → ((𝐼 + 1) + 1) ∈ (0...𝐿))
2826, 27syl 17 . . . . . . . . 9 (𝜑 → ((𝐼 + 1) + 1) ∈ (0...𝐿))
2910nn0cnd 11704 . . . . . . . . . . 11 (𝜑𝐼 ∈ ℂ)
30 1cnd 10371 . . . . . . . . . . 11 (𝜑 → 1 ∈ ℂ)
3129, 30, 30addassd 10399 . . . . . . . . . 10 (𝜑 → ((𝐼 + 1) + 1) = (𝐼 + (1 + 1)))
32 df-2 11438 . . . . . . . . . . 11 2 = (1 + 1)
3332oveq2i 6933 . . . . . . . . . 10 (𝐼 + 2) = (𝐼 + (1 + 1))
3431, 33syl6reqr 2833 . . . . . . . . 9 (𝜑 → (𝐼 + 2) = ((𝐼 + 1) + 1))
3523oveq2d 6938 . . . . . . . . 9 (𝜑 → (0...(♯‘𝑊)) = (0...𝐿))
3628, 34, 353eltr4d 2874 . . . . . . . 8 (𝜑 → (𝐼 + 2) ∈ (0...(♯‘𝑊)))
372a1i 11 . . . . . . . 8 (𝜑 → ∅ ∈ Word 𝑇)
381, 18, 36, 37spllen 13896 . . . . . . 7 (𝜑 → (♯‘(𝑊 splice ⟨𝐼, (𝐼 + 2), ∅⟩)) = ((♯‘𝑊) + ((♯‘∅) − ((𝐼 + 2) − 𝐼))))
39 hash0 13473 . . . . . . . . . . 11 (♯‘∅) = 0
4039oveq1i 6932 . . . . . . . . . 10 ((♯‘∅) − ((𝐼 + 2) − 𝐼)) = (0 − ((𝐼 + 2) − 𝐼))
41 df-neg 10609 . . . . . . . . . 10 -((𝐼 + 2) − 𝐼) = (0 − ((𝐼 + 2) − 𝐼))
4240, 41eqtr4i 2805 . . . . . . . . 9 ((♯‘∅) − ((𝐼 + 2) − 𝐼)) = -((𝐼 + 2) − 𝐼)
43 2cn 11450 . . . . . . . . . . 11 2 ∈ ℂ
44 pncan2 10629 . . . . . . . . . . 11 ((𝐼 ∈ ℂ ∧ 2 ∈ ℂ) → ((𝐼 + 2) − 𝐼) = 2)
4529, 43, 44sylancl 580 . . . . . . . . . 10 (𝜑 → ((𝐼 + 2) − 𝐼) = 2)
4645negeqd 10616 . . . . . . . . 9 (𝜑 → -((𝐼 + 2) − 𝐼) = -2)
4742, 46syl5eq 2826 . . . . . . . 8 (𝜑 → ((♯‘∅) − ((𝐼 + 2) − 𝐼)) = -2)
4823, 47oveq12d 6940 . . . . . . 7 (𝜑 → ((♯‘𝑊) + ((♯‘∅) − ((𝐼 + 2) − 𝐼))) = (𝐿 + -2))
49 elfzel2 12657 . . . . . . . . . 10 (𝐼 ∈ (0...𝐿) → 𝐿 ∈ ℤ)
508, 49syl 17 . . . . . . . . 9 (𝜑𝐿 ∈ ℤ)
5150zcnd 11835 . . . . . . . 8 (𝜑𝐿 ∈ ℂ)
52 negsub 10671 . . . . . . . 8 ((𝐿 ∈ ℂ ∧ 2 ∈ ℂ) → (𝐿 + -2) = (𝐿 − 2))
5351, 43, 52sylancl 580 . . . . . . 7 (𝜑 → (𝐿 + -2) = (𝐿 − 2))
5438, 48, 533eqtrd 2818 . . . . . 6 (𝜑 → (♯‘(𝑊 splice ⟨𝐼, (𝐼 + 2), ∅⟩)) = (𝐿 − 2))
5554adantr 474 . . . . 5 ((𝜑 ∧ ((𝑊𝐼) ∘ (𝑊‘(𝐼 + 1))) = ( I ↾ 𝐷)) → (♯‘(𝑊 splice ⟨𝐼, (𝐼 + 2), ∅⟩)) = (𝐿 − 2))
56 splid 13894 . . . . . . . . 9 ((𝑊 ∈ Word 𝑇 ∧ (𝐼 ∈ (0...(𝐼 + 2)) ∧ (𝐼 + 2) ∈ (0...(♯‘𝑊)))) → (𝑊 splice ⟨𝐼, (𝐼 + 2), (𝑊 substr ⟨𝐼, (𝐼 + 2)⟩)⟩) = 𝑊)
571, 18, 36, 56syl12anc 827 . . . . . . . 8 (𝜑 → (𝑊 splice ⟨𝐼, (𝐼 + 2), (𝑊 substr ⟨𝐼, (𝐼 + 2)⟩)⟩) = 𝑊)
5857oveq2d 6938 . . . . . . 7 (𝜑 → (𝐺 Σg (𝑊 splice ⟨𝐼, (𝐼 + 2), (𝑊 substr ⟨𝐼, (𝐼 + 2)⟩)⟩)) = (𝐺 Σg 𝑊))
5958adantr 474 . . . . . 6 ((𝜑 ∧ ((𝑊𝐼) ∘ (𝑊‘(𝐼 + 1))) = ( I ↾ 𝐷)) → (𝐺 Σg (𝑊 splice ⟨𝐼, (𝐼 + 2), (𝑊 substr ⟨𝐼, (𝐼 + 2)⟩)⟩)) = (𝐺 Σg 𝑊))
60 eqid 2778 . . . . . . 7 (Base‘𝐺) = (Base‘𝐺)
6119symggrp 18203 . . . . . . . . . 10 (𝐷𝑉𝐺 ∈ Grp)
6221, 61syl 17 . . . . . . . . 9 (𝜑𝐺 ∈ Grp)
63 grpmnd 17816 . . . . . . . . 9 (𝐺 ∈ Grp → 𝐺 ∈ Mnd)
6462, 63syl 17 . . . . . . . 8 (𝜑𝐺 ∈ Mnd)
6564adantr 474 . . . . . . 7 ((𝜑 ∧ ((𝑊𝐼) ∘ (𝑊‘(𝐼 + 1))) = ( I ↾ 𝐷)) → 𝐺 ∈ Mnd)
6620, 19, 60symgtrf 18272 . . . . . . . . . 10 𝑇 ⊆ (Base‘𝐺)
67 sswrd 13607 . . . . . . . . . 10 (𝑇 ⊆ (Base‘𝐺) → Word 𝑇 ⊆ Word (Base‘𝐺))
6866, 67ax-mp 5 . . . . . . . . 9 Word 𝑇 ⊆ Word (Base‘𝐺)
6968, 1sseldi 3819 . . . . . . . 8 (𝜑𝑊 ∈ Word (Base‘𝐺))
7069adantr 474 . . . . . . 7 ((𝜑 ∧ ((𝑊𝐼) ∘ (𝑊‘(𝐼 + 1))) = ( I ↾ 𝐷)) → 𝑊 ∈ Word (Base‘𝐺))
7118adantr 474 . . . . . . 7 ((𝜑 ∧ ((𝑊𝐼) ∘ (𝑊‘(𝐼 + 1))) = ( I ↾ 𝐷)) → 𝐼 ∈ (0...(𝐼 + 2)))
7236adantr 474 . . . . . . 7 ((𝜑 ∧ ((𝑊𝐼) ∘ (𝑊‘(𝐼 + 1))) = ( I ↾ 𝐷)) → (𝐼 + 2) ∈ (0...(♯‘𝑊)))
73 swrdcl 13735 . . . . . . . . 9 (𝑊 ∈ Word (Base‘𝐺) → (𝑊 substr ⟨𝐼, (𝐼 + 2)⟩) ∈ Word (Base‘𝐺))
7469, 73syl 17 . . . . . . . 8 (𝜑 → (𝑊 substr ⟨𝐼, (𝐼 + 2)⟩) ∈ Word (Base‘𝐺))
7574adantr 474 . . . . . . 7 ((𝜑 ∧ ((𝑊𝐼) ∘ (𝑊‘(𝐼 + 1))) = ( I ↾ 𝐷)) → (𝑊 substr ⟨𝐼, (𝐼 + 2)⟩) ∈ Word (Base‘𝐺))
76 wrd0 13627 . . . . . . . 8 ∅ ∈ Word (Base‘𝐺)
7776a1i 11 . . . . . . 7 ((𝜑 ∧ ((𝑊𝐼) ∘ (𝑊‘(𝐼 + 1))) = ( I ↾ 𝐷)) → ∅ ∈ Word (Base‘𝐺))
7823oveq2d 6938 . . . . . . . . . . . . 13 (𝜑 → (0..^(♯‘𝑊)) = (0..^𝐿))
7926, 78eleqtrrd 2862 . . . . . . . . . . . 12 (𝜑 → (𝐼 + 1) ∈ (0..^(♯‘𝑊)))
80 swrds2 14091 . . . . . . . . . . . 12 ((𝑊 ∈ Word 𝑇𝐼 ∈ ℕ0 ∧ (𝐼 + 1) ∈ (0..^(♯‘𝑊))) → (𝑊 substr ⟨𝐼, (𝐼 + 2)⟩) = ⟨“(𝑊𝐼)(𝑊‘(𝐼 + 1))”⟩)
811, 10, 79, 80syl3anc 1439 . . . . . . . . . . 11 (𝜑 → (𝑊 substr ⟨𝐼, (𝐼 + 2)⟩) = ⟨“(𝑊𝐼)(𝑊‘(𝐼 + 1))”⟩)
8281oveq2d 6938 . . . . . . . . . 10 (𝜑 → (𝐺 Σg (𝑊 substr ⟨𝐼, (𝐼 + 2)⟩)) = (𝐺 Σg ⟨“(𝑊𝐼)(𝑊‘(𝐼 + 1))”⟩))
83 wrdf 13604 . . . . . . . . . . . . . . 15 (𝑊 ∈ Word 𝑇𝑊:(0..^(♯‘𝑊))⟶𝑇)
841, 83syl 17 . . . . . . . . . . . . . 14 (𝜑𝑊:(0..^(♯‘𝑊))⟶𝑇)
8578feq2d 6277 . . . . . . . . . . . . . 14 (𝜑 → (𝑊:(0..^(♯‘𝑊))⟶𝑇𝑊:(0..^𝐿)⟶𝑇))
8684, 85mpbid 224 . . . . . . . . . . . . 13 (𝜑𝑊:(0..^𝐿)⟶𝑇)
8786, 7ffvelrnd 6624 . . . . . . . . . . . 12 (𝜑 → (𝑊𝐼) ∈ 𝑇)
8866, 87sseldi 3819 . . . . . . . . . . 11 (𝜑 → (𝑊𝐼) ∈ (Base‘𝐺))
8986, 26ffvelrnd 6624 . . . . . . . . . . . 12 (𝜑 → (𝑊‘(𝐼 + 1)) ∈ 𝑇)
9066, 89sseldi 3819 . . . . . . . . . . 11 (𝜑 → (𝑊‘(𝐼 + 1)) ∈ (Base‘𝐺))
91 eqid 2778 . . . . . . . . . . . 12 (+g𝐺) = (+g𝐺)
9260, 91gsumws2 17765 . . . . . . . . . . 11 ((𝐺 ∈ Mnd ∧ (𝑊𝐼) ∈ (Base‘𝐺) ∧ (𝑊‘(𝐼 + 1)) ∈ (Base‘𝐺)) → (𝐺 Σg ⟨“(𝑊𝐼)(𝑊‘(𝐼 + 1))”⟩) = ((𝑊𝐼)(+g𝐺)(𝑊‘(𝐼 + 1))))
9364, 88, 90, 92syl3anc 1439 . . . . . . . . . 10 (𝜑 → (𝐺 Σg ⟨“(𝑊𝐼)(𝑊‘(𝐼 + 1))”⟩) = ((𝑊𝐼)(+g𝐺)(𝑊‘(𝐼 + 1))))
9419, 60, 91symgov 18193 . . . . . . . . . . 11 (((𝑊𝐼) ∈ (Base‘𝐺) ∧ (𝑊‘(𝐼 + 1)) ∈ (Base‘𝐺)) → ((𝑊𝐼)(+g𝐺)(𝑊‘(𝐼 + 1))) = ((𝑊𝐼) ∘ (𝑊‘(𝐼 + 1))))
9588, 90, 94syl2anc 579 . . . . . . . . . 10 (𝜑 → ((𝑊𝐼)(+g𝐺)(𝑊‘(𝐼 + 1))) = ((𝑊𝐼) ∘ (𝑊‘(𝐼 + 1))))
9682, 93, 953eqtrd 2818 . . . . . . . . 9 (𝜑 → (𝐺 Σg (𝑊 substr ⟨𝐼, (𝐼 + 2)⟩)) = ((𝑊𝐼) ∘ (𝑊‘(𝐼 + 1))))
9796adantr 474 . . . . . . . 8 ((𝜑 ∧ ((𝑊𝐼) ∘ (𝑊‘(𝐼 + 1))) = ( I ↾ 𝐷)) → (𝐺 Σg (𝑊 substr ⟨𝐼, (𝐼 + 2)⟩)) = ((𝑊𝐼) ∘ (𝑊‘(𝐼 + 1))))
98 simpr 479 . . . . . . . 8 ((𝜑 ∧ ((𝑊𝐼) ∘ (𝑊‘(𝐼 + 1))) = ( I ↾ 𝐷)) → ((𝑊𝐼) ∘ (𝑊‘(𝐼 + 1))) = ( I ↾ 𝐷))
9919symgid 18204 . . . . . . . . . . 11 (𝐷𝑉 → ( I ↾ 𝐷) = (0g𝐺))
10021, 99syl 17 . . . . . . . . . 10 (𝜑 → ( I ↾ 𝐷) = (0g𝐺))
101 eqid 2778 . . . . . . . . . . 11 (0g𝐺) = (0g𝐺)
102101gsum0 17664 . . . . . . . . . 10 (𝐺 Σg ∅) = (0g𝐺)
103100, 102syl6eqr 2832 . . . . . . . . 9 (𝜑 → ( I ↾ 𝐷) = (𝐺 Σg ∅))
104103adantr 474 . . . . . . . 8 ((𝜑 ∧ ((𝑊𝐼) ∘ (𝑊‘(𝐼 + 1))) = ( I ↾ 𝐷)) → ( I ↾ 𝐷) = (𝐺 Σg ∅))
10597, 98, 1043eqtrd 2818 . . . . . . 7 ((𝜑 ∧ ((𝑊𝐼) ∘ (𝑊‘(𝐼 + 1))) = ( I ↾ 𝐷)) → (𝐺 Σg (𝑊 substr ⟨𝐼, (𝐼 + 2)⟩)) = (𝐺 Σg ∅))
10660, 65, 70, 71, 72, 75, 77, 105gsumspl 17767 . . . . . 6 ((𝜑 ∧ ((𝑊𝐼) ∘ (𝑊‘(𝐼 + 1))) = ( I ↾ 𝐷)) → (𝐺 Σg (𝑊 splice ⟨𝐼, (𝐼 + 2), (𝑊 substr ⟨𝐼, (𝐼 + 2)⟩)⟩)) = (𝐺 Σg (𝑊 splice ⟨𝐼, (𝐼 + 2), ∅⟩)))
10722adantr 474 . . . . . 6 ((𝜑 ∧ ((𝑊𝐼) ∘ (𝑊‘(𝐼 + 1))) = ( I ↾ 𝐷)) → (𝐺 Σg 𝑊) = ( I ↾ 𝐷))
10859, 106, 1073eqtr3d 2822 . . . . 5 ((𝜑 ∧ ((𝑊𝐼) ∘ (𝑊‘(𝐼 + 1))) = ( I ↾ 𝐷)) → (𝐺 Σg (𝑊 splice ⟨𝐼, (𝐼 + 2), ∅⟩)) = ( I ↾ 𝐷))
109 fveqeq2 6455 . . . . . . 7 (𝑥 = (𝑊 splice ⟨𝐼, (𝐼 + 2), ∅⟩) → ((♯‘𝑥) = (𝐿 − 2) ↔ (♯‘(𝑊 splice ⟨𝐼, (𝐼 + 2), ∅⟩)) = (𝐿 − 2)))
110 oveq2 6930 . . . . . . . 8 (𝑥 = (𝑊 splice ⟨𝐼, (𝐼 + 2), ∅⟩) → (𝐺 Σg 𝑥) = (𝐺 Σg (𝑊 splice ⟨𝐼, (𝐼 + 2), ∅⟩)))
111110eqeq1d 2780 . . . . . . 7 (𝑥 = (𝑊 splice ⟨𝐼, (𝐼 + 2), ∅⟩) → ((𝐺 Σg 𝑥) = ( I ↾ 𝐷) ↔ (𝐺 Σg (𝑊 splice ⟨𝐼, (𝐼 + 2), ∅⟩)) = ( I ↾ 𝐷)))
112109, 111anbi12d 624 . . . . . 6 (𝑥 = (𝑊 splice ⟨𝐼, (𝐼 + 2), ∅⟩) → (((♯‘𝑥) = (𝐿 − 2) ∧ (𝐺 Σg 𝑥) = ( I ↾ 𝐷)) ↔ ((♯‘(𝑊 splice ⟨𝐼, (𝐼 + 2), ∅⟩)) = (𝐿 − 2) ∧ (𝐺 Σg (𝑊 splice ⟨𝐼, (𝐼 + 2), ∅⟩)) = ( I ↾ 𝐷))))
113112rspcev 3511 . . . . 5 (((𝑊 splice ⟨𝐼, (𝐼 + 2), ∅⟩) ∈ Word 𝑇 ∧ ((♯‘(𝑊 splice ⟨𝐼, (𝐼 + 2), ∅⟩)) = (𝐿 − 2) ∧ (𝐺 Σg (𝑊 splice ⟨𝐼, (𝐼 + 2), ∅⟩)) = ( I ↾ 𝐷))) → ∃𝑥 ∈ Word 𝑇((♯‘𝑥) = (𝐿 − 2) ∧ (𝐺 Σg 𝑥) = ( I ↾ 𝐷)))
1145, 55, 108, 113syl12anc 827 . . . 4 ((𝜑 ∧ ((𝑊𝐼) ∘ (𝑊‘(𝐼 + 1))) = ( I ↾ 𝐷)) → ∃𝑥 ∈ Word 𝑇((♯‘𝑥) = (𝐿 − 2) ∧ (𝐺 Σg 𝑥) = ( I ↾ 𝐷)))
115 psgnunilem2.in . . . . 5 (𝜑 → ¬ ∃𝑥 ∈ Word 𝑇((♯‘𝑥) = (𝐿 − 2) ∧ (𝐺 Σg 𝑥) = ( I ↾ 𝐷)))
116115adantr 474 . . . 4 ((𝜑 ∧ ((𝑊𝐼) ∘ (𝑊‘(𝐼 + 1))) = ( I ↾ 𝐷)) → ¬ ∃𝑥 ∈ Word 𝑇((♯‘𝑥) = (𝐿 − 2) ∧ (𝐺 Σg 𝑥) = ( I ↾ 𝐷)))
117114, 116pm2.21dd 187 . . 3 ((𝜑 ∧ ((𝑊𝐼) ∘ (𝑊‘(𝐼 + 1))) = ( I ↾ 𝐷)) → ∃𝑤 ∈ Word 𝑇(((𝐺 Σg 𝑤) = ( I ↾ 𝐷) ∧ (♯‘𝑤) = 𝐿) ∧ ((𝐼 + 1) ∈ (0..^𝐿) ∧ 𝐴 ∈ dom ((𝑤‘(𝐼 + 1)) ∖ I ) ∧ ∀𝑗 ∈ (0..^(𝐼 + 1)) ¬ 𝐴 ∈ dom ((𝑤𝑗) ∖ I ))))
118117ex 403 . 2 (𝜑 → (((𝑊𝐼) ∘ (𝑊‘(𝐼 + 1))) = ( I ↾ 𝐷) → ∃𝑤 ∈ Word 𝑇(((𝐺 Σg 𝑤) = ( I ↾ 𝐷) ∧ (♯‘𝑤) = 𝐿) ∧ ((𝐼 + 1) ∈ (0..^𝐿) ∧ 𝐴 ∈ dom ((𝑤‘(𝐼 + 1)) ∖ I ) ∧ ∀𝑗 ∈ (0..^(𝐼 + 1)) ¬ 𝐴 ∈ dom ((𝑤𝑗) ∖ I )))))
1191adantr 474 . . . . . . 7 ((𝜑 ∧ (𝑟𝑇𝑠𝑇)) → 𝑊 ∈ Word 𝑇)
120 simprl 761 . . . . . . . 8 ((𝜑 ∧ (𝑟𝑇𝑠𝑇)) → 𝑟𝑇)
121 simprr 763 . . . . . . . 8 ((𝜑 ∧ (𝑟𝑇𝑠𝑇)) → 𝑠𝑇)
122120, 121s2cld 14022 . . . . . . 7 ((𝜑 ∧ (𝑟𝑇𝑠𝑇)) → ⟨“𝑟𝑠”⟩ ∈ Word 𝑇)
123 splcl 13892 . . . . . . 7 ((𝑊 ∈ Word 𝑇 ∧ ⟨“𝑟𝑠”⟩ ∈ Word 𝑇) → (𝑊 splice ⟨𝐼, (𝐼 + 2), ⟨“𝑟𝑠”⟩⟩) ∈ Word 𝑇)
124119, 122, 123syl2anc 579 . . . . . 6 ((𝜑 ∧ (𝑟𝑇𝑠𝑇)) → (𝑊 splice ⟨𝐼, (𝐼 + 2), ⟨“𝑟𝑠”⟩⟩) ∈ Word 𝑇)
125124adantrr 707 . . . . 5 ((𝜑 ∧ ((𝑟𝑇𝑠𝑇) ∧ (((𝑊𝐼) ∘ (𝑊‘(𝐼 + 1))) = (𝑟𝑠) ∧ 𝐴 ∈ dom (𝑠 ∖ I ) ∧ ¬ 𝐴 ∈ dom (𝑟 ∖ I )))) → (𝑊 splice ⟨𝐼, (𝐼 + 2), ⟨“𝑟𝑠”⟩⟩) ∈ Word 𝑇)
12664adantr 474 . . . . . . . 8 ((𝜑 ∧ ((𝑟𝑇𝑠𝑇) ∧ (((𝑊𝐼) ∘ (𝑊‘(𝐼 + 1))) = (𝑟𝑠) ∧ 𝐴 ∈ dom (𝑠 ∖ I ) ∧ ¬ 𝐴 ∈ dom (𝑟 ∖ I )))) → 𝐺 ∈ Mnd)
12769adantr 474 . . . . . . . 8 ((𝜑 ∧ ((𝑟𝑇𝑠𝑇) ∧ (((𝑊𝐼) ∘ (𝑊‘(𝐼 + 1))) = (𝑟𝑠) ∧ 𝐴 ∈ dom (𝑠 ∖ I ) ∧ ¬ 𝐴 ∈ dom (𝑟 ∖ I )))) → 𝑊 ∈ Word (Base‘𝐺))
12818adantr 474 . . . . . . . 8 ((𝜑 ∧ ((𝑟𝑇𝑠𝑇) ∧ (((𝑊𝐼) ∘ (𝑊‘(𝐼 + 1))) = (𝑟𝑠) ∧ 𝐴 ∈ dom (𝑠 ∖ I ) ∧ ¬ 𝐴 ∈ dom (𝑟 ∖ I )))) → 𝐼 ∈ (0...(𝐼 + 2)))
12936adantr 474 . . . . . . . 8 ((𝜑 ∧ ((𝑟𝑇𝑠𝑇) ∧ (((𝑊𝐼) ∘ (𝑊‘(𝐼 + 1))) = (𝑟𝑠) ∧ 𝐴 ∈ dom (𝑠 ∖ I ) ∧ ¬ 𝐴 ∈ dom (𝑟 ∖ I )))) → (𝐼 + 2) ∈ (0...(♯‘𝑊)))
13068, 122sseldi 3819 . . . . . . . . 9 ((𝜑 ∧ (𝑟𝑇𝑠𝑇)) → ⟨“𝑟𝑠”⟩ ∈ Word (Base‘𝐺))
131130adantrr 707 . . . . . . . 8 ((𝜑 ∧ ((𝑟𝑇𝑠𝑇) ∧ (((𝑊𝐼) ∘ (𝑊‘(𝐼 + 1))) = (𝑟𝑠) ∧ 𝐴 ∈ dom (𝑠 ∖ I ) ∧ ¬ 𝐴 ∈ dom (𝑟 ∖ I )))) → ⟨“𝑟𝑠”⟩ ∈ Word (Base‘𝐺))
13274adantr 474 . . . . . . . 8 ((𝜑 ∧ ((𝑟𝑇𝑠𝑇) ∧ (((𝑊𝐼) ∘ (𝑊‘(𝐼 + 1))) = (𝑟𝑠) ∧ 𝐴 ∈ dom (𝑠 ∖ I ) ∧ ¬ 𝐴 ∈ dom (𝑟 ∖ I )))) → (𝑊 substr ⟨𝐼, (𝐼 + 2)⟩) ∈ Word (Base‘𝐺))
133 simprr1 1244 . . . . . . . . 9 ((𝜑 ∧ ((𝑟𝑇𝑠𝑇) ∧ (((𝑊𝐼) ∘ (𝑊‘(𝐼 + 1))) = (𝑟𝑠) ∧ 𝐴 ∈ dom (𝑠 ∖ I ) ∧ ¬ 𝐴 ∈ dom (𝑟 ∖ I )))) → ((𝑊𝐼) ∘ (𝑊‘(𝐼 + 1))) = (𝑟𝑠))
13496adantr 474 . . . . . . . . 9 ((𝜑 ∧ ((𝑟𝑇𝑠𝑇) ∧ (((𝑊𝐼) ∘ (𝑊‘(𝐼 + 1))) = (𝑟𝑠) ∧ 𝐴 ∈ dom (𝑠 ∖ I ) ∧ ¬ 𝐴 ∈ dom (𝑟 ∖ I )))) → (𝐺 Σg (𝑊 substr ⟨𝐼, (𝐼 + 2)⟩)) = ((𝑊𝐼) ∘ (𝑊‘(𝐼 + 1))))
13564adantr 474 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑟𝑇𝑠𝑇)) → 𝐺 ∈ Mnd)
13666a1i 11 . . . . . . . . . . . . . 14 (𝜑𝑇 ⊆ (Base‘𝐺))
137136sselda 3821 . . . . . . . . . . . . 13 ((𝜑𝑟𝑇) → 𝑟 ∈ (Base‘𝐺))
138137adantrr 707 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑟𝑇𝑠𝑇)) → 𝑟 ∈ (Base‘𝐺))
139136sselda 3821 . . . . . . . . . . . . 13 ((𝜑𝑠𝑇) → 𝑠 ∈ (Base‘𝐺))
140139adantrl 706 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑟𝑇𝑠𝑇)) → 𝑠 ∈ (Base‘𝐺))
14160, 91gsumws2 17765 . . . . . . . . . . . 12 ((𝐺 ∈ Mnd ∧ 𝑟 ∈ (Base‘𝐺) ∧ 𝑠 ∈ (Base‘𝐺)) → (𝐺 Σg ⟨“𝑟𝑠”⟩) = (𝑟(+g𝐺)𝑠))
142135, 138, 140, 141syl3anc 1439 . . . . . . . . . . 11 ((𝜑 ∧ (𝑟𝑇𝑠𝑇)) → (𝐺 Σg ⟨“𝑟𝑠”⟩) = (𝑟(+g𝐺)𝑠))
14319, 60, 91symgov 18193 . . . . . . . . . . . 12 ((𝑟 ∈ (Base‘𝐺) ∧ 𝑠 ∈ (Base‘𝐺)) → (𝑟(+g𝐺)𝑠) = (𝑟𝑠))
144138, 140, 143syl2anc 579 . . . . . . . . . . 11 ((𝜑 ∧ (𝑟𝑇𝑠𝑇)) → (𝑟(+g𝐺)𝑠) = (𝑟𝑠))
145142, 144eqtrd 2814 . . . . . . . . . 10 ((𝜑 ∧ (𝑟𝑇𝑠𝑇)) → (𝐺 Σg ⟨“𝑟𝑠”⟩) = (𝑟𝑠))
146145adantrr 707 . . . . . . . . 9 ((𝜑 ∧ ((𝑟𝑇𝑠𝑇) ∧ (((𝑊𝐼) ∘ (𝑊‘(𝐼 + 1))) = (𝑟𝑠) ∧ 𝐴 ∈ dom (𝑠 ∖ I ) ∧ ¬ 𝐴 ∈ dom (𝑟 ∖ I )))) → (𝐺 Σg ⟨“𝑟𝑠”⟩) = (𝑟𝑠))
147133, 134, 1463eqtr4rd 2825 . . . . . . . 8 ((𝜑 ∧ ((𝑟𝑇𝑠𝑇) ∧ (((𝑊𝐼) ∘ (𝑊‘(𝐼 + 1))) = (𝑟𝑠) ∧ 𝐴 ∈ dom (𝑠 ∖ I ) ∧ ¬ 𝐴 ∈ dom (𝑟 ∖ I )))) → (𝐺 Σg ⟨“𝑟𝑠”⟩) = (𝐺 Σg (𝑊 substr ⟨𝐼, (𝐼 + 2)⟩)))
14860, 126, 127, 128, 129, 131, 132, 147gsumspl 17767 . . . . . . 7 ((𝜑 ∧ ((𝑟𝑇𝑠𝑇) ∧ (((𝑊𝐼) ∘ (𝑊‘(𝐼 + 1))) = (𝑟𝑠) ∧ 𝐴 ∈ dom (𝑠 ∖ I ) ∧ ¬ 𝐴 ∈ dom (𝑟 ∖ I )))) → (𝐺 Σg (𝑊 splice ⟨𝐼, (𝐼 + 2), ⟨“𝑟𝑠”⟩⟩)) = (𝐺 Σg (𝑊 splice ⟨𝐼, (𝐼 + 2), (𝑊 substr ⟨𝐼, (𝐼 + 2)⟩)⟩)))
14958adantr 474 . . . . . . 7 ((𝜑 ∧ ((𝑟𝑇𝑠𝑇) ∧ (((𝑊𝐼) ∘ (𝑊‘(𝐼 + 1))) = (𝑟𝑠) ∧ 𝐴 ∈ dom (𝑠 ∖ I ) ∧ ¬ 𝐴 ∈ dom (𝑟 ∖ I )))) → (𝐺 Σg (𝑊 splice ⟨𝐼, (𝐼 + 2), (𝑊 substr ⟨𝐼, (𝐼 + 2)⟩)⟩)) = (𝐺 Σg 𝑊))
15022adantr 474 . . . . . . 7 ((𝜑 ∧ ((𝑟𝑇𝑠𝑇) ∧ (((𝑊𝐼) ∘ (𝑊‘(𝐼 + 1))) = (𝑟𝑠) ∧ 𝐴 ∈ dom (𝑠 ∖ I ) ∧ ¬ 𝐴 ∈ dom (𝑟 ∖ I )))) → (𝐺 Σg 𝑊) = ( I ↾ 𝐷))
151148, 149, 1503eqtrd 2818 . . . . . 6 ((𝜑 ∧ ((𝑟𝑇𝑠𝑇) ∧ (((𝑊𝐼) ∘ (𝑊‘(𝐼 + 1))) = (𝑟𝑠) ∧ 𝐴 ∈ dom (𝑠 ∖ I ) ∧ ¬ 𝐴 ∈ dom (𝑟 ∖ I )))) → (𝐺 Σg (𝑊 splice ⟨𝐼, (𝐼 + 2), ⟨“𝑟𝑠”⟩⟩)) = ( I ↾ 𝐷))
15218adantr 474 . . . . . . . . 9 ((𝜑 ∧ (𝑟𝑇𝑠𝑇)) → 𝐼 ∈ (0...(𝐼 + 2)))
15336adantr 474 . . . . . . . . 9 ((𝜑 ∧ (𝑟𝑇𝑠𝑇)) → (𝐼 + 2) ∈ (0...(♯‘𝑊)))
154119, 152, 153, 122spllen 13896 . . . . . . . 8 ((𝜑 ∧ (𝑟𝑇𝑠𝑇)) → (♯‘(𝑊 splice ⟨𝐼, (𝐼 + 2), ⟨“𝑟𝑠”⟩⟩)) = ((♯‘𝑊) + ((♯‘⟨“𝑟𝑠”⟩) − ((𝐼 + 2) − 𝐼))))
155 s2len 14040 . . . . . . . . . . . . 13 (♯‘⟨“𝑟𝑠”⟩) = 2
156155oveq1i 6932 . . . . . . . . . . . 12 ((♯‘⟨“𝑟𝑠”⟩) − ((𝐼 + 2) − 𝐼)) = (2 − ((𝐼 + 2) − 𝐼))
15745oveq2d 6938 . . . . . . . . . . . . 13 (𝜑 → (2 − ((𝐼 + 2) − 𝐼)) = (2 − 2))
15843subidi 10694 . . . . . . . . . . . . 13 (2 − 2) = 0
159157, 158syl6eq 2830 . . . . . . . . . . . 12 (𝜑 → (2 − ((𝐼 + 2) − 𝐼)) = 0)
160156, 159syl5eq 2826 . . . . . . . . . . 11 (𝜑 → ((♯‘⟨“𝑟𝑠”⟩) − ((𝐼 + 2) − 𝐼)) = 0)
161160oveq2d 6938 . . . . . . . . . 10 (𝜑 → ((♯‘𝑊) + ((♯‘⟨“𝑟𝑠”⟩) − ((𝐼 + 2) − 𝐼))) = ((♯‘𝑊) + 0))
16223, 51eqeltrd 2859 . . . . . . . . . . 11 (𝜑 → (♯‘𝑊) ∈ ℂ)
163162addid1d 10576 . . . . . . . . . 10 (𝜑 → ((♯‘𝑊) + 0) = (♯‘𝑊))
164161, 163, 233eqtrd 2818 . . . . . . . . 9 (𝜑 → ((♯‘𝑊) + ((♯‘⟨“𝑟𝑠”⟩) − ((𝐼 + 2) − 𝐼))) = 𝐿)
165164adantr 474 . . . . . . . 8 ((𝜑 ∧ (𝑟𝑇𝑠𝑇)) → ((♯‘𝑊) + ((♯‘⟨“𝑟𝑠”⟩) − ((𝐼 + 2) − 𝐼))) = 𝐿)
166154, 165eqtrd 2814 . . . . . . 7 ((𝜑 ∧ (𝑟𝑇𝑠𝑇)) → (♯‘(𝑊 splice ⟨𝐼, (𝐼 + 2), ⟨“𝑟𝑠”⟩⟩)) = 𝐿)
167166adantrr 707 . . . . . 6 ((𝜑 ∧ ((𝑟𝑇𝑠𝑇) ∧ (((𝑊𝐼) ∘ (𝑊‘(𝐼 + 1))) = (𝑟𝑠) ∧ 𝐴 ∈ dom (𝑠 ∖ I ) ∧ ¬ 𝐴 ∈ dom (𝑟 ∖ I )))) → (♯‘(𝑊 splice ⟨𝐼, (𝐼 + 2), ⟨“𝑟𝑠”⟩⟩)) = 𝐿)
168151, 167jca 507 . . . . 5 ((𝜑 ∧ ((𝑟𝑇𝑠𝑇) ∧ (((𝑊𝐼) ∘ (𝑊‘(𝐼 + 1))) = (𝑟𝑠) ∧ 𝐴 ∈ dom (𝑠 ∖ I ) ∧ ¬ 𝐴 ∈ dom (𝑟 ∖ I )))) → ((𝐺 Σg (𝑊 splice ⟨𝐼, (𝐼 + 2), ⟨“𝑟𝑠”⟩⟩)) = ( I ↾ 𝐷) ∧ (♯‘(𝑊 splice ⟨𝐼, (𝐼 + 2), ⟨“𝑟𝑠”⟩⟩)) = 𝐿))
16926adantr 474 . . . . . 6 ((𝜑 ∧ ((𝑟𝑇𝑠𝑇) ∧ (((𝑊𝐼) ∘ (𝑊‘(𝐼 + 1))) = (𝑟𝑠) ∧ 𝐴 ∈ dom (𝑠 ∖ I ) ∧ ¬ 𝐴 ∈ dom (𝑟 ∖ I )))) → (𝐼 + 1) ∈ (0..^𝐿))
170 simprr2 1246 . . . . . . 7 ((𝜑 ∧ ((𝑟𝑇𝑠𝑇) ∧ (((𝑊𝐼) ∘ (𝑊‘(𝐼 + 1))) = (𝑟𝑠) ∧ 𝐴 ∈ dom (𝑠 ∖ I ) ∧ ¬ 𝐴 ∈ dom (𝑟 ∖ I )))) → 𝐴 ∈ dom (𝑠 ∖ I ))
171 1nn0 11660 . . . . . . . . . . . . . . 15 1 ∈ ℕ0
172 2nn 11448 . . . . . . . . . . . . . . 15 2 ∈ ℕ
173 1lt2 11553 . . . . . . . . . . . . . . 15 1 < 2
174 elfzo0 12828 . . . . . . . . . . . . . . 15 (1 ∈ (0..^2) ↔ (1 ∈ ℕ0 ∧ 2 ∈ ℕ ∧ 1 < 2))
175171, 172, 173, 174mpbir3an 1398 . . . . . . . . . . . . . 14 1 ∈ (0..^2)
176155oveq2i 6933 . . . . . . . . . . . . . 14 (0..^(♯‘⟨“𝑟𝑠”⟩)) = (0..^2)
177175, 176eleqtrri 2858 . . . . . . . . . . . . 13 1 ∈ (0..^(♯‘⟨“𝑟𝑠”⟩))
178177a1i 11 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑟𝑇𝑠𝑇)) → 1 ∈ (0..^(♯‘⟨“𝑟𝑠”⟩)))
179119, 152, 153, 122, 178splfv2a 13900 . . . . . . . . . . 11 ((𝜑 ∧ (𝑟𝑇𝑠𝑇)) → ((𝑊 splice ⟨𝐼, (𝐼 + 2), ⟨“𝑟𝑠”⟩⟩)‘(𝐼 + 1)) = (⟨“𝑟𝑠”⟩‘1))
180 s2fv1 14039 . . . . . . . . . . . 12 (𝑠𝑇 → (⟨“𝑟𝑠”⟩‘1) = 𝑠)
181180ad2antll 719 . . . . . . . . . . 11 ((𝜑 ∧ (𝑟𝑇𝑠𝑇)) → (⟨“𝑟𝑠”⟩‘1) = 𝑠)
182179, 181eqtrd 2814 . . . . . . . . . 10 ((𝜑 ∧ (𝑟𝑇𝑠𝑇)) → ((𝑊 splice ⟨𝐼, (𝐼 + 2), ⟨“𝑟𝑠”⟩⟩)‘(𝐼 + 1)) = 𝑠)
183182adantrr 707 . . . . . . . . 9 ((𝜑 ∧ ((𝑟𝑇𝑠𝑇) ∧ (((𝑊𝐼) ∘ (𝑊‘(𝐼 + 1))) = (𝑟𝑠) ∧ 𝐴 ∈ dom (𝑠 ∖ I ) ∧ ¬ 𝐴 ∈ dom (𝑟 ∖ I )))) → ((𝑊 splice ⟨𝐼, (𝐼 + 2), ⟨“𝑟𝑠”⟩⟩)‘(𝐼 + 1)) = 𝑠)
184183difeq1d 3950 . . . . . . . 8 ((𝜑 ∧ ((𝑟𝑇𝑠𝑇) ∧ (((𝑊𝐼) ∘ (𝑊‘(𝐼 + 1))) = (𝑟𝑠) ∧ 𝐴 ∈ dom (𝑠 ∖ I ) ∧ ¬ 𝐴 ∈ dom (𝑟 ∖ I )))) → (((𝑊 splice ⟨𝐼, (𝐼 + 2), ⟨“𝑟𝑠”⟩⟩)‘(𝐼 + 1)) ∖ I ) = (𝑠 ∖ I ))
185184dmeqd 5571 . . . . . . 7 ((𝜑 ∧ ((𝑟𝑇𝑠𝑇) ∧ (((𝑊𝐼) ∘ (𝑊‘(𝐼 + 1))) = (𝑟𝑠) ∧ 𝐴 ∈ dom (𝑠 ∖ I ) ∧ ¬ 𝐴 ∈ dom (𝑟 ∖ I )))) → dom (((𝑊 splice ⟨𝐼, (𝐼 + 2), ⟨“𝑟𝑠”⟩⟩)‘(𝐼 + 1)) ∖ I ) = dom (𝑠 ∖ I ))
186170, 185eleqtrrd 2862 . . . . . 6 ((𝜑 ∧ ((𝑟𝑇𝑠𝑇) ∧ (((𝑊𝐼) ∘ (𝑊‘(𝐼 + 1))) = (𝑟𝑠) ∧ 𝐴 ∈ dom (𝑠 ∖ I ) ∧ ¬ 𝐴 ∈ dom (𝑟 ∖ I )))) → 𝐴 ∈ dom (((𝑊 splice ⟨𝐼, (𝐼 + 2), ⟨“𝑟𝑠”⟩⟩)‘(𝐼 + 1)) ∖ I ))
187 fzosplitsni 12898 . . . . . . . . . . 11 (𝐼 ∈ (ℤ‘0) → (𝑗 ∈ (0..^(𝐼 + 1)) ↔ (𝑗 ∈ (0..^𝐼) ∨ 𝑗 = 𝐼)))
188 nn0uz 12028 . . . . . . . . . . 11 0 = (ℤ‘0)
189187, 188eleq2s 2877 . . . . . . . . . 10 (𝐼 ∈ ℕ0 → (𝑗 ∈ (0..^(𝐼 + 1)) ↔ (𝑗 ∈ (0..^𝐼) ∨ 𝑗 = 𝐼)))
19010, 189syl 17 . . . . . . . . 9 (𝜑 → (𝑗 ∈ (0..^(𝐼 + 1)) ↔ (𝑗 ∈ (0..^𝐼) ∨ 𝑗 = 𝐼)))
191190adantr 474 . . . . . . . 8 ((𝜑 ∧ ((𝑟𝑇𝑠𝑇) ∧ (((𝑊𝐼) ∘ (𝑊‘(𝐼 + 1))) = (𝑟𝑠) ∧ 𝐴 ∈ dom (𝑠 ∖ I ) ∧ ¬ 𝐴 ∈ dom (𝑟 ∖ I )))) → (𝑗 ∈ (0..^(𝐼 + 1)) ↔ (𝑗 ∈ (0..^𝐼) ∨ 𝑗 = 𝐼)))
192 fveq2 6446 . . . . . . . . . . . . . . . . . . 19 (𝑘 = 𝑗 → (𝑊𝑘) = (𝑊𝑗))
193192difeq1d 3950 . . . . . . . . . . . . . . . . . 18 (𝑘 = 𝑗 → ((𝑊𝑘) ∖ I ) = ((𝑊𝑗) ∖ I ))
194193dmeqd 5571 . . . . . . . . . . . . . . . . 17 (𝑘 = 𝑗 → dom ((𝑊𝑘) ∖ I ) = dom ((𝑊𝑗) ∖ I ))
195194eleq2d 2845 . . . . . . . . . . . . . . . 16 (𝑘 = 𝑗 → (𝐴 ∈ dom ((𝑊𝑘) ∖ I ) ↔ 𝐴 ∈ dom ((𝑊𝑗) ∖ I )))
196195notbid 310 . . . . . . . . . . . . . . 15 (𝑘 = 𝑗 → (¬ 𝐴 ∈ dom ((𝑊𝑘) ∖ I ) ↔ ¬ 𝐴 ∈ dom ((𝑊𝑗) ∖ I )))
197196rspccva 3510 . . . . . . . . . . . . . 14 ((∀𝑘 ∈ (0..^𝐼) ¬ 𝐴 ∈ dom ((𝑊𝑘) ∖ I ) ∧ 𝑗 ∈ (0..^𝐼)) → ¬ 𝐴 ∈ dom ((𝑊𝑗) ∖ I ))
19825, 197sylan 575 . . . . . . . . . . . . 13 ((𝜑𝑗 ∈ (0..^𝐼)) → ¬ 𝐴 ∈ dom ((𝑊𝑗) ∖ I ))
199198adantlr 705 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑟𝑇𝑠𝑇)) ∧ 𝑗 ∈ (0..^𝐼)) → ¬ 𝐴 ∈ dom ((𝑊𝑗) ∖ I ))
2001ad2antrr 716 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑟𝑇𝑠𝑇)) ∧ 𝑗 ∈ (0..^𝐼)) → 𝑊 ∈ Word 𝑇)
20118ad2antrr 716 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑟𝑇𝑠𝑇)) ∧ 𝑗 ∈ (0..^𝐼)) → 𝐼 ∈ (0...(𝐼 + 2)))
20236ad2antrr 716 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑟𝑇𝑠𝑇)) ∧ 𝑗 ∈ (0..^𝐼)) → (𝐼 + 2) ∈ (0...(♯‘𝑊)))
203122adantr 474 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑟𝑇𝑠𝑇)) ∧ 𝑗 ∈ (0..^𝐼)) → ⟨“𝑟𝑠”⟩ ∈ Word 𝑇)
204 simpr 479 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑟𝑇𝑠𝑇)) ∧ 𝑗 ∈ (0..^𝐼)) → 𝑗 ∈ (0..^𝐼))
205200, 201, 202, 203, 204splfv1 13898 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑟𝑇𝑠𝑇)) ∧ 𝑗 ∈ (0..^𝐼)) → ((𝑊 splice ⟨𝐼, (𝐼 + 2), ⟨“𝑟𝑠”⟩⟩)‘𝑗) = (𝑊𝑗))
206205difeq1d 3950 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑟𝑇𝑠𝑇)) ∧ 𝑗 ∈ (0..^𝐼)) → (((𝑊 splice ⟨𝐼, (𝐼 + 2), ⟨“𝑟𝑠”⟩⟩)‘𝑗) ∖ I ) = ((𝑊𝑗) ∖ I ))
207206dmeqd 5571 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑟𝑇𝑠𝑇)) ∧ 𝑗 ∈ (0..^𝐼)) → dom (((𝑊 splice ⟨𝐼, (𝐼 + 2), ⟨“𝑟𝑠”⟩⟩)‘𝑗) ∖ I ) = dom ((𝑊𝑗) ∖ I ))
208199, 207neleqtrrd 2881 . . . . . . . . . . 11 (((𝜑 ∧ (𝑟𝑇𝑠𝑇)) ∧ 𝑗 ∈ (0..^𝐼)) → ¬ 𝐴 ∈ dom (((𝑊 splice ⟨𝐼, (𝐼 + 2), ⟨“𝑟𝑠”⟩⟩)‘𝑗) ∖ I ))
209208ex 403 . . . . . . . . . 10 ((𝜑 ∧ (𝑟𝑇𝑠𝑇)) → (𝑗 ∈ (0..^𝐼) → ¬ 𝐴 ∈ dom (((𝑊 splice ⟨𝐼, (𝐼 + 2), ⟨“𝑟𝑠”⟩⟩)‘𝑗) ∖ I )))
210209adantrr 707 . . . . . . . . 9 ((𝜑 ∧ ((𝑟𝑇𝑠𝑇) ∧ (((𝑊𝐼) ∘ (𝑊‘(𝐼 + 1))) = (𝑟𝑠) ∧ 𝐴 ∈ dom (𝑠 ∖ I ) ∧ ¬ 𝐴 ∈ dom (𝑟 ∖ I )))) → (𝑗 ∈ (0..^𝐼) → ¬ 𝐴 ∈ dom (((𝑊 splice ⟨𝐼, (𝐼 + 2), ⟨“𝑟𝑠”⟩⟩)‘𝑗) ∖ I )))
211 simprr3 1248 . . . . . . . . . . 11 ((𝜑 ∧ ((𝑟𝑇𝑠𝑇) ∧ (((𝑊𝐼) ∘ (𝑊‘(𝐼 + 1))) = (𝑟𝑠) ∧ 𝐴 ∈ dom (𝑠 ∖ I ) ∧ ¬ 𝐴 ∈ dom (𝑟 ∖ I )))) → ¬ 𝐴 ∈ dom (𝑟 ∖ I ))
212 0nn0 11659 . . . . . . . . . . . . . . . . . . . 20 0 ∈ ℕ0
213 2pos 11485 . . . . . . . . . . . . . . . . . . . 20 0 < 2
214 elfzo0 12828 . . . . . . . . . . . . . . . . . . . 20 (0 ∈ (0..^2) ↔ (0 ∈ ℕ0 ∧ 2 ∈ ℕ ∧ 0 < 2))
215212, 172, 213, 214mpbir3an 1398 . . . . . . . . . . . . . . . . . . 19 0 ∈ (0..^2)
216215, 176eleqtrri 2858 . . . . . . . . . . . . . . . . . 18 0 ∈ (0..^(♯‘⟨“𝑟𝑠”⟩))
217216a1i 11 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ (𝑟𝑇𝑠𝑇)) → 0 ∈ (0..^(♯‘⟨“𝑟𝑠”⟩)))
218119, 152, 153, 122, 217splfv2a 13900 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (𝑟𝑇𝑠𝑇)) → ((𝑊 splice ⟨𝐼, (𝐼 + 2), ⟨“𝑟𝑠”⟩⟩)‘(𝐼 + 0)) = (⟨“𝑟𝑠”⟩‘0))
21929addid1d 10576 . . . . . . . . . . . . . . . . . 18 (𝜑 → (𝐼 + 0) = 𝐼)
220219adantr 474 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ (𝑟𝑇𝑠𝑇)) → (𝐼 + 0) = 𝐼)
221220fveq2d 6450 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (𝑟𝑇𝑠𝑇)) → ((𝑊 splice ⟨𝐼, (𝐼 + 2), ⟨“𝑟𝑠”⟩⟩)‘(𝐼 + 0)) = ((𝑊 splice ⟨𝐼, (𝐼 + 2), ⟨“𝑟𝑠”⟩⟩)‘𝐼))
222 s2fv0 14038 . . . . . . . . . . . . . . . . 17 (𝑟𝑇 → (⟨“𝑟𝑠”⟩‘0) = 𝑟)
223222ad2antrl 718 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (𝑟𝑇𝑠𝑇)) → (⟨“𝑟𝑠”⟩‘0) = 𝑟)
224218, 221, 2233eqtr3d 2822 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑟𝑇𝑠𝑇)) → ((𝑊 splice ⟨𝐼, (𝐼 + 2), ⟨“𝑟𝑠”⟩⟩)‘𝐼) = 𝑟)
225224difeq1d 3950 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑟𝑇𝑠𝑇)) → (((𝑊 splice ⟨𝐼, (𝐼 + 2), ⟨“𝑟𝑠”⟩⟩)‘𝐼) ∖ I ) = (𝑟 ∖ I ))
226225dmeqd 5571 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑟𝑇𝑠𝑇)) → dom (((𝑊 splice ⟨𝐼, (𝐼 + 2), ⟨“𝑟𝑠”⟩⟩)‘𝐼) ∖ I ) = dom (𝑟 ∖ I ))
227226eleq2d 2845 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑟𝑇𝑠𝑇)) → (𝐴 ∈ dom (((𝑊 splice ⟨𝐼, (𝐼 + 2), ⟨“𝑟𝑠”⟩⟩)‘𝐼) ∖ I ) ↔ 𝐴 ∈ dom (𝑟 ∖ I )))
228227adantrr 707 . . . . . . . . . . 11 ((𝜑 ∧ ((𝑟𝑇𝑠𝑇) ∧ (((𝑊𝐼) ∘ (𝑊‘(𝐼 + 1))) = (𝑟𝑠) ∧ 𝐴 ∈ dom (𝑠 ∖ I ) ∧ ¬ 𝐴 ∈ dom (𝑟 ∖ I )))) → (𝐴 ∈ dom (((𝑊 splice ⟨𝐼, (𝐼 + 2), ⟨“𝑟𝑠”⟩⟩)‘𝐼) ∖ I ) ↔ 𝐴 ∈ dom (𝑟 ∖ I )))
229211, 228mtbird 317 . . . . . . . . . 10 ((𝜑 ∧ ((𝑟𝑇𝑠𝑇) ∧ (((𝑊𝐼) ∘ (𝑊‘(𝐼 + 1))) = (𝑟𝑠) ∧ 𝐴 ∈ dom (𝑠 ∖ I ) ∧ ¬ 𝐴 ∈ dom (𝑟 ∖ I )))) → ¬ 𝐴 ∈ dom (((𝑊 splice ⟨𝐼, (𝐼 + 2), ⟨“𝑟𝑠”⟩⟩)‘𝐼) ∖ I ))
230 fveq2 6446 . . . . . . . . . . . . . 14 (𝑗 = 𝐼 → ((𝑊 splice ⟨𝐼, (𝐼 + 2), ⟨“𝑟𝑠”⟩⟩)‘𝑗) = ((𝑊 splice ⟨𝐼, (𝐼 + 2), ⟨“𝑟𝑠”⟩⟩)‘𝐼))
231230difeq1d 3950 . . . . . . . . . . . . 13 (𝑗 = 𝐼 → (((𝑊 splice ⟨𝐼, (𝐼 + 2), ⟨“𝑟𝑠”⟩⟩)‘𝑗) ∖ I ) = (((𝑊 splice ⟨𝐼, (𝐼 + 2), ⟨“𝑟𝑠”⟩⟩)‘𝐼) ∖ I ))
232231dmeqd 5571 . . . . . . . . . . . 12 (𝑗 = 𝐼 → dom (((𝑊 splice ⟨𝐼, (𝐼 + 2), ⟨“𝑟𝑠”⟩⟩)‘𝑗) ∖ I ) = dom (((𝑊 splice ⟨𝐼, (𝐼 + 2), ⟨“𝑟𝑠”⟩⟩)‘𝐼) ∖ I ))
233232eleq2d 2845 . . . . . . . . . . 11 (𝑗 = 𝐼 → (𝐴 ∈ dom (((𝑊 splice ⟨𝐼, (𝐼 + 2), ⟨“𝑟𝑠”⟩⟩)‘𝑗) ∖ I ) ↔ 𝐴 ∈ dom (((𝑊 splice ⟨𝐼, (𝐼 + 2), ⟨“𝑟𝑠”⟩⟩)‘𝐼) ∖ I )))
234233notbid 310 . . . . . . . . . 10 (𝑗 = 𝐼 → (¬ 𝐴 ∈ dom (((𝑊 splice ⟨𝐼, (𝐼 + 2), ⟨“𝑟𝑠”⟩⟩)‘𝑗) ∖ I ) ↔ ¬ 𝐴 ∈ dom (((𝑊 splice ⟨𝐼, (𝐼 + 2), ⟨“𝑟𝑠”⟩⟩)‘𝐼) ∖ I )))
235229, 234syl5ibrcom 239 . . . . . . . . 9 ((𝜑 ∧ ((𝑟𝑇𝑠𝑇) ∧ (((𝑊𝐼) ∘ (𝑊‘(𝐼 + 1))) = (𝑟𝑠) ∧ 𝐴 ∈ dom (𝑠 ∖ I ) ∧ ¬ 𝐴 ∈ dom (𝑟 ∖ I )))) → (𝑗 = 𝐼 → ¬ 𝐴 ∈ dom (((𝑊 splice ⟨𝐼, (𝐼 + 2), ⟨“𝑟𝑠”⟩⟩)‘𝑗) ∖ I )))
236210, 235jaod 848 . . . . . . . 8 ((𝜑 ∧ ((𝑟𝑇𝑠𝑇) ∧ (((𝑊𝐼) ∘ (𝑊‘(𝐼 + 1))) = (𝑟𝑠) ∧ 𝐴 ∈ dom (𝑠 ∖ I ) ∧ ¬ 𝐴 ∈ dom (𝑟 ∖ I )))) → ((𝑗 ∈ (0..^𝐼) ∨ 𝑗 = 𝐼) → ¬ 𝐴 ∈ dom (((𝑊 splice ⟨𝐼, (𝐼 + 2), ⟨“𝑟𝑠”⟩⟩)‘𝑗) ∖ I )))
237191, 236sylbid 232 . . . . . . 7 ((𝜑 ∧ ((𝑟𝑇𝑠𝑇) ∧ (((𝑊𝐼) ∘ (𝑊‘(𝐼 + 1))) = (𝑟𝑠) ∧ 𝐴 ∈ dom (𝑠 ∖ I ) ∧ ¬ 𝐴 ∈ dom (𝑟 ∖ I )))) → (𝑗 ∈ (0..^(𝐼 + 1)) → ¬ 𝐴 ∈ dom (((𝑊 splice ⟨𝐼, (𝐼 + 2), ⟨“𝑟𝑠”⟩⟩)‘𝑗) ∖ I )))
238237ralrimiv 3147 . . . . . 6 ((𝜑 ∧ ((𝑟𝑇𝑠𝑇) ∧ (((𝑊𝐼) ∘ (𝑊‘(𝐼 + 1))) = (𝑟𝑠) ∧ 𝐴 ∈ dom (𝑠 ∖ I ) ∧ ¬ 𝐴 ∈ dom (𝑟 ∖ I )))) → ∀𝑗 ∈ (0..^(𝐼 + 1)) ¬ 𝐴 ∈ dom (((𝑊 splice ⟨𝐼, (𝐼 + 2), ⟨“𝑟𝑠”⟩⟩)‘𝑗) ∖ I ))
239169, 186, 2383jca 1119 . . . . 5 ((𝜑 ∧ ((𝑟𝑇𝑠𝑇) ∧ (((𝑊𝐼) ∘ (𝑊‘(𝐼 + 1))) = (𝑟𝑠) ∧ 𝐴 ∈ dom (𝑠 ∖ I ) ∧ ¬ 𝐴 ∈ dom (𝑟 ∖ I )))) → ((𝐼 + 1) ∈ (0..^𝐿) ∧ 𝐴 ∈ dom (((𝑊 splice ⟨𝐼, (𝐼 + 2), ⟨“𝑟𝑠”⟩⟩)‘(𝐼 + 1)) ∖ I ) ∧ ∀𝑗 ∈ (0..^(𝐼 + 1)) ¬ 𝐴 ∈ dom (((𝑊 splice ⟨𝐼, (𝐼 + 2), ⟨“𝑟𝑠”⟩⟩)‘𝑗) ∖ I )))
240 oveq2 6930 . . . . . . . . 9 (𝑤 = (𝑊 splice ⟨𝐼, (𝐼 + 2), ⟨“𝑟𝑠”⟩⟩) → (𝐺 Σg 𝑤) = (𝐺 Σg (𝑊 splice ⟨𝐼, (𝐼 + 2), ⟨“𝑟𝑠”⟩⟩)))
241240eqeq1d 2780 . . . . . . . 8 (𝑤 = (𝑊 splice ⟨𝐼, (𝐼 + 2), ⟨“𝑟𝑠”⟩⟩) → ((𝐺 Σg 𝑤) = ( I ↾ 𝐷) ↔ (𝐺 Σg (𝑊 splice ⟨𝐼, (𝐼 + 2), ⟨“𝑟𝑠”⟩⟩)) = ( I ↾ 𝐷)))
242 fveqeq2 6455 . . . . . . . 8 (𝑤 = (𝑊 splice ⟨𝐼, (𝐼 + 2), ⟨“𝑟𝑠”⟩⟩) → ((♯‘𝑤) = 𝐿 ↔ (♯‘(𝑊 splice ⟨𝐼, (𝐼 + 2), ⟨“𝑟𝑠”⟩⟩)) = 𝐿))
243241, 242anbi12d 624 . . . . . . 7 (𝑤 = (𝑊 splice ⟨𝐼, (𝐼 + 2), ⟨“𝑟𝑠”⟩⟩) → (((𝐺 Σg 𝑤) = ( I ↾ 𝐷) ∧ (♯‘𝑤) = 𝐿) ↔ ((𝐺 Σg (𝑊 splice ⟨𝐼, (𝐼 + 2), ⟨“𝑟𝑠”⟩⟩)) = ( I ↾ 𝐷) ∧ (♯‘(𝑊 splice ⟨𝐼, (𝐼 + 2), ⟨“𝑟𝑠”⟩⟩)) = 𝐿)))
244 fveq1 6445 . . . . . . . . . . 11 (𝑤 = (𝑊 splice ⟨𝐼, (𝐼 + 2), ⟨“𝑟𝑠”⟩⟩) → (𝑤‘(𝐼 + 1)) = ((𝑊 splice ⟨𝐼, (𝐼 + 2), ⟨“𝑟𝑠”⟩⟩)‘(𝐼 + 1)))
245244difeq1d 3950 . . . . . . . . . 10 (𝑤 = (𝑊 splice ⟨𝐼, (𝐼 + 2), ⟨“𝑟𝑠”⟩⟩) → ((𝑤‘(𝐼 + 1)) ∖ I ) = (((𝑊 splice ⟨𝐼, (𝐼 + 2), ⟨“𝑟𝑠”⟩⟩)‘(𝐼 + 1)) ∖ I ))
246245dmeqd 5571 . . . . . . . . 9 (𝑤 = (𝑊 splice ⟨𝐼, (𝐼 + 2), ⟨“𝑟𝑠”⟩⟩) → dom ((𝑤‘(𝐼 + 1)) ∖ I ) = dom (((𝑊 splice ⟨𝐼, (𝐼 + 2), ⟨“𝑟𝑠”⟩⟩)‘(𝐼 + 1)) ∖ I ))
247246eleq2d 2845 . . . . . . . 8 (𝑤 = (𝑊 splice ⟨𝐼, (𝐼 + 2), ⟨“𝑟𝑠”⟩⟩) → (𝐴 ∈ dom ((𝑤‘(𝐼 + 1)) ∖ I ) ↔ 𝐴 ∈ dom (((𝑊 splice ⟨𝐼, (𝐼 + 2), ⟨“𝑟𝑠”⟩⟩)‘(𝐼 + 1)) ∖ I )))
248 fveq1 6445 . . . . . . . . . . . . 13 (𝑤 = (𝑊 splice ⟨𝐼, (𝐼 + 2), ⟨“𝑟𝑠”⟩⟩) → (𝑤𝑗) = ((𝑊 splice ⟨𝐼, (𝐼 + 2), ⟨“𝑟𝑠”⟩⟩)‘𝑗))
249248difeq1d 3950 . . . . . . . . . . . 12 (𝑤 = (𝑊 splice ⟨𝐼, (𝐼 + 2), ⟨“𝑟𝑠”⟩⟩) → ((𝑤𝑗) ∖ I ) = (((𝑊 splice ⟨𝐼, (𝐼 + 2), ⟨“𝑟𝑠”⟩⟩)‘𝑗) ∖ I ))
250249dmeqd 5571 . . . . . . . . . . 11 (𝑤 = (𝑊 splice ⟨𝐼, (𝐼 + 2), ⟨“𝑟𝑠”⟩⟩) → dom ((𝑤𝑗) ∖ I ) = dom (((𝑊 splice ⟨𝐼, (𝐼 + 2), ⟨“𝑟𝑠”⟩⟩)‘𝑗) ∖ I ))
251250eleq2d 2845 . . . . . . . . . 10 (𝑤 = (𝑊 splice ⟨𝐼, (𝐼 + 2), ⟨“𝑟𝑠”⟩⟩) → (𝐴 ∈ dom ((𝑤𝑗) ∖ I ) ↔ 𝐴 ∈ dom (((𝑊 splice ⟨𝐼, (𝐼 + 2), ⟨“𝑟𝑠”⟩⟩)‘𝑗) ∖ I )))
252251notbid 310 . . . . . . . . 9 (𝑤 = (𝑊 splice ⟨𝐼, (𝐼 + 2), ⟨“𝑟𝑠”⟩⟩) → (¬ 𝐴 ∈ dom ((𝑤𝑗) ∖ I ) ↔ ¬ 𝐴 ∈ dom (((𝑊 splice ⟨𝐼, (𝐼 + 2), ⟨“𝑟𝑠”⟩⟩)‘𝑗) ∖ I )))
253252ralbidv 3168 . . . . . . . 8 (𝑤 = (𝑊 splice ⟨𝐼, (𝐼 + 2), ⟨“𝑟𝑠”⟩⟩) → (∀𝑗 ∈ (0..^(𝐼 + 1)) ¬ 𝐴 ∈ dom ((𝑤𝑗) ∖ I ) ↔ ∀𝑗 ∈ (0..^(𝐼 + 1)) ¬ 𝐴 ∈ dom (((𝑊 splice ⟨𝐼, (𝐼 + 2), ⟨“𝑟𝑠”⟩⟩)‘𝑗) ∖ I )))
254247, 2533anbi23d 1512 . . . . . . 7 (𝑤 = (𝑊 splice ⟨𝐼, (𝐼 + 2), ⟨“𝑟𝑠”⟩⟩) → (((𝐼 + 1) ∈ (0..^𝐿) ∧ 𝐴 ∈ dom ((𝑤‘(𝐼 + 1)) ∖ I ) ∧ ∀𝑗 ∈ (0..^(𝐼 + 1)) ¬ 𝐴 ∈ dom ((𝑤𝑗) ∖ I )) ↔ ((𝐼 + 1) ∈ (0..^𝐿) ∧ 𝐴 ∈ dom (((𝑊 splice ⟨𝐼, (𝐼 + 2), ⟨“𝑟𝑠”⟩⟩)‘(𝐼 + 1)) ∖ I ) ∧ ∀𝑗 ∈ (0..^(𝐼 + 1)) ¬ 𝐴 ∈ dom (((𝑊 splice ⟨𝐼, (𝐼 + 2), ⟨“𝑟𝑠”⟩⟩)‘𝑗) ∖ I ))))
255243, 254anbi12d 624 . . . . . 6 (𝑤 = (𝑊 splice ⟨𝐼, (𝐼 + 2), ⟨“𝑟𝑠”⟩⟩) → ((((𝐺 Σg 𝑤) = ( I ↾ 𝐷) ∧ (♯‘𝑤) = 𝐿) ∧ ((𝐼 + 1) ∈ (0..^𝐿) ∧ 𝐴 ∈ dom ((𝑤‘(𝐼 + 1)) ∖ I ) ∧ ∀𝑗 ∈ (0..^(𝐼 + 1)) ¬ 𝐴 ∈ dom ((𝑤𝑗) ∖ I ))) ↔ (((𝐺 Σg (𝑊 splice ⟨𝐼, (𝐼 + 2), ⟨“𝑟𝑠”⟩⟩)) = ( I ↾ 𝐷) ∧ (♯‘(𝑊 splice ⟨𝐼, (𝐼 + 2), ⟨“𝑟𝑠”⟩⟩)) = 𝐿) ∧ ((𝐼 + 1) ∈ (0..^𝐿) ∧ 𝐴 ∈ dom (((𝑊 splice ⟨𝐼, (𝐼 + 2), ⟨“𝑟𝑠”⟩⟩)‘(𝐼 + 1)) ∖ I ) ∧ ∀𝑗 ∈ (0..^(𝐼 + 1)) ¬ 𝐴 ∈ dom (((𝑊 splice ⟨𝐼, (𝐼 + 2), ⟨“𝑟𝑠”⟩⟩)‘𝑗) ∖ I )))))
256255rspcev 3511 . . . . 5 (((𝑊 splice ⟨𝐼, (𝐼 + 2), ⟨“𝑟𝑠”⟩⟩) ∈ Word 𝑇 ∧ (((𝐺 Σg (𝑊 splice ⟨𝐼, (𝐼 + 2), ⟨“𝑟𝑠”⟩⟩)) = ( I ↾ 𝐷) ∧ (♯‘(𝑊 splice ⟨𝐼, (𝐼 + 2), ⟨“𝑟𝑠”⟩⟩)) = 𝐿) ∧ ((𝐼 + 1) ∈ (0..^𝐿) ∧ 𝐴 ∈ dom (((𝑊 splice ⟨𝐼, (𝐼 + 2), ⟨“𝑟𝑠”⟩⟩)‘(𝐼 + 1)) ∖ I ) ∧ ∀𝑗 ∈ (0..^(𝐼 + 1)) ¬ 𝐴 ∈ dom (((𝑊 splice ⟨𝐼, (𝐼 + 2), ⟨“𝑟𝑠”⟩⟩)‘𝑗) ∖ I )))) → ∃𝑤 ∈ Word 𝑇(((𝐺 Σg 𝑤) = ( I ↾ 𝐷) ∧ (♯‘𝑤) = 𝐿) ∧ ((𝐼 + 1) ∈ (0..^𝐿) ∧ 𝐴 ∈ dom ((𝑤‘(𝐼 + 1)) ∖ I ) ∧ ∀𝑗 ∈ (0..^(𝐼 + 1)) ¬ 𝐴 ∈ dom ((𝑤𝑗) ∖ I ))))
257125, 168, 239, 256syl12anc 827 . . . 4 ((𝜑 ∧ ((𝑟𝑇𝑠𝑇) ∧ (((𝑊𝐼) ∘ (𝑊‘(𝐼 + 1))) = (𝑟𝑠) ∧ 𝐴 ∈ dom (𝑠 ∖ I ) ∧ ¬ 𝐴 ∈ dom (𝑟 ∖ I )))) → ∃𝑤 ∈ Word 𝑇(((𝐺 Σg 𝑤) = ( I ↾ 𝐷) ∧ (♯‘𝑤) = 𝐿) ∧ ((𝐼 + 1) ∈ (0..^𝐿) ∧ 𝐴 ∈ dom ((𝑤‘(𝐼 + 1)) ∖ I ) ∧ ∀𝑗 ∈ (0..^(𝐼 + 1)) ¬ 𝐴 ∈ dom ((𝑤𝑗) ∖ I ))))
258257expr 450 . . 3 ((𝜑 ∧ (𝑟𝑇𝑠𝑇)) → ((((𝑊𝐼) ∘ (𝑊‘(𝐼 + 1))) = (𝑟𝑠) ∧ 𝐴 ∈ dom (𝑠 ∖ I ) ∧ ¬ 𝐴 ∈ dom (𝑟 ∖ I )) → ∃𝑤 ∈ Word 𝑇(((𝐺 Σg 𝑤) = ( I ↾ 𝐷) ∧ (♯‘𝑤) = 𝐿) ∧ ((𝐼 + 1) ∈ (0..^𝐿) ∧ 𝐴 ∈ dom ((𝑤‘(𝐼 + 1)) ∖ I ) ∧ ∀𝑗 ∈ (0..^(𝐼 + 1)) ¬ 𝐴 ∈ dom ((𝑤𝑗) ∖ I )))))
259258rexlimdvva 3221 . 2 (𝜑 → (∃𝑟𝑇𝑠𝑇 (((𝑊𝐼) ∘ (𝑊‘(𝐼 + 1))) = (𝑟𝑠) ∧ 𝐴 ∈ dom (𝑠 ∖ I ) ∧ ¬ 𝐴 ∈ dom (𝑟 ∖ I )) → ∃𝑤 ∈ Word 𝑇(((𝐺 Σg 𝑤) = ( I ↾ 𝐷) ∧ (♯‘𝑤) = 𝐿) ∧ ((𝐼 + 1) ∈ (0..^𝐿) ∧ 𝐴 ∈ dom ((𝑤‘(𝐼 + 1)) ∖ I ) ∧ ∀𝑗 ∈ (0..^(𝐼 + 1)) ¬ 𝐴 ∈ dom ((𝑤𝑗) ∖ I )))))
26020, 21, 87, 89, 24psgnunilem1 18296 . 2 (𝜑 → (((𝑊𝐼) ∘ (𝑊‘(𝐼 + 1))) = ( I ↾ 𝐷) ∨ ∃𝑟𝑇𝑠𝑇 (((𝑊𝐼) ∘ (𝑊‘(𝐼 + 1))) = (𝑟𝑠) ∧ 𝐴 ∈ dom (𝑠 ∖ I ) ∧ ¬ 𝐴 ∈ dom (𝑟 ∖ I ))))
261118, 259, 260mpjaod 849 1 (𝜑 → ∃𝑤 ∈ Word 𝑇(((𝐺 Σg 𝑤) = ( I ↾ 𝐷) ∧ (♯‘𝑤) = 𝐿) ∧ ((𝐼 + 1) ∈ (0..^𝐿) ∧ 𝐴 ∈ dom ((𝑤‘(𝐼 + 1)) ∖ I ) ∧ ∀𝑗 ∈ (0..^(𝐼 + 1)) ¬ 𝐴 ∈ dom ((𝑤𝑗) ∖ I ))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 198  wa 386  wo 836  w3a 1071   = wceq 1601  wcel 2107  wral 3090  wrex 3091  cdif 3789  wss 3792  c0 4141  cop 4404  cotp 4406   class class class wbr 4886   I cid 5260  dom cdm 5355  ran crn 5356  cres 5357  ccom 5359  wf 6131  cfv 6135  (class class class)co 6922  cc 10270  cr 10271  0cc0 10272  1c1 10273   + caddc 10275   < clt 10411  cle 10412  cmin 10606  -cneg 10607  cn 11374  2c2 11430  0cn0 11642  cz 11728  cuz 11992  ...cfz 12643  ..^cfzo 12784  chash 13435  Word cword 13599   substr csubstr 13730   splice csplice 13885  ⟨“cs2 13992  Basecbs 16255  +gcplusg 16338  0gc0g 16486   Σg cgsu 16487  Mndcmnd 17680  Grpcgrp 17809  SymGrpcsymg 18180  pmTrspcpmtr 18244
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1839  ax-4 1853  ax-5 1953  ax-6 2021  ax-7 2055  ax-8 2109  ax-9 2116  ax-10 2135  ax-11 2150  ax-12 2163  ax-13 2334  ax-ext 2754  ax-rep 5006  ax-sep 5017  ax-nul 5025  ax-pow 5077  ax-pr 5138  ax-un 7226  ax-cnex 10328  ax-resscn 10329  ax-1cn 10330  ax-icn 10331  ax-addcl 10332  ax-addrcl 10333  ax-mulcl 10334  ax-mulrcl 10335  ax-mulcom 10336  ax-addass 10337  ax-mulass 10338  ax-distr 10339  ax-i2m1 10340  ax-1ne0 10341  ax-1rid 10342  ax-rnegex 10343  ax-rrecex 10344  ax-cnre 10345  ax-pre-lttri 10346  ax-pre-lttrn 10347  ax-pre-ltadd 10348  ax-pre-mulgt0 10349
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 837  df-3or 1072  df-3an 1073  df-xor 1583  df-tru 1605  df-ex 1824  df-nf 1828  df-sb 2012  df-mo 2551  df-eu 2587  df-clab 2764  df-cleq 2770  df-clel 2774  df-nfc 2921  df-ne 2970  df-nel 3076  df-ral 3095  df-rex 3096  df-reu 3097  df-rmo 3098  df-rab 3099  df-v 3400  df-sbc 3653  df-csb 3752  df-dif 3795  df-un 3797  df-in 3799  df-ss 3806  df-pss 3808  df-nul 4142  df-if 4308  df-pw 4381  df-sn 4399  df-pr 4401  df-tp 4403  df-op 4405  df-ot 4407  df-uni 4672  df-int 4711  df-iun 4755  df-br 4887  df-opab 4949  df-mpt 4966  df-tr 4988  df-id 5261  df-eprel 5266  df-po 5274  df-so 5275  df-fr 5314  df-we 5316  df-xp 5361  df-rel 5362  df-cnv 5363  df-co 5364  df-dm 5365  df-rn 5366  df-res 5367  df-ima 5368  df-pred 5933  df-ord 5979  df-on 5980  df-lim 5981  df-suc 5982  df-iota 6099  df-fun 6137  df-fn 6138  df-f 6139  df-f1 6140  df-fo 6141  df-f1o 6142  df-fv 6143  df-riota 6883  df-ov 6925  df-oprab 6926  df-mpt2 6927  df-om 7344  df-1st 7445  df-2nd 7446  df-wrecs 7689  df-recs 7751  df-rdg 7789  df-1o 7843  df-2o 7844  df-oadd 7847  df-er 8026  df-map 8142  df-en 8242  df-dom 8243  df-sdom 8244  df-fin 8245  df-card 9098  df-pnf 10413  df-mnf 10414  df-xr 10415  df-ltxr 10416  df-le 10417  df-sub 10608  df-neg 10609  df-nn 11375  df-2 11438  df-3 11439  df-4 11440  df-5 11441  df-6 11442  df-7 11443  df-8 11444  df-9 11445  df-n0 11643  df-xnn0 11715  df-z 11729  df-uz 11993  df-fz 12644  df-fzo 12785  df-seq 13120  df-hash 13436  df-word 13600  df-lsw 13653  df-concat 13661  df-s1 13686  df-substr 13731  df-pfx 13780  df-splice 13887  df-s2 13999  df-struct 16257  df-ndx 16258  df-slot 16259  df-base 16261  df-sets 16262  df-ress 16263  df-plusg 16351  df-tset 16357  df-0g 16488  df-gsum 16489  df-mgm 17628  df-sgrp 17670  df-mnd 17681  df-submnd 17722  df-grp 17812  df-minusg 17813  df-subg 17975  df-symg 18181  df-pmtr 18245
This theorem is referenced by:  psgnunilem3  18300
  Copyright terms: Public domain W3C validator