MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  psgnunilem2 Structured version   Visualization version   GIF version

Theorem psgnunilem2 19425
Description: Lemma for psgnuni 19429. Induction step for moving a transposition as far to the right as possible. (Contributed by Stefan O'Rear, 24-Aug-2015.) (Revised by Mario Carneiro, 28-Feb-2016.)
Hypotheses
Ref Expression
psgnunilem2.g 𝐺 = (SymGrp‘𝐷)
psgnunilem2.t 𝑇 = ran (pmTrsp‘𝐷)
psgnunilem2.d (𝜑𝐷𝑉)
psgnunilem2.w (𝜑𝑊 ∈ Word 𝑇)
psgnunilem2.id (𝜑 → (𝐺 Σg 𝑊) = ( I ↾ 𝐷))
psgnunilem2.l (𝜑 → (♯‘𝑊) = 𝐿)
psgnunilem2.ix (𝜑𝐼 ∈ (0..^𝐿))
psgnunilem2.a (𝜑𝐴 ∈ dom ((𝑊𝐼) ∖ I ))
psgnunilem2.al (𝜑 → ∀𝑘 ∈ (0..^𝐼) ¬ 𝐴 ∈ dom ((𝑊𝑘) ∖ I ))
psgnunilem2.in (𝜑 → ¬ ∃𝑥 ∈ Word 𝑇((♯‘𝑥) = (𝐿 − 2) ∧ (𝐺 Σg 𝑥) = ( I ↾ 𝐷)))
Assertion
Ref Expression
psgnunilem2 (𝜑 → ∃𝑤 ∈ Word 𝑇(((𝐺 Σg 𝑤) = ( I ↾ 𝐷) ∧ (♯‘𝑤) = 𝐿) ∧ ((𝐼 + 1) ∈ (0..^𝐿) ∧ 𝐴 ∈ dom ((𝑤‘(𝐼 + 1)) ∖ I ) ∧ ∀𝑗 ∈ (0..^(𝐼 + 1)) ¬ 𝐴 ∈ dom ((𝑤𝑗) ∖ I ))))
Distinct variable groups:   𝑗,𝑘,𝑤,𝐴   𝑥,𝑗,𝐷,𝑤   𝜑,𝑗   𝑗,𝐺   𝑥,𝑘,𝐺,𝑤   𝑗,𝐼,𝑘,𝑤,𝑥   𝑇,𝑗,𝑤,𝑥   𝑗,𝑊,𝑘,𝑤,𝑥   𝑤,𝐿,𝑥
Allowed substitution hints:   𝜑(𝑥,𝑤,𝑘)   𝐴(𝑥)   𝐷(𝑘)   𝑇(𝑘)   𝐿(𝑗,𝑘)   𝑉(𝑥,𝑤,𝑗,𝑘)

Proof of Theorem psgnunilem2
Dummy variables 𝑟 𝑠 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 psgnunilem2.w . . . . . . 7 (𝜑𝑊 ∈ Word 𝑇)
2 wrd0 14504 . . . . . . 7 ∅ ∈ Word 𝑇
3 splcl 14717 . . . . . . 7 ((𝑊 ∈ Word 𝑇 ∧ ∅ ∈ Word 𝑇) → (𝑊 splice ⟨𝐼, (𝐼 + 2), ∅⟩) ∈ Word 𝑇)
41, 2, 3sylancl 586 . . . . . 6 (𝜑 → (𝑊 splice ⟨𝐼, (𝐼 + 2), ∅⟩) ∈ Word 𝑇)
54adantr 480 . . . . 5 ((𝜑 ∧ ((𝑊𝐼) ∘ (𝑊‘(𝐼 + 1))) = ( I ↾ 𝐷)) → (𝑊 splice ⟨𝐼, (𝐼 + 2), ∅⟩) ∈ Word 𝑇)
6 fzossfz 13639 . . . . . . . . . . 11 (0..^𝐿) ⊆ (0...𝐿)
7 psgnunilem2.ix . . . . . . . . . . 11 (𝜑𝐼 ∈ (0..^𝐿))
86, 7sselid 3944 . . . . . . . . . 10 (𝜑𝐼 ∈ (0...𝐿))
9 elfznn0 13581 . . . . . . . . . 10 (𝐼 ∈ (0...𝐿) → 𝐼 ∈ ℕ0)
108, 9syl 17 . . . . . . . . 9 (𝜑𝐼 ∈ ℕ0)
11 2nn0 12459 . . . . . . . . . 10 2 ∈ ℕ0
12 nn0addcl 12477 . . . . . . . . . 10 ((𝐼 ∈ ℕ0 ∧ 2 ∈ ℕ0) → (𝐼 + 2) ∈ ℕ0)
1310, 11, 12sylancl 586 . . . . . . . . 9 (𝜑 → (𝐼 + 2) ∈ ℕ0)
1410nn0red 12504 . . . . . . . . . 10 (𝜑𝐼 ∈ ℝ)
15 nn0addge1 12488 . . . . . . . . . 10 ((𝐼 ∈ ℝ ∧ 2 ∈ ℕ0) → 𝐼 ≤ (𝐼 + 2))
1614, 11, 15sylancl 586 . . . . . . . . 9 (𝜑𝐼 ≤ (𝐼 + 2))
17 elfz2nn0 13579 . . . . . . . . 9 (𝐼 ∈ (0...(𝐼 + 2)) ↔ (𝐼 ∈ ℕ0 ∧ (𝐼 + 2) ∈ ℕ0𝐼 ≤ (𝐼 + 2)))
1810, 13, 16, 17syl3anbrc 1344 . . . . . . . 8 (𝜑𝐼 ∈ (0...(𝐼 + 2)))
19 psgnunilem2.g . . . . . . . . . . 11 𝐺 = (SymGrp‘𝐷)
20 psgnunilem2.t . . . . . . . . . . 11 𝑇 = ran (pmTrsp‘𝐷)
21 psgnunilem2.d . . . . . . . . . . 11 (𝜑𝐷𝑉)
22 psgnunilem2.id . . . . . . . . . . 11 (𝜑 → (𝐺 Σg 𝑊) = ( I ↾ 𝐷))
23 psgnunilem2.l . . . . . . . . . . 11 (𝜑 → (♯‘𝑊) = 𝐿)
24 psgnunilem2.a . . . . . . . . . . 11 (𝜑𝐴 ∈ dom ((𝑊𝐼) ∖ I ))
25 psgnunilem2.al . . . . . . . . . . 11 (𝜑 → ∀𝑘 ∈ (0..^𝐼) ¬ 𝐴 ∈ dom ((𝑊𝑘) ∖ I ))
2619, 20, 21, 1, 22, 23, 7, 24, 25psgnunilem5 19424 . . . . . . . . . 10 (𝜑 → (𝐼 + 1) ∈ (0..^𝐿))
27 fzofzp1 13725 . . . . . . . . . 10 ((𝐼 + 1) ∈ (0..^𝐿) → ((𝐼 + 1) + 1) ∈ (0...𝐿))
2826, 27syl 17 . . . . . . . . 9 (𝜑 → ((𝐼 + 1) + 1) ∈ (0...𝐿))
29 df-2 12249 . . . . . . . . . . 11 2 = (1 + 1)
3029oveq2i 7398 . . . . . . . . . 10 (𝐼 + 2) = (𝐼 + (1 + 1))
3110nn0cnd 12505 . . . . . . . . . . 11 (𝜑𝐼 ∈ ℂ)
32 1cnd 11169 . . . . . . . . . . 11 (𝜑 → 1 ∈ ℂ)
3331, 32, 32addassd 11196 . . . . . . . . . 10 (𝜑 → ((𝐼 + 1) + 1) = (𝐼 + (1 + 1)))
3430, 33eqtr4id 2783 . . . . . . . . 9 (𝜑 → (𝐼 + 2) = ((𝐼 + 1) + 1))
3523oveq2d 7403 . . . . . . . . 9 (𝜑 → (0...(♯‘𝑊)) = (0...𝐿))
3628, 34, 353eltr4d 2843 . . . . . . . 8 (𝜑 → (𝐼 + 2) ∈ (0...(♯‘𝑊)))
372a1i 11 . . . . . . . 8 (𝜑 → ∅ ∈ Word 𝑇)
381, 18, 36, 37spllen 14719 . . . . . . 7 (𝜑 → (♯‘(𝑊 splice ⟨𝐼, (𝐼 + 2), ∅⟩)) = ((♯‘𝑊) + ((♯‘∅) − ((𝐼 + 2) − 𝐼))))
39 hash0 14332 . . . . . . . . . . 11 (♯‘∅) = 0
4039oveq1i 7397 . . . . . . . . . 10 ((♯‘∅) − ((𝐼 + 2) − 𝐼)) = (0 − ((𝐼 + 2) − 𝐼))
41 df-neg 11408 . . . . . . . . . 10 -((𝐼 + 2) − 𝐼) = (0 − ((𝐼 + 2) − 𝐼))
4240, 41eqtr4i 2755 . . . . . . . . 9 ((♯‘∅) − ((𝐼 + 2) − 𝐼)) = -((𝐼 + 2) − 𝐼)
43 2cn 12261 . . . . . . . . . . 11 2 ∈ ℂ
44 pncan2 11428 . . . . . . . . . . 11 ((𝐼 ∈ ℂ ∧ 2 ∈ ℂ) → ((𝐼 + 2) − 𝐼) = 2)
4531, 43, 44sylancl 586 . . . . . . . . . 10 (𝜑 → ((𝐼 + 2) − 𝐼) = 2)
4645negeqd 11415 . . . . . . . . 9 (𝜑 → -((𝐼 + 2) − 𝐼) = -2)
4742, 46eqtrid 2776 . . . . . . . 8 (𝜑 → ((♯‘∅) − ((𝐼 + 2) − 𝐼)) = -2)
4823, 47oveq12d 7405 . . . . . . 7 (𝜑 → ((♯‘𝑊) + ((♯‘∅) − ((𝐼 + 2) − 𝐼))) = (𝐿 + -2))
49 elfzel2 13483 . . . . . . . . . 10 (𝐼 ∈ (0...𝐿) → 𝐿 ∈ ℤ)
508, 49syl 17 . . . . . . . . 9 (𝜑𝐿 ∈ ℤ)
5150zcnd 12639 . . . . . . . 8 (𝜑𝐿 ∈ ℂ)
52 negsub 11470 . . . . . . . 8 ((𝐿 ∈ ℂ ∧ 2 ∈ ℂ) → (𝐿 + -2) = (𝐿 − 2))
5351, 43, 52sylancl 586 . . . . . . 7 (𝜑 → (𝐿 + -2) = (𝐿 − 2))
5438, 48, 533eqtrd 2768 . . . . . 6 (𝜑 → (♯‘(𝑊 splice ⟨𝐼, (𝐼 + 2), ∅⟩)) = (𝐿 − 2))
5554adantr 480 . . . . 5 ((𝜑 ∧ ((𝑊𝐼) ∘ (𝑊‘(𝐼 + 1))) = ( I ↾ 𝐷)) → (♯‘(𝑊 splice ⟨𝐼, (𝐼 + 2), ∅⟩)) = (𝐿 − 2))
56 splid 14718 . . . . . . . . 9 ((𝑊 ∈ Word 𝑇 ∧ (𝐼 ∈ (0...(𝐼 + 2)) ∧ (𝐼 + 2) ∈ (0...(♯‘𝑊)))) → (𝑊 splice ⟨𝐼, (𝐼 + 2), (𝑊 substr ⟨𝐼, (𝐼 + 2)⟩)⟩) = 𝑊)
571, 18, 36, 56syl12anc 836 . . . . . . . 8 (𝜑 → (𝑊 splice ⟨𝐼, (𝐼 + 2), (𝑊 substr ⟨𝐼, (𝐼 + 2)⟩)⟩) = 𝑊)
5857oveq2d 7403 . . . . . . 7 (𝜑 → (𝐺 Σg (𝑊 splice ⟨𝐼, (𝐼 + 2), (𝑊 substr ⟨𝐼, (𝐼 + 2)⟩)⟩)) = (𝐺 Σg 𝑊))
5958adantr 480 . . . . . 6 ((𝜑 ∧ ((𝑊𝐼) ∘ (𝑊‘(𝐼 + 1))) = ( I ↾ 𝐷)) → (𝐺 Σg (𝑊 splice ⟨𝐼, (𝐼 + 2), (𝑊 substr ⟨𝐼, (𝐼 + 2)⟩)⟩)) = (𝐺 Σg 𝑊))
60 eqid 2729 . . . . . . 7 (Base‘𝐺) = (Base‘𝐺)
6119symggrp 19330 . . . . . . . . . 10 (𝐷𝑉𝐺 ∈ Grp)
6221, 61syl 17 . . . . . . . . 9 (𝜑𝐺 ∈ Grp)
6362grpmndd 18878 . . . . . . . 8 (𝜑𝐺 ∈ Mnd)
6463adantr 480 . . . . . . 7 ((𝜑 ∧ ((𝑊𝐼) ∘ (𝑊‘(𝐼 + 1))) = ( I ↾ 𝐷)) → 𝐺 ∈ Mnd)
6520, 19, 60symgtrf 19399 . . . . . . . . . 10 𝑇 ⊆ (Base‘𝐺)
66 sswrd 14487 . . . . . . . . . 10 (𝑇 ⊆ (Base‘𝐺) → Word 𝑇 ⊆ Word (Base‘𝐺))
6765, 66ax-mp 5 . . . . . . . . 9 Word 𝑇 ⊆ Word (Base‘𝐺)
6867, 1sselid 3944 . . . . . . . 8 (𝜑𝑊 ∈ Word (Base‘𝐺))
6968adantr 480 . . . . . . 7 ((𝜑 ∧ ((𝑊𝐼) ∘ (𝑊‘(𝐼 + 1))) = ( I ↾ 𝐷)) → 𝑊 ∈ Word (Base‘𝐺))
7018adantr 480 . . . . . . 7 ((𝜑 ∧ ((𝑊𝐼) ∘ (𝑊‘(𝐼 + 1))) = ( I ↾ 𝐷)) → 𝐼 ∈ (0...(𝐼 + 2)))
7136adantr 480 . . . . . . 7 ((𝜑 ∧ ((𝑊𝐼) ∘ (𝑊‘(𝐼 + 1))) = ( I ↾ 𝐷)) → (𝐼 + 2) ∈ (0...(♯‘𝑊)))
72 swrdcl 14610 . . . . . . . . 9 (𝑊 ∈ Word (Base‘𝐺) → (𝑊 substr ⟨𝐼, (𝐼 + 2)⟩) ∈ Word (Base‘𝐺))
7368, 72syl 17 . . . . . . . 8 (𝜑 → (𝑊 substr ⟨𝐼, (𝐼 + 2)⟩) ∈ Word (Base‘𝐺))
7473adantr 480 . . . . . . 7 ((𝜑 ∧ ((𝑊𝐼) ∘ (𝑊‘(𝐼 + 1))) = ( I ↾ 𝐷)) → (𝑊 substr ⟨𝐼, (𝐼 + 2)⟩) ∈ Word (Base‘𝐺))
75 wrd0 14504 . . . . . . . 8 ∅ ∈ Word (Base‘𝐺)
7675a1i 11 . . . . . . 7 ((𝜑 ∧ ((𝑊𝐼) ∘ (𝑊‘(𝐼 + 1))) = ( I ↾ 𝐷)) → ∅ ∈ Word (Base‘𝐺))
7723oveq2d 7403 . . . . . . . . . . . . 13 (𝜑 → (0..^(♯‘𝑊)) = (0..^𝐿))
7826, 77eleqtrrd 2831 . . . . . . . . . . . 12 (𝜑 → (𝐼 + 1) ∈ (0..^(♯‘𝑊)))
79 swrds2 14906 . . . . . . . . . . . 12 ((𝑊 ∈ Word 𝑇𝐼 ∈ ℕ0 ∧ (𝐼 + 1) ∈ (0..^(♯‘𝑊))) → (𝑊 substr ⟨𝐼, (𝐼 + 2)⟩) = ⟨“(𝑊𝐼)(𝑊‘(𝐼 + 1))”⟩)
801, 10, 78, 79syl3anc 1373 . . . . . . . . . . 11 (𝜑 → (𝑊 substr ⟨𝐼, (𝐼 + 2)⟩) = ⟨“(𝑊𝐼)(𝑊‘(𝐼 + 1))”⟩)
8180oveq2d 7403 . . . . . . . . . 10 (𝜑 → (𝐺 Σg (𝑊 substr ⟨𝐼, (𝐼 + 2)⟩)) = (𝐺 Σg ⟨“(𝑊𝐼)(𝑊‘(𝐼 + 1))”⟩))
82 wrdf 14483 . . . . . . . . . . . . . . 15 (𝑊 ∈ Word 𝑇𝑊:(0..^(♯‘𝑊))⟶𝑇)
831, 82syl 17 . . . . . . . . . . . . . 14 (𝜑𝑊:(0..^(♯‘𝑊))⟶𝑇)
8477feq2d 6672 . . . . . . . . . . . . . 14 (𝜑 → (𝑊:(0..^(♯‘𝑊))⟶𝑇𝑊:(0..^𝐿)⟶𝑇))
8583, 84mpbid 232 . . . . . . . . . . . . 13 (𝜑𝑊:(0..^𝐿)⟶𝑇)
8685, 7ffvelcdmd 7057 . . . . . . . . . . . 12 (𝜑 → (𝑊𝐼) ∈ 𝑇)
8765, 86sselid 3944 . . . . . . . . . . 11 (𝜑 → (𝑊𝐼) ∈ (Base‘𝐺))
8885, 26ffvelcdmd 7057 . . . . . . . . . . . 12 (𝜑 → (𝑊‘(𝐼 + 1)) ∈ 𝑇)
8965, 88sselid 3944 . . . . . . . . . . 11 (𝜑 → (𝑊‘(𝐼 + 1)) ∈ (Base‘𝐺))
90 eqid 2729 . . . . . . . . . . . 12 (+g𝐺) = (+g𝐺)
9160, 90gsumws2 18769 . . . . . . . . . . 11 ((𝐺 ∈ Mnd ∧ (𝑊𝐼) ∈ (Base‘𝐺) ∧ (𝑊‘(𝐼 + 1)) ∈ (Base‘𝐺)) → (𝐺 Σg ⟨“(𝑊𝐼)(𝑊‘(𝐼 + 1))”⟩) = ((𝑊𝐼)(+g𝐺)(𝑊‘(𝐼 + 1))))
9263, 87, 89, 91syl3anc 1373 . . . . . . . . . 10 (𝜑 → (𝐺 Σg ⟨“(𝑊𝐼)(𝑊‘(𝐼 + 1))”⟩) = ((𝑊𝐼)(+g𝐺)(𝑊‘(𝐼 + 1))))
9319, 60, 90symgov 19314 . . . . . . . . . . 11 (((𝑊𝐼) ∈ (Base‘𝐺) ∧ (𝑊‘(𝐼 + 1)) ∈ (Base‘𝐺)) → ((𝑊𝐼)(+g𝐺)(𝑊‘(𝐼 + 1))) = ((𝑊𝐼) ∘ (𝑊‘(𝐼 + 1))))
9487, 89, 93syl2anc 584 . . . . . . . . . 10 (𝜑 → ((𝑊𝐼)(+g𝐺)(𝑊‘(𝐼 + 1))) = ((𝑊𝐼) ∘ (𝑊‘(𝐼 + 1))))
9581, 92, 943eqtrd 2768 . . . . . . . . 9 (𝜑 → (𝐺 Σg (𝑊 substr ⟨𝐼, (𝐼 + 2)⟩)) = ((𝑊𝐼) ∘ (𝑊‘(𝐼 + 1))))
9695adantr 480 . . . . . . . 8 ((𝜑 ∧ ((𝑊𝐼) ∘ (𝑊‘(𝐼 + 1))) = ( I ↾ 𝐷)) → (𝐺 Σg (𝑊 substr ⟨𝐼, (𝐼 + 2)⟩)) = ((𝑊𝐼) ∘ (𝑊‘(𝐼 + 1))))
97 simpr 484 . . . . . . . 8 ((𝜑 ∧ ((𝑊𝐼) ∘ (𝑊‘(𝐼 + 1))) = ( I ↾ 𝐷)) → ((𝑊𝐼) ∘ (𝑊‘(𝐼 + 1))) = ( I ↾ 𝐷))
9819symgid 19331 . . . . . . . . . . 11 (𝐷𝑉 → ( I ↾ 𝐷) = (0g𝐺))
9921, 98syl 17 . . . . . . . . . 10 (𝜑 → ( I ↾ 𝐷) = (0g𝐺))
100 eqid 2729 . . . . . . . . . . 11 (0g𝐺) = (0g𝐺)
101100gsum0 18611 . . . . . . . . . 10 (𝐺 Σg ∅) = (0g𝐺)
10299, 101eqtr4di 2782 . . . . . . . . 9 (𝜑 → ( I ↾ 𝐷) = (𝐺 Σg ∅))
103102adantr 480 . . . . . . . 8 ((𝜑 ∧ ((𝑊𝐼) ∘ (𝑊‘(𝐼 + 1))) = ( I ↾ 𝐷)) → ( I ↾ 𝐷) = (𝐺 Σg ∅))
10496, 97, 1033eqtrd 2768 . . . . . . 7 ((𝜑 ∧ ((𝑊𝐼) ∘ (𝑊‘(𝐼 + 1))) = ( I ↾ 𝐷)) → (𝐺 Σg (𝑊 substr ⟨𝐼, (𝐼 + 2)⟩)) = (𝐺 Σg ∅))
10560, 64, 69, 70, 71, 74, 76, 104gsumspl 18771 . . . . . 6 ((𝜑 ∧ ((𝑊𝐼) ∘ (𝑊‘(𝐼 + 1))) = ( I ↾ 𝐷)) → (𝐺 Σg (𝑊 splice ⟨𝐼, (𝐼 + 2), (𝑊 substr ⟨𝐼, (𝐼 + 2)⟩)⟩)) = (𝐺 Σg (𝑊 splice ⟨𝐼, (𝐼 + 2), ∅⟩)))
10622adantr 480 . . . . . 6 ((𝜑 ∧ ((𝑊𝐼) ∘ (𝑊‘(𝐼 + 1))) = ( I ↾ 𝐷)) → (𝐺 Σg 𝑊) = ( I ↾ 𝐷))
10759, 105, 1063eqtr3d 2772 . . . . 5 ((𝜑 ∧ ((𝑊𝐼) ∘ (𝑊‘(𝐼 + 1))) = ( I ↾ 𝐷)) → (𝐺 Σg (𝑊 splice ⟨𝐼, (𝐼 + 2), ∅⟩)) = ( I ↾ 𝐷))
108 fveqeq2 6867 . . . . . . 7 (𝑥 = (𝑊 splice ⟨𝐼, (𝐼 + 2), ∅⟩) → ((♯‘𝑥) = (𝐿 − 2) ↔ (♯‘(𝑊 splice ⟨𝐼, (𝐼 + 2), ∅⟩)) = (𝐿 − 2)))
109 oveq2 7395 . . . . . . . 8 (𝑥 = (𝑊 splice ⟨𝐼, (𝐼 + 2), ∅⟩) → (𝐺 Σg 𝑥) = (𝐺 Σg (𝑊 splice ⟨𝐼, (𝐼 + 2), ∅⟩)))
110109eqeq1d 2731 . . . . . . 7 (𝑥 = (𝑊 splice ⟨𝐼, (𝐼 + 2), ∅⟩) → ((𝐺 Σg 𝑥) = ( I ↾ 𝐷) ↔ (𝐺 Σg (𝑊 splice ⟨𝐼, (𝐼 + 2), ∅⟩)) = ( I ↾ 𝐷)))
111108, 110anbi12d 632 . . . . . 6 (𝑥 = (𝑊 splice ⟨𝐼, (𝐼 + 2), ∅⟩) → (((♯‘𝑥) = (𝐿 − 2) ∧ (𝐺 Σg 𝑥) = ( I ↾ 𝐷)) ↔ ((♯‘(𝑊 splice ⟨𝐼, (𝐼 + 2), ∅⟩)) = (𝐿 − 2) ∧ (𝐺 Σg (𝑊 splice ⟨𝐼, (𝐼 + 2), ∅⟩)) = ( I ↾ 𝐷))))
112111rspcev 3588 . . . . 5 (((𝑊 splice ⟨𝐼, (𝐼 + 2), ∅⟩) ∈ Word 𝑇 ∧ ((♯‘(𝑊 splice ⟨𝐼, (𝐼 + 2), ∅⟩)) = (𝐿 − 2) ∧ (𝐺 Σg (𝑊 splice ⟨𝐼, (𝐼 + 2), ∅⟩)) = ( I ↾ 𝐷))) → ∃𝑥 ∈ Word 𝑇((♯‘𝑥) = (𝐿 − 2) ∧ (𝐺 Σg 𝑥) = ( I ↾ 𝐷)))
1135, 55, 107, 112syl12anc 836 . . . 4 ((𝜑 ∧ ((𝑊𝐼) ∘ (𝑊‘(𝐼 + 1))) = ( I ↾ 𝐷)) → ∃𝑥 ∈ Word 𝑇((♯‘𝑥) = (𝐿 − 2) ∧ (𝐺 Σg 𝑥) = ( I ↾ 𝐷)))
114 psgnunilem2.in . . . . 5 (𝜑 → ¬ ∃𝑥 ∈ Word 𝑇((♯‘𝑥) = (𝐿 − 2) ∧ (𝐺 Σg 𝑥) = ( I ↾ 𝐷)))
115114adantr 480 . . . 4 ((𝜑 ∧ ((𝑊𝐼) ∘ (𝑊‘(𝐼 + 1))) = ( I ↾ 𝐷)) → ¬ ∃𝑥 ∈ Word 𝑇((♯‘𝑥) = (𝐿 − 2) ∧ (𝐺 Σg 𝑥) = ( I ↾ 𝐷)))
116113, 115pm2.21dd 195 . . 3 ((𝜑 ∧ ((𝑊𝐼) ∘ (𝑊‘(𝐼 + 1))) = ( I ↾ 𝐷)) → ∃𝑤 ∈ Word 𝑇(((𝐺 Σg 𝑤) = ( I ↾ 𝐷) ∧ (♯‘𝑤) = 𝐿) ∧ ((𝐼 + 1) ∈ (0..^𝐿) ∧ 𝐴 ∈ dom ((𝑤‘(𝐼 + 1)) ∖ I ) ∧ ∀𝑗 ∈ (0..^(𝐼 + 1)) ¬ 𝐴 ∈ dom ((𝑤𝑗) ∖ I ))))
117116ex 412 . 2 (𝜑 → (((𝑊𝐼) ∘ (𝑊‘(𝐼 + 1))) = ( I ↾ 𝐷) → ∃𝑤 ∈ Word 𝑇(((𝐺 Σg 𝑤) = ( I ↾ 𝐷) ∧ (♯‘𝑤) = 𝐿) ∧ ((𝐼 + 1) ∈ (0..^𝐿) ∧ 𝐴 ∈ dom ((𝑤‘(𝐼 + 1)) ∖ I ) ∧ ∀𝑗 ∈ (0..^(𝐼 + 1)) ¬ 𝐴 ∈ dom ((𝑤𝑗) ∖ I )))))
1181adantr 480 . . . . . . 7 ((𝜑 ∧ (𝑟𝑇𝑠𝑇)) → 𝑊 ∈ Word 𝑇)
119 simprl 770 . . . . . . . 8 ((𝜑 ∧ (𝑟𝑇𝑠𝑇)) → 𝑟𝑇)
120 simprr 772 . . . . . . . 8 ((𝜑 ∧ (𝑟𝑇𝑠𝑇)) → 𝑠𝑇)
121119, 120s2cld 14837 . . . . . . 7 ((𝜑 ∧ (𝑟𝑇𝑠𝑇)) → ⟨“𝑟𝑠”⟩ ∈ Word 𝑇)
122 splcl 14717 . . . . . . 7 ((𝑊 ∈ Word 𝑇 ∧ ⟨“𝑟𝑠”⟩ ∈ Word 𝑇) → (𝑊 splice ⟨𝐼, (𝐼 + 2), ⟨“𝑟𝑠”⟩⟩) ∈ Word 𝑇)
123118, 121, 122syl2anc 584 . . . . . 6 ((𝜑 ∧ (𝑟𝑇𝑠𝑇)) → (𝑊 splice ⟨𝐼, (𝐼 + 2), ⟨“𝑟𝑠”⟩⟩) ∈ Word 𝑇)
124123adantrr 717 . . . . 5 ((𝜑 ∧ ((𝑟𝑇𝑠𝑇) ∧ (((𝑊𝐼) ∘ (𝑊‘(𝐼 + 1))) = (𝑟𝑠) ∧ 𝐴 ∈ dom (𝑠 ∖ I ) ∧ ¬ 𝐴 ∈ dom (𝑟 ∖ I )))) → (𝑊 splice ⟨𝐼, (𝐼 + 2), ⟨“𝑟𝑠”⟩⟩) ∈ Word 𝑇)
12563adantr 480 . . . . . . . 8 ((𝜑 ∧ ((𝑟𝑇𝑠𝑇) ∧ (((𝑊𝐼) ∘ (𝑊‘(𝐼 + 1))) = (𝑟𝑠) ∧ 𝐴 ∈ dom (𝑠 ∖ I ) ∧ ¬ 𝐴 ∈ dom (𝑟 ∖ I )))) → 𝐺 ∈ Mnd)
12668adantr 480 . . . . . . . 8 ((𝜑 ∧ ((𝑟𝑇𝑠𝑇) ∧ (((𝑊𝐼) ∘ (𝑊‘(𝐼 + 1))) = (𝑟𝑠) ∧ 𝐴 ∈ dom (𝑠 ∖ I ) ∧ ¬ 𝐴 ∈ dom (𝑟 ∖ I )))) → 𝑊 ∈ Word (Base‘𝐺))
12718adantr 480 . . . . . . . 8 ((𝜑 ∧ ((𝑟𝑇𝑠𝑇) ∧ (((𝑊𝐼) ∘ (𝑊‘(𝐼 + 1))) = (𝑟𝑠) ∧ 𝐴 ∈ dom (𝑠 ∖ I ) ∧ ¬ 𝐴 ∈ dom (𝑟 ∖ I )))) → 𝐼 ∈ (0...(𝐼 + 2)))
12836adantr 480 . . . . . . . 8 ((𝜑 ∧ ((𝑟𝑇𝑠𝑇) ∧ (((𝑊𝐼) ∘ (𝑊‘(𝐼 + 1))) = (𝑟𝑠) ∧ 𝐴 ∈ dom (𝑠 ∖ I ) ∧ ¬ 𝐴 ∈ dom (𝑟 ∖ I )))) → (𝐼 + 2) ∈ (0...(♯‘𝑊)))
12967, 121sselid 3944 . . . . . . . . 9 ((𝜑 ∧ (𝑟𝑇𝑠𝑇)) → ⟨“𝑟𝑠”⟩ ∈ Word (Base‘𝐺))
130129adantrr 717 . . . . . . . 8 ((𝜑 ∧ ((𝑟𝑇𝑠𝑇) ∧ (((𝑊𝐼) ∘ (𝑊‘(𝐼 + 1))) = (𝑟𝑠) ∧ 𝐴 ∈ dom (𝑠 ∖ I ) ∧ ¬ 𝐴 ∈ dom (𝑟 ∖ I )))) → ⟨“𝑟𝑠”⟩ ∈ Word (Base‘𝐺))
13173adantr 480 . . . . . . . 8 ((𝜑 ∧ ((𝑟𝑇𝑠𝑇) ∧ (((𝑊𝐼) ∘ (𝑊‘(𝐼 + 1))) = (𝑟𝑠) ∧ 𝐴 ∈ dom (𝑠 ∖ I ) ∧ ¬ 𝐴 ∈ dom (𝑟 ∖ I )))) → (𝑊 substr ⟨𝐼, (𝐼 + 2)⟩) ∈ Word (Base‘𝐺))
132 simprr1 1222 . . . . . . . . 9 ((𝜑 ∧ ((𝑟𝑇𝑠𝑇) ∧ (((𝑊𝐼) ∘ (𝑊‘(𝐼 + 1))) = (𝑟𝑠) ∧ 𝐴 ∈ dom (𝑠 ∖ I ) ∧ ¬ 𝐴 ∈ dom (𝑟 ∖ I )))) → ((𝑊𝐼) ∘ (𝑊‘(𝐼 + 1))) = (𝑟𝑠))
13395adantr 480 . . . . . . . . 9 ((𝜑 ∧ ((𝑟𝑇𝑠𝑇) ∧ (((𝑊𝐼) ∘ (𝑊‘(𝐼 + 1))) = (𝑟𝑠) ∧ 𝐴 ∈ dom (𝑠 ∖ I ) ∧ ¬ 𝐴 ∈ dom (𝑟 ∖ I )))) → (𝐺 Σg (𝑊 substr ⟨𝐼, (𝐼 + 2)⟩)) = ((𝑊𝐼) ∘ (𝑊‘(𝐼 + 1))))
13463adantr 480 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑟𝑇𝑠𝑇)) → 𝐺 ∈ Mnd)
13565a1i 11 . . . . . . . . . . . . . 14 (𝜑𝑇 ⊆ (Base‘𝐺))
136135sselda 3946 . . . . . . . . . . . . 13 ((𝜑𝑟𝑇) → 𝑟 ∈ (Base‘𝐺))
137136adantrr 717 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑟𝑇𝑠𝑇)) → 𝑟 ∈ (Base‘𝐺))
138135sselda 3946 . . . . . . . . . . . . 13 ((𝜑𝑠𝑇) → 𝑠 ∈ (Base‘𝐺))
139138adantrl 716 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑟𝑇𝑠𝑇)) → 𝑠 ∈ (Base‘𝐺))
14060, 90gsumws2 18769 . . . . . . . . . . . 12 ((𝐺 ∈ Mnd ∧ 𝑟 ∈ (Base‘𝐺) ∧ 𝑠 ∈ (Base‘𝐺)) → (𝐺 Σg ⟨“𝑟𝑠”⟩) = (𝑟(+g𝐺)𝑠))
141134, 137, 139, 140syl3anc 1373 . . . . . . . . . . 11 ((𝜑 ∧ (𝑟𝑇𝑠𝑇)) → (𝐺 Σg ⟨“𝑟𝑠”⟩) = (𝑟(+g𝐺)𝑠))
14219, 60, 90symgov 19314 . . . . . . . . . . . 12 ((𝑟 ∈ (Base‘𝐺) ∧ 𝑠 ∈ (Base‘𝐺)) → (𝑟(+g𝐺)𝑠) = (𝑟𝑠))
143137, 139, 142syl2anc 584 . . . . . . . . . . 11 ((𝜑 ∧ (𝑟𝑇𝑠𝑇)) → (𝑟(+g𝐺)𝑠) = (𝑟𝑠))
144141, 143eqtrd 2764 . . . . . . . . . 10 ((𝜑 ∧ (𝑟𝑇𝑠𝑇)) → (𝐺 Σg ⟨“𝑟𝑠”⟩) = (𝑟𝑠))
145144adantrr 717 . . . . . . . . 9 ((𝜑 ∧ ((𝑟𝑇𝑠𝑇) ∧ (((𝑊𝐼) ∘ (𝑊‘(𝐼 + 1))) = (𝑟𝑠) ∧ 𝐴 ∈ dom (𝑠 ∖ I ) ∧ ¬ 𝐴 ∈ dom (𝑟 ∖ I )))) → (𝐺 Σg ⟨“𝑟𝑠”⟩) = (𝑟𝑠))
146132, 133, 1453eqtr4rd 2775 . . . . . . . 8 ((𝜑 ∧ ((𝑟𝑇𝑠𝑇) ∧ (((𝑊𝐼) ∘ (𝑊‘(𝐼 + 1))) = (𝑟𝑠) ∧ 𝐴 ∈ dom (𝑠 ∖ I ) ∧ ¬ 𝐴 ∈ dom (𝑟 ∖ I )))) → (𝐺 Σg ⟨“𝑟𝑠”⟩) = (𝐺 Σg (𝑊 substr ⟨𝐼, (𝐼 + 2)⟩)))
14760, 125, 126, 127, 128, 130, 131, 146gsumspl 18771 . . . . . . 7 ((𝜑 ∧ ((𝑟𝑇𝑠𝑇) ∧ (((𝑊𝐼) ∘ (𝑊‘(𝐼 + 1))) = (𝑟𝑠) ∧ 𝐴 ∈ dom (𝑠 ∖ I ) ∧ ¬ 𝐴 ∈ dom (𝑟 ∖ I )))) → (𝐺 Σg (𝑊 splice ⟨𝐼, (𝐼 + 2), ⟨“𝑟𝑠”⟩⟩)) = (𝐺 Σg (𝑊 splice ⟨𝐼, (𝐼 + 2), (𝑊 substr ⟨𝐼, (𝐼 + 2)⟩)⟩)))
14858adantr 480 . . . . . . 7 ((𝜑 ∧ ((𝑟𝑇𝑠𝑇) ∧ (((𝑊𝐼) ∘ (𝑊‘(𝐼 + 1))) = (𝑟𝑠) ∧ 𝐴 ∈ dom (𝑠 ∖ I ) ∧ ¬ 𝐴 ∈ dom (𝑟 ∖ I )))) → (𝐺 Σg (𝑊 splice ⟨𝐼, (𝐼 + 2), (𝑊 substr ⟨𝐼, (𝐼 + 2)⟩)⟩)) = (𝐺 Σg 𝑊))
14922adantr 480 . . . . . . 7 ((𝜑 ∧ ((𝑟𝑇𝑠𝑇) ∧ (((𝑊𝐼) ∘ (𝑊‘(𝐼 + 1))) = (𝑟𝑠) ∧ 𝐴 ∈ dom (𝑠 ∖ I ) ∧ ¬ 𝐴 ∈ dom (𝑟 ∖ I )))) → (𝐺 Σg 𝑊) = ( I ↾ 𝐷))
150147, 148, 1493eqtrd 2768 . . . . . 6 ((𝜑 ∧ ((𝑟𝑇𝑠𝑇) ∧ (((𝑊𝐼) ∘ (𝑊‘(𝐼 + 1))) = (𝑟𝑠) ∧ 𝐴 ∈ dom (𝑠 ∖ I ) ∧ ¬ 𝐴 ∈ dom (𝑟 ∖ I )))) → (𝐺 Σg (𝑊 splice ⟨𝐼, (𝐼 + 2), ⟨“𝑟𝑠”⟩⟩)) = ( I ↾ 𝐷))
15118adantr 480 . . . . . . . . 9 ((𝜑 ∧ (𝑟𝑇𝑠𝑇)) → 𝐼 ∈ (0...(𝐼 + 2)))
15236adantr 480 . . . . . . . . 9 ((𝜑 ∧ (𝑟𝑇𝑠𝑇)) → (𝐼 + 2) ∈ (0...(♯‘𝑊)))
153118, 151, 152, 121spllen 14719 . . . . . . . 8 ((𝜑 ∧ (𝑟𝑇𝑠𝑇)) → (♯‘(𝑊 splice ⟨𝐼, (𝐼 + 2), ⟨“𝑟𝑠”⟩⟩)) = ((♯‘𝑊) + ((♯‘⟨“𝑟𝑠”⟩) − ((𝐼 + 2) − 𝐼))))
154 s2len 14855 . . . . . . . . . . . . 13 (♯‘⟨“𝑟𝑠”⟩) = 2
155154oveq1i 7397 . . . . . . . . . . . 12 ((♯‘⟨“𝑟𝑠”⟩) − ((𝐼 + 2) − 𝐼)) = (2 − ((𝐼 + 2) − 𝐼))
15645oveq2d 7403 . . . . . . . . . . . . 13 (𝜑 → (2 − ((𝐼 + 2) − 𝐼)) = (2 − 2))
15743subidi 11493 . . . . . . . . . . . . 13 (2 − 2) = 0
158156, 157eqtrdi 2780 . . . . . . . . . . . 12 (𝜑 → (2 − ((𝐼 + 2) − 𝐼)) = 0)
159155, 158eqtrid 2776 . . . . . . . . . . 11 (𝜑 → ((♯‘⟨“𝑟𝑠”⟩) − ((𝐼 + 2) − 𝐼)) = 0)
160159oveq2d 7403 . . . . . . . . . 10 (𝜑 → ((♯‘𝑊) + ((♯‘⟨“𝑟𝑠”⟩) − ((𝐼 + 2) − 𝐼))) = ((♯‘𝑊) + 0))
16123, 51eqeltrd 2828 . . . . . . . . . . 11 (𝜑 → (♯‘𝑊) ∈ ℂ)
162161addridd 11374 . . . . . . . . . 10 (𝜑 → ((♯‘𝑊) + 0) = (♯‘𝑊))
163160, 162, 233eqtrd 2768 . . . . . . . . 9 (𝜑 → ((♯‘𝑊) + ((♯‘⟨“𝑟𝑠”⟩) − ((𝐼 + 2) − 𝐼))) = 𝐿)
164163adantr 480 . . . . . . . 8 ((𝜑 ∧ (𝑟𝑇𝑠𝑇)) → ((♯‘𝑊) + ((♯‘⟨“𝑟𝑠”⟩) − ((𝐼 + 2) − 𝐼))) = 𝐿)
165153, 164eqtrd 2764 . . . . . . 7 ((𝜑 ∧ (𝑟𝑇𝑠𝑇)) → (♯‘(𝑊 splice ⟨𝐼, (𝐼 + 2), ⟨“𝑟𝑠”⟩⟩)) = 𝐿)
166165adantrr 717 . . . . . 6 ((𝜑 ∧ ((𝑟𝑇𝑠𝑇) ∧ (((𝑊𝐼) ∘ (𝑊‘(𝐼 + 1))) = (𝑟𝑠) ∧ 𝐴 ∈ dom (𝑠 ∖ I ) ∧ ¬ 𝐴 ∈ dom (𝑟 ∖ I )))) → (♯‘(𝑊 splice ⟨𝐼, (𝐼 + 2), ⟨“𝑟𝑠”⟩⟩)) = 𝐿)
167150, 166jca 511 . . . . 5 ((𝜑 ∧ ((𝑟𝑇𝑠𝑇) ∧ (((𝑊𝐼) ∘ (𝑊‘(𝐼 + 1))) = (𝑟𝑠) ∧ 𝐴 ∈ dom (𝑠 ∖ I ) ∧ ¬ 𝐴 ∈ dom (𝑟 ∖ I )))) → ((𝐺 Σg (𝑊 splice ⟨𝐼, (𝐼 + 2), ⟨“𝑟𝑠”⟩⟩)) = ( I ↾ 𝐷) ∧ (♯‘(𝑊 splice ⟨𝐼, (𝐼 + 2), ⟨“𝑟𝑠”⟩⟩)) = 𝐿))
16826adantr 480 . . . . . 6 ((𝜑 ∧ ((𝑟𝑇𝑠𝑇) ∧ (((𝑊𝐼) ∘ (𝑊‘(𝐼 + 1))) = (𝑟𝑠) ∧ 𝐴 ∈ dom (𝑠 ∖ I ) ∧ ¬ 𝐴 ∈ dom (𝑟 ∖ I )))) → (𝐼 + 1) ∈ (0..^𝐿))
169 simprr2 1223 . . . . . . 7 ((𝜑 ∧ ((𝑟𝑇𝑠𝑇) ∧ (((𝑊𝐼) ∘ (𝑊‘(𝐼 + 1))) = (𝑟𝑠) ∧ 𝐴 ∈ dom (𝑠 ∖ I ) ∧ ¬ 𝐴 ∈ dom (𝑟 ∖ I )))) → 𝐴 ∈ dom (𝑠 ∖ I ))
170 1nn0 12458 . . . . . . . . . . . . . . 15 1 ∈ ℕ0
171 2nn 12259 . . . . . . . . . . . . . . 15 2 ∈ ℕ
172 1lt2 12352 . . . . . . . . . . . . . . 15 1 < 2
173 elfzo0 13661 . . . . . . . . . . . . . . 15 (1 ∈ (0..^2) ↔ (1 ∈ ℕ0 ∧ 2 ∈ ℕ ∧ 1 < 2))
174170, 171, 172, 173mpbir3an 1342 . . . . . . . . . . . . . 14 1 ∈ (0..^2)
175154oveq2i 7398 . . . . . . . . . . . . . 14 (0..^(♯‘⟨“𝑟𝑠”⟩)) = (0..^2)
176174, 175eleqtrri 2827 . . . . . . . . . . . . 13 1 ∈ (0..^(♯‘⟨“𝑟𝑠”⟩))
177176a1i 11 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑟𝑇𝑠𝑇)) → 1 ∈ (0..^(♯‘⟨“𝑟𝑠”⟩)))
178118, 151, 152, 121, 177splfv2a 14721 . . . . . . . . . . 11 ((𝜑 ∧ (𝑟𝑇𝑠𝑇)) → ((𝑊 splice ⟨𝐼, (𝐼 + 2), ⟨“𝑟𝑠”⟩⟩)‘(𝐼 + 1)) = (⟨“𝑟𝑠”⟩‘1))
179 s2fv1 14854 . . . . . . . . . . . 12 (𝑠𝑇 → (⟨“𝑟𝑠”⟩‘1) = 𝑠)
180179ad2antll 729 . . . . . . . . . . 11 ((𝜑 ∧ (𝑟𝑇𝑠𝑇)) → (⟨“𝑟𝑠”⟩‘1) = 𝑠)
181178, 180eqtrd 2764 . . . . . . . . . 10 ((𝜑 ∧ (𝑟𝑇𝑠𝑇)) → ((𝑊 splice ⟨𝐼, (𝐼 + 2), ⟨“𝑟𝑠”⟩⟩)‘(𝐼 + 1)) = 𝑠)
182181adantrr 717 . . . . . . . . 9 ((𝜑 ∧ ((𝑟𝑇𝑠𝑇) ∧ (((𝑊𝐼) ∘ (𝑊‘(𝐼 + 1))) = (𝑟𝑠) ∧ 𝐴 ∈ dom (𝑠 ∖ I ) ∧ ¬ 𝐴 ∈ dom (𝑟 ∖ I )))) → ((𝑊 splice ⟨𝐼, (𝐼 + 2), ⟨“𝑟𝑠”⟩⟩)‘(𝐼 + 1)) = 𝑠)
183182difeq1d 4088 . . . . . . . 8 ((𝜑 ∧ ((𝑟𝑇𝑠𝑇) ∧ (((𝑊𝐼) ∘ (𝑊‘(𝐼 + 1))) = (𝑟𝑠) ∧ 𝐴 ∈ dom (𝑠 ∖ I ) ∧ ¬ 𝐴 ∈ dom (𝑟 ∖ I )))) → (((𝑊 splice ⟨𝐼, (𝐼 + 2), ⟨“𝑟𝑠”⟩⟩)‘(𝐼 + 1)) ∖ I ) = (𝑠 ∖ I ))
184183dmeqd 5869 . . . . . . 7 ((𝜑 ∧ ((𝑟𝑇𝑠𝑇) ∧ (((𝑊𝐼) ∘ (𝑊‘(𝐼 + 1))) = (𝑟𝑠) ∧ 𝐴 ∈ dom (𝑠 ∖ I ) ∧ ¬ 𝐴 ∈ dom (𝑟 ∖ I )))) → dom (((𝑊 splice ⟨𝐼, (𝐼 + 2), ⟨“𝑟𝑠”⟩⟩)‘(𝐼 + 1)) ∖ I ) = dom (𝑠 ∖ I ))
185169, 184eleqtrrd 2831 . . . . . 6 ((𝜑 ∧ ((𝑟𝑇𝑠𝑇) ∧ (((𝑊𝐼) ∘ (𝑊‘(𝐼 + 1))) = (𝑟𝑠) ∧ 𝐴 ∈ dom (𝑠 ∖ I ) ∧ ¬ 𝐴 ∈ dom (𝑟 ∖ I )))) → 𝐴 ∈ dom (((𝑊 splice ⟨𝐼, (𝐼 + 2), ⟨“𝑟𝑠”⟩⟩)‘(𝐼 + 1)) ∖ I ))
186 fzosplitsni 13739 . . . . . . . . . . 11 (𝐼 ∈ (ℤ‘0) → (𝑗 ∈ (0..^(𝐼 + 1)) ↔ (𝑗 ∈ (0..^𝐼) ∨ 𝑗 = 𝐼)))
187 nn0uz 12835 . . . . . . . . . . 11 0 = (ℤ‘0)
188186, 187eleq2s 2846 . . . . . . . . . 10 (𝐼 ∈ ℕ0 → (𝑗 ∈ (0..^(𝐼 + 1)) ↔ (𝑗 ∈ (0..^𝐼) ∨ 𝑗 = 𝐼)))
18910, 188syl 17 . . . . . . . . 9 (𝜑 → (𝑗 ∈ (0..^(𝐼 + 1)) ↔ (𝑗 ∈ (0..^𝐼) ∨ 𝑗 = 𝐼)))
190189adantr 480 . . . . . . . 8 ((𝜑 ∧ ((𝑟𝑇𝑠𝑇) ∧ (((𝑊𝐼) ∘ (𝑊‘(𝐼 + 1))) = (𝑟𝑠) ∧ 𝐴 ∈ dom (𝑠 ∖ I ) ∧ ¬ 𝐴 ∈ dom (𝑟 ∖ I )))) → (𝑗 ∈ (0..^(𝐼 + 1)) ↔ (𝑗 ∈ (0..^𝐼) ∨ 𝑗 = 𝐼)))
191 fveq2 6858 . . . . . . . . . . . . . . . . . . 19 (𝑘 = 𝑗 → (𝑊𝑘) = (𝑊𝑗))
192191difeq1d 4088 . . . . . . . . . . . . . . . . . 18 (𝑘 = 𝑗 → ((𝑊𝑘) ∖ I ) = ((𝑊𝑗) ∖ I ))
193192dmeqd 5869 . . . . . . . . . . . . . . . . 17 (𝑘 = 𝑗 → dom ((𝑊𝑘) ∖ I ) = dom ((𝑊𝑗) ∖ I ))
194193eleq2d 2814 . . . . . . . . . . . . . . . 16 (𝑘 = 𝑗 → (𝐴 ∈ dom ((𝑊𝑘) ∖ I ) ↔ 𝐴 ∈ dom ((𝑊𝑗) ∖ I )))
195194notbid 318 . . . . . . . . . . . . . . 15 (𝑘 = 𝑗 → (¬ 𝐴 ∈ dom ((𝑊𝑘) ∖ I ) ↔ ¬ 𝐴 ∈ dom ((𝑊𝑗) ∖ I )))
196195rspccva 3587 . . . . . . . . . . . . . 14 ((∀𝑘 ∈ (0..^𝐼) ¬ 𝐴 ∈ dom ((𝑊𝑘) ∖ I ) ∧ 𝑗 ∈ (0..^𝐼)) → ¬ 𝐴 ∈ dom ((𝑊𝑗) ∖ I ))
19725, 196sylan 580 . . . . . . . . . . . . 13 ((𝜑𝑗 ∈ (0..^𝐼)) → ¬ 𝐴 ∈ dom ((𝑊𝑗) ∖ I ))
198197adantlr 715 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑟𝑇𝑠𝑇)) ∧ 𝑗 ∈ (0..^𝐼)) → ¬ 𝐴 ∈ dom ((𝑊𝑗) ∖ I ))
1991ad2antrr 726 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑟𝑇𝑠𝑇)) ∧ 𝑗 ∈ (0..^𝐼)) → 𝑊 ∈ Word 𝑇)
20018ad2antrr 726 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑟𝑇𝑠𝑇)) ∧ 𝑗 ∈ (0..^𝐼)) → 𝐼 ∈ (0...(𝐼 + 2)))
20136ad2antrr 726 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑟𝑇𝑠𝑇)) ∧ 𝑗 ∈ (0..^𝐼)) → (𝐼 + 2) ∈ (0...(♯‘𝑊)))
202121adantr 480 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑟𝑇𝑠𝑇)) ∧ 𝑗 ∈ (0..^𝐼)) → ⟨“𝑟𝑠”⟩ ∈ Word 𝑇)
203 simpr 484 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑟𝑇𝑠𝑇)) ∧ 𝑗 ∈ (0..^𝐼)) → 𝑗 ∈ (0..^𝐼))
204199, 200, 201, 202, 203splfv1 14720 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑟𝑇𝑠𝑇)) ∧ 𝑗 ∈ (0..^𝐼)) → ((𝑊 splice ⟨𝐼, (𝐼 + 2), ⟨“𝑟𝑠”⟩⟩)‘𝑗) = (𝑊𝑗))
205204difeq1d 4088 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑟𝑇𝑠𝑇)) ∧ 𝑗 ∈ (0..^𝐼)) → (((𝑊 splice ⟨𝐼, (𝐼 + 2), ⟨“𝑟𝑠”⟩⟩)‘𝑗) ∖ I ) = ((𝑊𝑗) ∖ I ))
206205dmeqd 5869 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑟𝑇𝑠𝑇)) ∧ 𝑗 ∈ (0..^𝐼)) → dom (((𝑊 splice ⟨𝐼, (𝐼 + 2), ⟨“𝑟𝑠”⟩⟩)‘𝑗) ∖ I ) = dom ((𝑊𝑗) ∖ I ))
207198, 206neleqtrrd 2851 . . . . . . . . . . 11 (((𝜑 ∧ (𝑟𝑇𝑠𝑇)) ∧ 𝑗 ∈ (0..^𝐼)) → ¬ 𝐴 ∈ dom (((𝑊 splice ⟨𝐼, (𝐼 + 2), ⟨“𝑟𝑠”⟩⟩)‘𝑗) ∖ I ))
208207ex 412 . . . . . . . . . 10 ((𝜑 ∧ (𝑟𝑇𝑠𝑇)) → (𝑗 ∈ (0..^𝐼) → ¬ 𝐴 ∈ dom (((𝑊 splice ⟨𝐼, (𝐼 + 2), ⟨“𝑟𝑠”⟩⟩)‘𝑗) ∖ I )))
209208adantrr 717 . . . . . . . . 9 ((𝜑 ∧ ((𝑟𝑇𝑠𝑇) ∧ (((𝑊𝐼) ∘ (𝑊‘(𝐼 + 1))) = (𝑟𝑠) ∧ 𝐴 ∈ dom (𝑠 ∖ I ) ∧ ¬ 𝐴 ∈ dom (𝑟 ∖ I )))) → (𝑗 ∈ (0..^𝐼) → ¬ 𝐴 ∈ dom (((𝑊 splice ⟨𝐼, (𝐼 + 2), ⟨“𝑟𝑠”⟩⟩)‘𝑗) ∖ I )))
210 simprr3 1224 . . . . . . . . . . 11 ((𝜑 ∧ ((𝑟𝑇𝑠𝑇) ∧ (((𝑊𝐼) ∘ (𝑊‘(𝐼 + 1))) = (𝑟𝑠) ∧ 𝐴 ∈ dom (𝑠 ∖ I ) ∧ ¬ 𝐴 ∈ dom (𝑟 ∖ I )))) → ¬ 𝐴 ∈ dom (𝑟 ∖ I ))
211 0nn0 12457 . . . . . . . . . . . . . . . . . . . 20 0 ∈ ℕ0
212 2pos 12289 . . . . . . . . . . . . . . . . . . . 20 0 < 2
213 elfzo0 13661 . . . . . . . . . . . . . . . . . . . 20 (0 ∈ (0..^2) ↔ (0 ∈ ℕ0 ∧ 2 ∈ ℕ ∧ 0 < 2))
214211, 171, 212, 213mpbir3an 1342 . . . . . . . . . . . . . . . . . . 19 0 ∈ (0..^2)
215214, 175eleqtrri 2827 . . . . . . . . . . . . . . . . . 18 0 ∈ (0..^(♯‘⟨“𝑟𝑠”⟩))
216215a1i 11 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ (𝑟𝑇𝑠𝑇)) → 0 ∈ (0..^(♯‘⟨“𝑟𝑠”⟩)))
217118, 151, 152, 121, 216splfv2a 14721 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (𝑟𝑇𝑠𝑇)) → ((𝑊 splice ⟨𝐼, (𝐼 + 2), ⟨“𝑟𝑠”⟩⟩)‘(𝐼 + 0)) = (⟨“𝑟𝑠”⟩‘0))
21831addridd 11374 . . . . . . . . . . . . . . . . . 18 (𝜑 → (𝐼 + 0) = 𝐼)
219218adantr 480 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ (𝑟𝑇𝑠𝑇)) → (𝐼 + 0) = 𝐼)
220219fveq2d 6862 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (𝑟𝑇𝑠𝑇)) → ((𝑊 splice ⟨𝐼, (𝐼 + 2), ⟨“𝑟𝑠”⟩⟩)‘(𝐼 + 0)) = ((𝑊 splice ⟨𝐼, (𝐼 + 2), ⟨“𝑟𝑠”⟩⟩)‘𝐼))
221 s2fv0 14853 . . . . . . . . . . . . . . . . 17 (𝑟𝑇 → (⟨“𝑟𝑠”⟩‘0) = 𝑟)
222221ad2antrl 728 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (𝑟𝑇𝑠𝑇)) → (⟨“𝑟𝑠”⟩‘0) = 𝑟)
223217, 220, 2223eqtr3d 2772 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑟𝑇𝑠𝑇)) → ((𝑊 splice ⟨𝐼, (𝐼 + 2), ⟨“𝑟𝑠”⟩⟩)‘𝐼) = 𝑟)
224223difeq1d 4088 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑟𝑇𝑠𝑇)) → (((𝑊 splice ⟨𝐼, (𝐼 + 2), ⟨“𝑟𝑠”⟩⟩)‘𝐼) ∖ I ) = (𝑟 ∖ I ))
225224dmeqd 5869 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑟𝑇𝑠𝑇)) → dom (((𝑊 splice ⟨𝐼, (𝐼 + 2), ⟨“𝑟𝑠”⟩⟩)‘𝐼) ∖ I ) = dom (𝑟 ∖ I ))
226225eleq2d 2814 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑟𝑇𝑠𝑇)) → (𝐴 ∈ dom (((𝑊 splice ⟨𝐼, (𝐼 + 2), ⟨“𝑟𝑠”⟩⟩)‘𝐼) ∖ I ) ↔ 𝐴 ∈ dom (𝑟 ∖ I )))
227226adantrr 717 . . . . . . . . . . 11 ((𝜑 ∧ ((𝑟𝑇𝑠𝑇) ∧ (((𝑊𝐼) ∘ (𝑊‘(𝐼 + 1))) = (𝑟𝑠) ∧ 𝐴 ∈ dom (𝑠 ∖ I ) ∧ ¬ 𝐴 ∈ dom (𝑟 ∖ I )))) → (𝐴 ∈ dom (((𝑊 splice ⟨𝐼, (𝐼 + 2), ⟨“𝑟𝑠”⟩⟩)‘𝐼) ∖ I ) ↔ 𝐴 ∈ dom (𝑟 ∖ I )))
228210, 227mtbird 325 . . . . . . . . . 10 ((𝜑 ∧ ((𝑟𝑇𝑠𝑇) ∧ (((𝑊𝐼) ∘ (𝑊‘(𝐼 + 1))) = (𝑟𝑠) ∧ 𝐴 ∈ dom (𝑠 ∖ I ) ∧ ¬ 𝐴 ∈ dom (𝑟 ∖ I )))) → ¬ 𝐴 ∈ dom (((𝑊 splice ⟨𝐼, (𝐼 + 2), ⟨“𝑟𝑠”⟩⟩)‘𝐼) ∖ I ))
229 fveq2 6858 . . . . . . . . . . . . . 14 (𝑗 = 𝐼 → ((𝑊 splice ⟨𝐼, (𝐼 + 2), ⟨“𝑟𝑠”⟩⟩)‘𝑗) = ((𝑊 splice ⟨𝐼, (𝐼 + 2), ⟨“𝑟𝑠”⟩⟩)‘𝐼))
230229difeq1d 4088 . . . . . . . . . . . . 13 (𝑗 = 𝐼 → (((𝑊 splice ⟨𝐼, (𝐼 + 2), ⟨“𝑟𝑠”⟩⟩)‘𝑗) ∖ I ) = (((𝑊 splice ⟨𝐼, (𝐼 + 2), ⟨“𝑟𝑠”⟩⟩)‘𝐼) ∖ I ))
231230dmeqd 5869 . . . . . . . . . . . 12 (𝑗 = 𝐼 → dom (((𝑊 splice ⟨𝐼, (𝐼 + 2), ⟨“𝑟𝑠”⟩⟩)‘𝑗) ∖ I ) = dom (((𝑊 splice ⟨𝐼, (𝐼 + 2), ⟨“𝑟𝑠”⟩⟩)‘𝐼) ∖ I ))
232231eleq2d 2814 . . . . . . . . . . 11 (𝑗 = 𝐼 → (𝐴 ∈ dom (((𝑊 splice ⟨𝐼, (𝐼 + 2), ⟨“𝑟𝑠”⟩⟩)‘𝑗) ∖ I ) ↔ 𝐴 ∈ dom (((𝑊 splice ⟨𝐼, (𝐼 + 2), ⟨“𝑟𝑠”⟩⟩)‘𝐼) ∖ I )))
233232notbid 318 . . . . . . . . . 10 (𝑗 = 𝐼 → (¬ 𝐴 ∈ dom (((𝑊 splice ⟨𝐼, (𝐼 + 2), ⟨“𝑟𝑠”⟩⟩)‘𝑗) ∖ I ) ↔ ¬ 𝐴 ∈ dom (((𝑊 splice ⟨𝐼, (𝐼 + 2), ⟨“𝑟𝑠”⟩⟩)‘𝐼) ∖ I )))
234228, 233syl5ibrcom 247 . . . . . . . . 9 ((𝜑 ∧ ((𝑟𝑇𝑠𝑇) ∧ (((𝑊𝐼) ∘ (𝑊‘(𝐼 + 1))) = (𝑟𝑠) ∧ 𝐴 ∈ dom (𝑠 ∖ I ) ∧ ¬ 𝐴 ∈ dom (𝑟 ∖ I )))) → (𝑗 = 𝐼 → ¬ 𝐴 ∈ dom (((𝑊 splice ⟨𝐼, (𝐼 + 2), ⟨“𝑟𝑠”⟩⟩)‘𝑗) ∖ I )))
235209, 234jaod 859 . . . . . . . 8 ((𝜑 ∧ ((𝑟𝑇𝑠𝑇) ∧ (((𝑊𝐼) ∘ (𝑊‘(𝐼 + 1))) = (𝑟𝑠) ∧ 𝐴 ∈ dom (𝑠 ∖ I ) ∧ ¬ 𝐴 ∈ dom (𝑟 ∖ I )))) → ((𝑗 ∈ (0..^𝐼) ∨ 𝑗 = 𝐼) → ¬ 𝐴 ∈ dom (((𝑊 splice ⟨𝐼, (𝐼 + 2), ⟨“𝑟𝑠”⟩⟩)‘𝑗) ∖ I )))
236190, 235sylbid 240 . . . . . . 7 ((𝜑 ∧ ((𝑟𝑇𝑠𝑇) ∧ (((𝑊𝐼) ∘ (𝑊‘(𝐼 + 1))) = (𝑟𝑠) ∧ 𝐴 ∈ dom (𝑠 ∖ I ) ∧ ¬ 𝐴 ∈ dom (𝑟 ∖ I )))) → (𝑗 ∈ (0..^(𝐼 + 1)) → ¬ 𝐴 ∈ dom (((𝑊 splice ⟨𝐼, (𝐼 + 2), ⟨“𝑟𝑠”⟩⟩)‘𝑗) ∖ I )))
237236ralrimiv 3124 . . . . . 6 ((𝜑 ∧ ((𝑟𝑇𝑠𝑇) ∧ (((𝑊𝐼) ∘ (𝑊‘(𝐼 + 1))) = (𝑟𝑠) ∧ 𝐴 ∈ dom (𝑠 ∖ I ) ∧ ¬ 𝐴 ∈ dom (𝑟 ∖ I )))) → ∀𝑗 ∈ (0..^(𝐼 + 1)) ¬ 𝐴 ∈ dom (((𝑊 splice ⟨𝐼, (𝐼 + 2), ⟨“𝑟𝑠”⟩⟩)‘𝑗) ∖ I ))
238168, 185, 2373jca 1128 . . . . 5 ((𝜑 ∧ ((𝑟𝑇𝑠𝑇) ∧ (((𝑊𝐼) ∘ (𝑊‘(𝐼 + 1))) = (𝑟𝑠) ∧ 𝐴 ∈ dom (𝑠 ∖ I ) ∧ ¬ 𝐴 ∈ dom (𝑟 ∖ I )))) → ((𝐼 + 1) ∈ (0..^𝐿) ∧ 𝐴 ∈ dom (((𝑊 splice ⟨𝐼, (𝐼 + 2), ⟨“𝑟𝑠”⟩⟩)‘(𝐼 + 1)) ∖ I ) ∧ ∀𝑗 ∈ (0..^(𝐼 + 1)) ¬ 𝐴 ∈ dom (((𝑊 splice ⟨𝐼, (𝐼 + 2), ⟨“𝑟𝑠”⟩⟩)‘𝑗) ∖ I )))
239 oveq2 7395 . . . . . . . . 9 (𝑤 = (𝑊 splice ⟨𝐼, (𝐼 + 2), ⟨“𝑟𝑠”⟩⟩) → (𝐺 Σg 𝑤) = (𝐺 Σg (𝑊 splice ⟨𝐼, (𝐼 + 2), ⟨“𝑟𝑠”⟩⟩)))
240239eqeq1d 2731 . . . . . . . 8 (𝑤 = (𝑊 splice ⟨𝐼, (𝐼 + 2), ⟨“𝑟𝑠”⟩⟩) → ((𝐺 Σg 𝑤) = ( I ↾ 𝐷) ↔ (𝐺 Σg (𝑊 splice ⟨𝐼, (𝐼 + 2), ⟨“𝑟𝑠”⟩⟩)) = ( I ↾ 𝐷)))
241 fveqeq2 6867 . . . . . . . 8 (𝑤 = (𝑊 splice ⟨𝐼, (𝐼 + 2), ⟨“𝑟𝑠”⟩⟩) → ((♯‘𝑤) = 𝐿 ↔ (♯‘(𝑊 splice ⟨𝐼, (𝐼 + 2), ⟨“𝑟𝑠”⟩⟩)) = 𝐿))
242240, 241anbi12d 632 . . . . . . 7 (𝑤 = (𝑊 splice ⟨𝐼, (𝐼 + 2), ⟨“𝑟𝑠”⟩⟩) → (((𝐺 Σg 𝑤) = ( I ↾ 𝐷) ∧ (♯‘𝑤) = 𝐿) ↔ ((𝐺 Σg (𝑊 splice ⟨𝐼, (𝐼 + 2), ⟨“𝑟𝑠”⟩⟩)) = ( I ↾ 𝐷) ∧ (♯‘(𝑊 splice ⟨𝐼, (𝐼 + 2), ⟨“𝑟𝑠”⟩⟩)) = 𝐿)))
243 fveq1 6857 . . . . . . . . . . 11 (𝑤 = (𝑊 splice ⟨𝐼, (𝐼 + 2), ⟨“𝑟𝑠”⟩⟩) → (𝑤‘(𝐼 + 1)) = ((𝑊 splice ⟨𝐼, (𝐼 + 2), ⟨“𝑟𝑠”⟩⟩)‘(𝐼 + 1)))
244243difeq1d 4088 . . . . . . . . . 10 (𝑤 = (𝑊 splice ⟨𝐼, (𝐼 + 2), ⟨“𝑟𝑠”⟩⟩) → ((𝑤‘(𝐼 + 1)) ∖ I ) = (((𝑊 splice ⟨𝐼, (𝐼 + 2), ⟨“𝑟𝑠”⟩⟩)‘(𝐼 + 1)) ∖ I ))
245244dmeqd 5869 . . . . . . . . 9 (𝑤 = (𝑊 splice ⟨𝐼, (𝐼 + 2), ⟨“𝑟𝑠”⟩⟩) → dom ((𝑤‘(𝐼 + 1)) ∖ I ) = dom (((𝑊 splice ⟨𝐼, (𝐼 + 2), ⟨“𝑟𝑠”⟩⟩)‘(𝐼 + 1)) ∖ I ))
246245eleq2d 2814 . . . . . . . 8 (𝑤 = (𝑊 splice ⟨𝐼, (𝐼 + 2), ⟨“𝑟𝑠”⟩⟩) → (𝐴 ∈ dom ((𝑤‘(𝐼 + 1)) ∖ I ) ↔ 𝐴 ∈ dom (((𝑊 splice ⟨𝐼, (𝐼 + 2), ⟨“𝑟𝑠”⟩⟩)‘(𝐼 + 1)) ∖ I )))
247 fveq1 6857 . . . . . . . . . . . . 13 (𝑤 = (𝑊 splice ⟨𝐼, (𝐼 + 2), ⟨“𝑟𝑠”⟩⟩) → (𝑤𝑗) = ((𝑊 splice ⟨𝐼, (𝐼 + 2), ⟨“𝑟𝑠”⟩⟩)‘𝑗))
248247difeq1d 4088 . . . . . . . . . . . 12 (𝑤 = (𝑊 splice ⟨𝐼, (𝐼 + 2), ⟨“𝑟𝑠”⟩⟩) → ((𝑤𝑗) ∖ I ) = (((𝑊 splice ⟨𝐼, (𝐼 + 2), ⟨“𝑟𝑠”⟩⟩)‘𝑗) ∖ I ))
249248dmeqd 5869 . . . . . . . . . . 11 (𝑤 = (𝑊 splice ⟨𝐼, (𝐼 + 2), ⟨“𝑟𝑠”⟩⟩) → dom ((𝑤𝑗) ∖ I ) = dom (((𝑊 splice ⟨𝐼, (𝐼 + 2), ⟨“𝑟𝑠”⟩⟩)‘𝑗) ∖ I ))
250249eleq2d 2814 . . . . . . . . . 10 (𝑤 = (𝑊 splice ⟨𝐼, (𝐼 + 2), ⟨“𝑟𝑠”⟩⟩) → (𝐴 ∈ dom ((𝑤𝑗) ∖ I ) ↔ 𝐴 ∈ dom (((𝑊 splice ⟨𝐼, (𝐼 + 2), ⟨“𝑟𝑠”⟩⟩)‘𝑗) ∖ I )))
251250notbid 318 . . . . . . . . 9 (𝑤 = (𝑊 splice ⟨𝐼, (𝐼 + 2), ⟨“𝑟𝑠”⟩⟩) → (¬ 𝐴 ∈ dom ((𝑤𝑗) ∖ I ) ↔ ¬ 𝐴 ∈ dom (((𝑊 splice ⟨𝐼, (𝐼 + 2), ⟨“𝑟𝑠”⟩⟩)‘𝑗) ∖ I )))
252251ralbidv 3156 . . . . . . . 8 (𝑤 = (𝑊 splice ⟨𝐼, (𝐼 + 2), ⟨“𝑟𝑠”⟩⟩) → (∀𝑗 ∈ (0..^(𝐼 + 1)) ¬ 𝐴 ∈ dom ((𝑤𝑗) ∖ I ) ↔ ∀𝑗 ∈ (0..^(𝐼 + 1)) ¬ 𝐴 ∈ dom (((𝑊 splice ⟨𝐼, (𝐼 + 2), ⟨“𝑟𝑠”⟩⟩)‘𝑗) ∖ I )))
253246, 2523anbi23d 1441 . . . . . . 7 (𝑤 = (𝑊 splice ⟨𝐼, (𝐼 + 2), ⟨“𝑟𝑠”⟩⟩) → (((𝐼 + 1) ∈ (0..^𝐿) ∧ 𝐴 ∈ dom ((𝑤‘(𝐼 + 1)) ∖ I ) ∧ ∀𝑗 ∈ (0..^(𝐼 + 1)) ¬ 𝐴 ∈ dom ((𝑤𝑗) ∖ I )) ↔ ((𝐼 + 1) ∈ (0..^𝐿) ∧ 𝐴 ∈ dom (((𝑊 splice ⟨𝐼, (𝐼 + 2), ⟨“𝑟𝑠”⟩⟩)‘(𝐼 + 1)) ∖ I ) ∧ ∀𝑗 ∈ (0..^(𝐼 + 1)) ¬ 𝐴 ∈ dom (((𝑊 splice ⟨𝐼, (𝐼 + 2), ⟨“𝑟𝑠”⟩⟩)‘𝑗) ∖ I ))))
254242, 253anbi12d 632 . . . . . 6 (𝑤 = (𝑊 splice ⟨𝐼, (𝐼 + 2), ⟨“𝑟𝑠”⟩⟩) → ((((𝐺 Σg 𝑤) = ( I ↾ 𝐷) ∧ (♯‘𝑤) = 𝐿) ∧ ((𝐼 + 1) ∈ (0..^𝐿) ∧ 𝐴 ∈ dom ((𝑤‘(𝐼 + 1)) ∖ I ) ∧ ∀𝑗 ∈ (0..^(𝐼 + 1)) ¬ 𝐴 ∈ dom ((𝑤𝑗) ∖ I ))) ↔ (((𝐺 Σg (𝑊 splice ⟨𝐼, (𝐼 + 2), ⟨“𝑟𝑠”⟩⟩)) = ( I ↾ 𝐷) ∧ (♯‘(𝑊 splice ⟨𝐼, (𝐼 + 2), ⟨“𝑟𝑠”⟩⟩)) = 𝐿) ∧ ((𝐼 + 1) ∈ (0..^𝐿) ∧ 𝐴 ∈ dom (((𝑊 splice ⟨𝐼, (𝐼 + 2), ⟨“𝑟𝑠”⟩⟩)‘(𝐼 + 1)) ∖ I ) ∧ ∀𝑗 ∈ (0..^(𝐼 + 1)) ¬ 𝐴 ∈ dom (((𝑊 splice ⟨𝐼, (𝐼 + 2), ⟨“𝑟𝑠”⟩⟩)‘𝑗) ∖ I )))))
255254rspcev 3588 . . . . 5 (((𝑊 splice ⟨𝐼, (𝐼 + 2), ⟨“𝑟𝑠”⟩⟩) ∈ Word 𝑇 ∧ (((𝐺 Σg (𝑊 splice ⟨𝐼, (𝐼 + 2), ⟨“𝑟𝑠”⟩⟩)) = ( I ↾ 𝐷) ∧ (♯‘(𝑊 splice ⟨𝐼, (𝐼 + 2), ⟨“𝑟𝑠”⟩⟩)) = 𝐿) ∧ ((𝐼 + 1) ∈ (0..^𝐿) ∧ 𝐴 ∈ dom (((𝑊 splice ⟨𝐼, (𝐼 + 2), ⟨“𝑟𝑠”⟩⟩)‘(𝐼 + 1)) ∖ I ) ∧ ∀𝑗 ∈ (0..^(𝐼 + 1)) ¬ 𝐴 ∈ dom (((𝑊 splice ⟨𝐼, (𝐼 + 2), ⟨“𝑟𝑠”⟩⟩)‘𝑗) ∖ I )))) → ∃𝑤 ∈ Word 𝑇(((𝐺 Σg 𝑤) = ( I ↾ 𝐷) ∧ (♯‘𝑤) = 𝐿) ∧ ((𝐼 + 1) ∈ (0..^𝐿) ∧ 𝐴 ∈ dom ((𝑤‘(𝐼 + 1)) ∖ I ) ∧ ∀𝑗 ∈ (0..^(𝐼 + 1)) ¬ 𝐴 ∈ dom ((𝑤𝑗) ∖ I ))))
256124, 167, 238, 255syl12anc 836 . . . 4 ((𝜑 ∧ ((𝑟𝑇𝑠𝑇) ∧ (((𝑊𝐼) ∘ (𝑊‘(𝐼 + 1))) = (𝑟𝑠) ∧ 𝐴 ∈ dom (𝑠 ∖ I ) ∧ ¬ 𝐴 ∈ dom (𝑟 ∖ I )))) → ∃𝑤 ∈ Word 𝑇(((𝐺 Σg 𝑤) = ( I ↾ 𝐷) ∧ (♯‘𝑤) = 𝐿) ∧ ((𝐼 + 1) ∈ (0..^𝐿) ∧ 𝐴 ∈ dom ((𝑤‘(𝐼 + 1)) ∖ I ) ∧ ∀𝑗 ∈ (0..^(𝐼 + 1)) ¬ 𝐴 ∈ dom ((𝑤𝑗) ∖ I ))))
257256expr 456 . . 3 ((𝜑 ∧ (𝑟𝑇𝑠𝑇)) → ((((𝑊𝐼) ∘ (𝑊‘(𝐼 + 1))) = (𝑟𝑠) ∧ 𝐴 ∈ dom (𝑠 ∖ I ) ∧ ¬ 𝐴 ∈ dom (𝑟 ∖ I )) → ∃𝑤 ∈ Word 𝑇(((𝐺 Σg 𝑤) = ( I ↾ 𝐷) ∧ (♯‘𝑤) = 𝐿) ∧ ((𝐼 + 1) ∈ (0..^𝐿) ∧ 𝐴 ∈ dom ((𝑤‘(𝐼 + 1)) ∖ I ) ∧ ∀𝑗 ∈ (0..^(𝐼 + 1)) ¬ 𝐴 ∈ dom ((𝑤𝑗) ∖ I )))))
258257rexlimdvva 3194 . 2 (𝜑 → (∃𝑟𝑇𝑠𝑇 (((𝑊𝐼) ∘ (𝑊‘(𝐼 + 1))) = (𝑟𝑠) ∧ 𝐴 ∈ dom (𝑠 ∖ I ) ∧ ¬ 𝐴 ∈ dom (𝑟 ∖ I )) → ∃𝑤 ∈ Word 𝑇(((𝐺 Σg 𝑤) = ( I ↾ 𝐷) ∧ (♯‘𝑤) = 𝐿) ∧ ((𝐼 + 1) ∈ (0..^𝐿) ∧ 𝐴 ∈ dom ((𝑤‘(𝐼 + 1)) ∖ I ) ∧ ∀𝑗 ∈ (0..^(𝐼 + 1)) ¬ 𝐴 ∈ dom ((𝑤𝑗) ∖ I )))))
25920, 21, 86, 88, 24psgnunilem1 19423 . 2 (𝜑 → (((𝑊𝐼) ∘ (𝑊‘(𝐼 + 1))) = ( I ↾ 𝐷) ∨ ∃𝑟𝑇𝑠𝑇 (((𝑊𝐼) ∘ (𝑊‘(𝐼 + 1))) = (𝑟𝑠) ∧ 𝐴 ∈ dom (𝑠 ∖ I ) ∧ ¬ 𝐴 ∈ dom (𝑟 ∖ I ))))
260117, 258, 259mpjaod 860 1 (𝜑 → ∃𝑤 ∈ Word 𝑇(((𝐺 Σg 𝑤) = ( I ↾ 𝐷) ∧ (♯‘𝑤) = 𝐿) ∧ ((𝐼 + 1) ∈ (0..^𝐿) ∧ 𝐴 ∈ dom ((𝑤‘(𝐼 + 1)) ∖ I ) ∧ ∀𝑗 ∈ (0..^(𝐼 + 1)) ¬ 𝐴 ∈ dom ((𝑤𝑗) ∖ I ))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 847  w3a 1086   = wceq 1540  wcel 2109  wral 3044  wrex 3053  cdif 3911  wss 3914  c0 4296  cop 4595  cotp 4597   class class class wbr 5107   I cid 5532  dom cdm 5638  ran crn 5639  cres 5640  ccom 5642  wf 6507  cfv 6511  (class class class)co 7387  cc 11066  cr 11067  0cc0 11068  1c1 11069   + caddc 11071   < clt 11208  cle 11209  cmin 11405  -cneg 11406  cn 12186  2c2 12241  0cn0 12442  cz 12529  cuz 12793  ...cfz 13468  ..^cfzo 13615  chash 14295  Word cword 14478   substr csubstr 14605   splice csplice 14714  ⟨“cs2 14807  Basecbs 17179  +gcplusg 17220  0gc0g 17402   Σg cgsu 17403  Mndcmnd 18661  Grpcgrp 18865  SymGrpcsymg 19299  pmTrspcpmtr 19371
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-cnex 11124  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-xor 1512  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-tp 4594  df-op 4596  df-ot 4598  df-uni 4872  df-int 4911  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-om 7843  df-1st 7968  df-2nd 7969  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-1o 8434  df-2o 8435  df-er 8671  df-map 8801  df-en 8919  df-dom 8920  df-sdom 8921  df-fin 8922  df-card 9892  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-nn 12187  df-2 12249  df-3 12250  df-4 12251  df-5 12252  df-6 12253  df-7 12254  df-8 12255  df-9 12256  df-n0 12443  df-xnn0 12516  df-z 12530  df-uz 12794  df-fz 13469  df-fzo 13616  df-seq 13967  df-hash 14296  df-word 14479  df-lsw 14528  df-concat 14536  df-s1 14561  df-substr 14606  df-pfx 14636  df-splice 14715  df-s2 14814  df-struct 17117  df-sets 17134  df-slot 17152  df-ndx 17164  df-base 17180  df-ress 17201  df-plusg 17233  df-tset 17239  df-0g 17404  df-gsum 17405  df-mgm 18567  df-sgrp 18646  df-mnd 18662  df-submnd 18711  df-efmnd 18796  df-grp 18868  df-minusg 18869  df-subg 19055  df-symg 19300  df-pmtr 19372
This theorem is referenced by:  psgnunilem3  19426
  Copyright terms: Public domain W3C validator