MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  1hevtxdg0 Structured version   Visualization version   GIF version

Theorem 1hevtxdg0 27295
Description: The vertex degree of vertex 𝐷 in a graph 𝐺 with only one hyperedge 𝐸 is 0 if 𝐷 is not incident with the edge 𝐸. (Contributed by AV, 2-Mar-2021.)
Hypotheses
Ref Expression
1hevtxdg0.i (𝜑 → (iEdg‘𝐺) = {⟨𝐴, 𝐸⟩})
1hevtxdg0.v (𝜑 → (Vtx‘𝐺) = 𝑉)
1hevtxdg0.a (𝜑𝐴𝑋)
1hevtxdg0.d (𝜑𝐷𝑉)
1hevtxdg0.e (𝜑𝐸𝑌)
1hevtxdg0.n (𝜑𝐷𝐸)
Assertion
Ref Expression
1hevtxdg0 (𝜑 → ((VtxDeg‘𝐺)‘𝐷) = 0)

Proof of Theorem 1hevtxdg0
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 1hevtxdg0.n . . . . . . 7 (𝜑𝐷𝐸)
2 df-nel 3092 . . . . . . 7 (𝐷𝐸 ↔ ¬ 𝐷𝐸)
31, 2sylib 221 . . . . . 6 (𝜑 → ¬ 𝐷𝐸)
4 1hevtxdg0.i . . . . . . . 8 (𝜑 → (iEdg‘𝐺) = {⟨𝐴, 𝐸⟩})
54fveq1d 6647 . . . . . . 7 (𝜑 → ((iEdg‘𝐺)‘𝐴) = ({⟨𝐴, 𝐸⟩}‘𝐴))
6 1hevtxdg0.a . . . . . . . 8 (𝜑𝐴𝑋)
7 1hevtxdg0.e . . . . . . . 8 (𝜑𝐸𝑌)
8 fvsng 6919 . . . . . . . 8 ((𝐴𝑋𝐸𝑌) → ({⟨𝐴, 𝐸⟩}‘𝐴) = 𝐸)
96, 7, 8syl2anc 587 . . . . . . 7 (𝜑 → ({⟨𝐴, 𝐸⟩}‘𝐴) = 𝐸)
105, 9eqtrd 2833 . . . . . 6 (𝜑 → ((iEdg‘𝐺)‘𝐴) = 𝐸)
113, 10neleqtrrd 2912 . . . . 5 (𝜑 → ¬ 𝐷 ∈ ((iEdg‘𝐺)‘𝐴))
12 fveq2 6645 . . . . . . . . 9 (𝑥 = 𝐴 → ((iEdg‘𝐺)‘𝑥) = ((iEdg‘𝐺)‘𝐴))
1312eleq2d 2875 . . . . . . . 8 (𝑥 = 𝐴 → (𝐷 ∈ ((iEdg‘𝐺)‘𝑥) ↔ 𝐷 ∈ ((iEdg‘𝐺)‘𝐴)))
1413notbid 321 . . . . . . 7 (𝑥 = 𝐴 → (¬ 𝐷 ∈ ((iEdg‘𝐺)‘𝑥) ↔ ¬ 𝐷 ∈ ((iEdg‘𝐺)‘𝐴)))
1514ralsng 4573 . . . . . 6 (𝐴𝑋 → (∀𝑥 ∈ {𝐴} ¬ 𝐷 ∈ ((iEdg‘𝐺)‘𝑥) ↔ ¬ 𝐷 ∈ ((iEdg‘𝐺)‘𝐴)))
166, 15syl 17 . . . . 5 (𝜑 → (∀𝑥 ∈ {𝐴} ¬ 𝐷 ∈ ((iEdg‘𝐺)‘𝑥) ↔ ¬ 𝐷 ∈ ((iEdg‘𝐺)‘𝐴)))
1711, 16mpbird 260 . . . 4 (𝜑 → ∀𝑥 ∈ {𝐴} ¬ 𝐷 ∈ ((iEdg‘𝐺)‘𝑥))
184dmeqd 5738 . . . . . 6 (𝜑 → dom (iEdg‘𝐺) = dom {⟨𝐴, 𝐸⟩})
19 dmsnopg 6037 . . . . . . 7 (𝐸𝑌 → dom {⟨𝐴, 𝐸⟩} = {𝐴})
207, 19syl 17 . . . . . 6 (𝜑 → dom {⟨𝐴, 𝐸⟩} = {𝐴})
2118, 20eqtrd 2833 . . . . 5 (𝜑 → dom (iEdg‘𝐺) = {𝐴})
2221raleqdv 3364 . . . 4 (𝜑 → (∀𝑥 ∈ dom (iEdg‘𝐺) ¬ 𝐷 ∈ ((iEdg‘𝐺)‘𝑥) ↔ ∀𝑥 ∈ {𝐴} ¬ 𝐷 ∈ ((iEdg‘𝐺)‘𝑥)))
2317, 22mpbird 260 . . 3 (𝜑 → ∀𝑥 ∈ dom (iEdg‘𝐺) ¬ 𝐷 ∈ ((iEdg‘𝐺)‘𝑥))
24 ralnex 3199 . . 3 (∀𝑥 ∈ dom (iEdg‘𝐺) ¬ 𝐷 ∈ ((iEdg‘𝐺)‘𝑥) ↔ ¬ ∃𝑥 ∈ dom (iEdg‘𝐺)𝐷 ∈ ((iEdg‘𝐺)‘𝑥))
2523, 24sylib 221 . 2 (𝜑 → ¬ ∃𝑥 ∈ dom (iEdg‘𝐺)𝐷 ∈ ((iEdg‘𝐺)‘𝑥))
26 1hevtxdg0.d . . . 4 (𝜑𝐷𝑉)
27 1hevtxdg0.v . . . . 5 (𝜑 → (Vtx‘𝐺) = 𝑉)
2827eleq2d 2875 . . . 4 (𝜑 → (𝐷 ∈ (Vtx‘𝐺) ↔ 𝐷𝑉))
2926, 28mpbird 260 . . 3 (𝜑𝐷 ∈ (Vtx‘𝐺))
30 eqid 2798 . . . 4 (Vtx‘𝐺) = (Vtx‘𝐺)
31 eqid 2798 . . . 4 (iEdg‘𝐺) = (iEdg‘𝐺)
32 eqid 2798 . . . 4 (VtxDeg‘𝐺) = (VtxDeg‘𝐺)
3330, 31, 32vtxd0nedgb 27278 . . 3 (𝐷 ∈ (Vtx‘𝐺) → (((VtxDeg‘𝐺)‘𝐷) = 0 ↔ ¬ ∃𝑥 ∈ dom (iEdg‘𝐺)𝐷 ∈ ((iEdg‘𝐺)‘𝑥)))
3429, 33syl 17 . 2 (𝜑 → (((VtxDeg‘𝐺)‘𝐷) = 0 ↔ ¬ ∃𝑥 ∈ dom (iEdg‘𝐺)𝐷 ∈ ((iEdg‘𝐺)‘𝑥)))
3525, 34mpbird 260 1 (𝜑 → ((VtxDeg‘𝐺)‘𝐷) = 0)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 209   = wceq 1538  wcel 2111  wnel 3091  wral 3106  wrex 3107  {csn 4525  cop 4531  dom cdm 5519  cfv 6324  0cc0 10526  Vtxcvtx 26789  iEdgciedg 26790  VtxDegcvtxdg 27255
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-rep 5154  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4801  df-int 4839  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-pred 6116  df-ord 6162  df-on 6163  df-lim 6164  df-suc 6165  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-riota 7093  df-ov 7138  df-oprab 7139  df-mpo 7140  df-om 7561  df-1st 7671  df-2nd 7672  df-wrecs 7930  df-recs 7991  df-rdg 8029  df-1o 8085  df-er 8272  df-en 8493  df-dom 8494  df-sdom 8495  df-fin 8496  df-card 9352  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-nn 11626  df-n0 11886  df-xnn0 11956  df-z 11970  df-uz 12232  df-xadd 12496  df-fz 12886  df-hash 13687  df-vtxdg 27256
This theorem is referenced by:  p1evtxdeq  27303  eupth2lem3lem6  28018
  Copyright terms: Public domain W3C validator