![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 1hevtxdg0 | Structured version Visualization version GIF version |
Description: The vertex degree of vertex 𝐷 in a graph 𝐺 with only one hyperedge 𝐸 is 0 if 𝐷 is not incident with the edge 𝐸. (Contributed by AV, 2-Mar-2021.) |
Ref | Expression |
---|---|
1hevtxdg0.i | ⊢ (𝜑 → (iEdg‘𝐺) = {〈𝐴, 𝐸〉}) |
1hevtxdg0.v | ⊢ (𝜑 → (Vtx‘𝐺) = 𝑉) |
1hevtxdg0.a | ⊢ (𝜑 → 𝐴 ∈ 𝑋) |
1hevtxdg0.d | ⊢ (𝜑 → 𝐷 ∈ 𝑉) |
1hevtxdg0.e | ⊢ (𝜑 → 𝐸 ∈ 𝑌) |
1hevtxdg0.n | ⊢ (𝜑 → 𝐷 ∉ 𝐸) |
Ref | Expression |
---|---|
1hevtxdg0 | ⊢ (𝜑 → ((VtxDeg‘𝐺)‘𝐷) = 0) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 1hevtxdg0.n | . . . . . . 7 ⊢ (𝜑 → 𝐷 ∉ 𝐸) | |
2 | df-nel 3044 | . . . . . . 7 ⊢ (𝐷 ∉ 𝐸 ↔ ¬ 𝐷 ∈ 𝐸) | |
3 | 1, 2 | sylib 217 | . . . . . 6 ⊢ (𝜑 → ¬ 𝐷 ∈ 𝐸) |
4 | 1hevtxdg0.i | . . . . . . . 8 ⊢ (𝜑 → (iEdg‘𝐺) = {〈𝐴, 𝐸〉}) | |
5 | 4 | fveq1d 6899 | . . . . . . 7 ⊢ (𝜑 → ((iEdg‘𝐺)‘𝐴) = ({〈𝐴, 𝐸〉}‘𝐴)) |
6 | 1hevtxdg0.a | . . . . . . . 8 ⊢ (𝜑 → 𝐴 ∈ 𝑋) | |
7 | 1hevtxdg0.e | . . . . . . . 8 ⊢ (𝜑 → 𝐸 ∈ 𝑌) | |
8 | fvsng 7189 | . . . . . . . 8 ⊢ ((𝐴 ∈ 𝑋 ∧ 𝐸 ∈ 𝑌) → ({〈𝐴, 𝐸〉}‘𝐴) = 𝐸) | |
9 | 6, 7, 8 | syl2anc 583 | . . . . . . 7 ⊢ (𝜑 → ({〈𝐴, 𝐸〉}‘𝐴) = 𝐸) |
10 | 5, 9 | eqtrd 2768 | . . . . . 6 ⊢ (𝜑 → ((iEdg‘𝐺)‘𝐴) = 𝐸) |
11 | 3, 10 | neleqtrrd 2852 | . . . . 5 ⊢ (𝜑 → ¬ 𝐷 ∈ ((iEdg‘𝐺)‘𝐴)) |
12 | fveq2 6897 | . . . . . . . . 9 ⊢ (𝑥 = 𝐴 → ((iEdg‘𝐺)‘𝑥) = ((iEdg‘𝐺)‘𝐴)) | |
13 | 12 | eleq2d 2815 | . . . . . . . 8 ⊢ (𝑥 = 𝐴 → (𝐷 ∈ ((iEdg‘𝐺)‘𝑥) ↔ 𝐷 ∈ ((iEdg‘𝐺)‘𝐴))) |
14 | 13 | notbid 318 | . . . . . . 7 ⊢ (𝑥 = 𝐴 → (¬ 𝐷 ∈ ((iEdg‘𝐺)‘𝑥) ↔ ¬ 𝐷 ∈ ((iEdg‘𝐺)‘𝐴))) |
15 | 14 | ralsng 4678 | . . . . . 6 ⊢ (𝐴 ∈ 𝑋 → (∀𝑥 ∈ {𝐴} ¬ 𝐷 ∈ ((iEdg‘𝐺)‘𝑥) ↔ ¬ 𝐷 ∈ ((iEdg‘𝐺)‘𝐴))) |
16 | 6, 15 | syl 17 | . . . . 5 ⊢ (𝜑 → (∀𝑥 ∈ {𝐴} ¬ 𝐷 ∈ ((iEdg‘𝐺)‘𝑥) ↔ ¬ 𝐷 ∈ ((iEdg‘𝐺)‘𝐴))) |
17 | 11, 16 | mpbird 257 | . . . 4 ⊢ (𝜑 → ∀𝑥 ∈ {𝐴} ¬ 𝐷 ∈ ((iEdg‘𝐺)‘𝑥)) |
18 | 4 | dmeqd 5908 | . . . . . 6 ⊢ (𝜑 → dom (iEdg‘𝐺) = dom {〈𝐴, 𝐸〉}) |
19 | dmsnopg 6217 | . . . . . . 7 ⊢ (𝐸 ∈ 𝑌 → dom {〈𝐴, 𝐸〉} = {𝐴}) | |
20 | 7, 19 | syl 17 | . . . . . 6 ⊢ (𝜑 → dom {〈𝐴, 𝐸〉} = {𝐴}) |
21 | 18, 20 | eqtrd 2768 | . . . . 5 ⊢ (𝜑 → dom (iEdg‘𝐺) = {𝐴}) |
22 | 21 | raleqdv 3322 | . . . 4 ⊢ (𝜑 → (∀𝑥 ∈ dom (iEdg‘𝐺) ¬ 𝐷 ∈ ((iEdg‘𝐺)‘𝑥) ↔ ∀𝑥 ∈ {𝐴} ¬ 𝐷 ∈ ((iEdg‘𝐺)‘𝑥))) |
23 | 17, 22 | mpbird 257 | . . 3 ⊢ (𝜑 → ∀𝑥 ∈ dom (iEdg‘𝐺) ¬ 𝐷 ∈ ((iEdg‘𝐺)‘𝑥)) |
24 | ralnex 3069 | . . 3 ⊢ (∀𝑥 ∈ dom (iEdg‘𝐺) ¬ 𝐷 ∈ ((iEdg‘𝐺)‘𝑥) ↔ ¬ ∃𝑥 ∈ dom (iEdg‘𝐺)𝐷 ∈ ((iEdg‘𝐺)‘𝑥)) | |
25 | 23, 24 | sylib 217 | . 2 ⊢ (𝜑 → ¬ ∃𝑥 ∈ dom (iEdg‘𝐺)𝐷 ∈ ((iEdg‘𝐺)‘𝑥)) |
26 | 1hevtxdg0.d | . . . 4 ⊢ (𝜑 → 𝐷 ∈ 𝑉) | |
27 | 1hevtxdg0.v | . . . . 5 ⊢ (𝜑 → (Vtx‘𝐺) = 𝑉) | |
28 | 27 | eleq2d 2815 | . . . 4 ⊢ (𝜑 → (𝐷 ∈ (Vtx‘𝐺) ↔ 𝐷 ∈ 𝑉)) |
29 | 26, 28 | mpbird 257 | . . 3 ⊢ (𝜑 → 𝐷 ∈ (Vtx‘𝐺)) |
30 | eqid 2728 | . . . 4 ⊢ (Vtx‘𝐺) = (Vtx‘𝐺) | |
31 | eqid 2728 | . . . 4 ⊢ (iEdg‘𝐺) = (iEdg‘𝐺) | |
32 | eqid 2728 | . . . 4 ⊢ (VtxDeg‘𝐺) = (VtxDeg‘𝐺) | |
33 | 30, 31, 32 | vtxd0nedgb 29315 | . . 3 ⊢ (𝐷 ∈ (Vtx‘𝐺) → (((VtxDeg‘𝐺)‘𝐷) = 0 ↔ ¬ ∃𝑥 ∈ dom (iEdg‘𝐺)𝐷 ∈ ((iEdg‘𝐺)‘𝑥))) |
34 | 29, 33 | syl 17 | . 2 ⊢ (𝜑 → (((VtxDeg‘𝐺)‘𝐷) = 0 ↔ ¬ ∃𝑥 ∈ dom (iEdg‘𝐺)𝐷 ∈ ((iEdg‘𝐺)‘𝑥))) |
35 | 25, 34 | mpbird 257 | 1 ⊢ (𝜑 → ((VtxDeg‘𝐺)‘𝐷) = 0) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 = wceq 1534 ∈ wcel 2099 ∉ wnel 3043 ∀wral 3058 ∃wrex 3067 {csn 4629 〈cop 4635 dom cdm 5678 ‘cfv 6548 0cc0 11139 Vtxcvtx 28822 iEdgciedg 28823 VtxDegcvtxdg 29292 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2699 ax-rep 5285 ax-sep 5299 ax-nul 5306 ax-pow 5365 ax-pr 5429 ax-un 7740 ax-cnex 11195 ax-resscn 11196 ax-1cn 11197 ax-icn 11198 ax-addcl 11199 ax-addrcl 11200 ax-mulcl 11201 ax-mulrcl 11202 ax-mulcom 11203 ax-addass 11204 ax-mulass 11205 ax-distr 11206 ax-i2m1 11207 ax-1ne0 11208 ax-1rid 11209 ax-rnegex 11210 ax-rrecex 11211 ax-cnre 11212 ax-pre-lttri 11213 ax-pre-lttrn 11214 ax-pre-ltadd 11215 ax-pre-mulgt0 11216 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3or 1086 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2530 df-eu 2559 df-clab 2706 df-cleq 2720 df-clel 2806 df-nfc 2881 df-ne 2938 df-nel 3044 df-ral 3059 df-rex 3068 df-reu 3374 df-rab 3430 df-v 3473 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-pss 3966 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4909 df-int 4950 df-iun 4998 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5576 df-eprel 5582 df-po 5590 df-so 5591 df-fr 5633 df-we 5635 df-xp 5684 df-rel 5685 df-cnv 5686 df-co 5687 df-dm 5688 df-rn 5689 df-res 5690 df-ima 5691 df-pred 6305 df-ord 6372 df-on 6373 df-lim 6374 df-suc 6375 df-iota 6500 df-fun 6550 df-fn 6551 df-f 6552 df-f1 6553 df-fo 6554 df-f1o 6555 df-fv 6556 df-riota 7376 df-ov 7423 df-oprab 7424 df-mpo 7425 df-om 7871 df-1st 7993 df-2nd 7994 df-frecs 8287 df-wrecs 8318 df-recs 8392 df-rdg 8431 df-1o 8487 df-er 8725 df-en 8965 df-dom 8966 df-sdom 8967 df-fin 8968 df-card 9963 df-pnf 11281 df-mnf 11282 df-xr 11283 df-ltxr 11284 df-le 11285 df-sub 11477 df-neg 11478 df-nn 12244 df-n0 12504 df-xnn0 12576 df-z 12590 df-uz 12854 df-xadd 13126 df-fz 13518 df-hash 14323 df-vtxdg 29293 |
This theorem is referenced by: p1evtxdeq 29340 eupth2lem3lem6 30056 |
Copyright terms: Public domain | W3C validator |