| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 1hevtxdg0 | Structured version Visualization version GIF version | ||
| Description: The vertex degree of vertex 𝐷 in a graph 𝐺 with only one hyperedge 𝐸 is 0 if 𝐷 is not incident with the edge 𝐸. (Contributed by AV, 2-Mar-2021.) |
| Ref | Expression |
|---|---|
| 1hevtxdg0.i | ⊢ (𝜑 → (iEdg‘𝐺) = {〈𝐴, 𝐸〉}) |
| 1hevtxdg0.v | ⊢ (𝜑 → (Vtx‘𝐺) = 𝑉) |
| 1hevtxdg0.a | ⊢ (𝜑 → 𝐴 ∈ 𝑋) |
| 1hevtxdg0.d | ⊢ (𝜑 → 𝐷 ∈ 𝑉) |
| 1hevtxdg0.e | ⊢ (𝜑 → 𝐸 ∈ 𝑌) |
| 1hevtxdg0.n | ⊢ (𝜑 → 𝐷 ∉ 𝐸) |
| Ref | Expression |
|---|---|
| 1hevtxdg0 | ⊢ (𝜑 → ((VtxDeg‘𝐺)‘𝐷) = 0) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 1hevtxdg0.n | . . . . . . 7 ⊢ (𝜑 → 𝐷 ∉ 𝐸) | |
| 2 | df-nel 3037 | . . . . . . 7 ⊢ (𝐷 ∉ 𝐸 ↔ ¬ 𝐷 ∈ 𝐸) | |
| 3 | 1, 2 | sylib 218 | . . . . . 6 ⊢ (𝜑 → ¬ 𝐷 ∈ 𝐸) |
| 4 | 1hevtxdg0.i | . . . . . . . 8 ⊢ (𝜑 → (iEdg‘𝐺) = {〈𝐴, 𝐸〉}) | |
| 5 | 4 | fveq1d 6878 | . . . . . . 7 ⊢ (𝜑 → ((iEdg‘𝐺)‘𝐴) = ({〈𝐴, 𝐸〉}‘𝐴)) |
| 6 | 1hevtxdg0.a | . . . . . . . 8 ⊢ (𝜑 → 𝐴 ∈ 𝑋) | |
| 7 | 1hevtxdg0.e | . . . . . . . 8 ⊢ (𝜑 → 𝐸 ∈ 𝑌) | |
| 8 | fvsng 7172 | . . . . . . . 8 ⊢ ((𝐴 ∈ 𝑋 ∧ 𝐸 ∈ 𝑌) → ({〈𝐴, 𝐸〉}‘𝐴) = 𝐸) | |
| 9 | 6, 7, 8 | syl2anc 584 | . . . . . . 7 ⊢ (𝜑 → ({〈𝐴, 𝐸〉}‘𝐴) = 𝐸) |
| 10 | 5, 9 | eqtrd 2770 | . . . . . 6 ⊢ (𝜑 → ((iEdg‘𝐺)‘𝐴) = 𝐸) |
| 11 | 3, 10 | neleqtrrd 2857 | . . . . 5 ⊢ (𝜑 → ¬ 𝐷 ∈ ((iEdg‘𝐺)‘𝐴)) |
| 12 | fveq2 6876 | . . . . . . . . 9 ⊢ (𝑥 = 𝐴 → ((iEdg‘𝐺)‘𝑥) = ((iEdg‘𝐺)‘𝐴)) | |
| 13 | 12 | eleq2d 2820 | . . . . . . . 8 ⊢ (𝑥 = 𝐴 → (𝐷 ∈ ((iEdg‘𝐺)‘𝑥) ↔ 𝐷 ∈ ((iEdg‘𝐺)‘𝐴))) |
| 14 | 13 | notbid 318 | . . . . . . 7 ⊢ (𝑥 = 𝐴 → (¬ 𝐷 ∈ ((iEdg‘𝐺)‘𝑥) ↔ ¬ 𝐷 ∈ ((iEdg‘𝐺)‘𝐴))) |
| 15 | 14 | ralsng 4651 | . . . . . 6 ⊢ (𝐴 ∈ 𝑋 → (∀𝑥 ∈ {𝐴} ¬ 𝐷 ∈ ((iEdg‘𝐺)‘𝑥) ↔ ¬ 𝐷 ∈ ((iEdg‘𝐺)‘𝐴))) |
| 16 | 6, 15 | syl 17 | . . . . 5 ⊢ (𝜑 → (∀𝑥 ∈ {𝐴} ¬ 𝐷 ∈ ((iEdg‘𝐺)‘𝑥) ↔ ¬ 𝐷 ∈ ((iEdg‘𝐺)‘𝐴))) |
| 17 | 11, 16 | mpbird 257 | . . . 4 ⊢ (𝜑 → ∀𝑥 ∈ {𝐴} ¬ 𝐷 ∈ ((iEdg‘𝐺)‘𝑥)) |
| 18 | 4 | dmeqd 5885 | . . . . 5 ⊢ (𝜑 → dom (iEdg‘𝐺) = dom {〈𝐴, 𝐸〉}) |
| 19 | dmsnopg 6202 | . . . . . 6 ⊢ (𝐸 ∈ 𝑌 → dom {〈𝐴, 𝐸〉} = {𝐴}) | |
| 20 | 7, 19 | syl 17 | . . . . 5 ⊢ (𝜑 → dom {〈𝐴, 𝐸〉} = {𝐴}) |
| 21 | 18, 20 | eqtrd 2770 | . . . 4 ⊢ (𝜑 → dom (iEdg‘𝐺) = {𝐴}) |
| 22 | 17, 21 | raleqtrrdv 3309 | . . 3 ⊢ (𝜑 → ∀𝑥 ∈ dom (iEdg‘𝐺) ¬ 𝐷 ∈ ((iEdg‘𝐺)‘𝑥)) |
| 23 | ralnex 3062 | . . 3 ⊢ (∀𝑥 ∈ dom (iEdg‘𝐺) ¬ 𝐷 ∈ ((iEdg‘𝐺)‘𝑥) ↔ ¬ ∃𝑥 ∈ dom (iEdg‘𝐺)𝐷 ∈ ((iEdg‘𝐺)‘𝑥)) | |
| 24 | 22, 23 | sylib 218 | . 2 ⊢ (𝜑 → ¬ ∃𝑥 ∈ dom (iEdg‘𝐺)𝐷 ∈ ((iEdg‘𝐺)‘𝑥)) |
| 25 | 1hevtxdg0.d | . . . 4 ⊢ (𝜑 → 𝐷 ∈ 𝑉) | |
| 26 | 1hevtxdg0.v | . . . . 5 ⊢ (𝜑 → (Vtx‘𝐺) = 𝑉) | |
| 27 | 26 | eleq2d 2820 | . . . 4 ⊢ (𝜑 → (𝐷 ∈ (Vtx‘𝐺) ↔ 𝐷 ∈ 𝑉)) |
| 28 | 25, 27 | mpbird 257 | . . 3 ⊢ (𝜑 → 𝐷 ∈ (Vtx‘𝐺)) |
| 29 | eqid 2735 | . . . 4 ⊢ (Vtx‘𝐺) = (Vtx‘𝐺) | |
| 30 | eqid 2735 | . . . 4 ⊢ (iEdg‘𝐺) = (iEdg‘𝐺) | |
| 31 | eqid 2735 | . . . 4 ⊢ (VtxDeg‘𝐺) = (VtxDeg‘𝐺) | |
| 32 | 29, 30, 31 | vtxd0nedgb 29468 | . . 3 ⊢ (𝐷 ∈ (Vtx‘𝐺) → (((VtxDeg‘𝐺)‘𝐷) = 0 ↔ ¬ ∃𝑥 ∈ dom (iEdg‘𝐺)𝐷 ∈ ((iEdg‘𝐺)‘𝑥))) |
| 33 | 28, 32 | syl 17 | . 2 ⊢ (𝜑 → (((VtxDeg‘𝐺)‘𝐷) = 0 ↔ ¬ ∃𝑥 ∈ dom (iEdg‘𝐺)𝐷 ∈ ((iEdg‘𝐺)‘𝑥))) |
| 34 | 24, 33 | mpbird 257 | 1 ⊢ (𝜑 → ((VtxDeg‘𝐺)‘𝐷) = 0) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 = wceq 1540 ∈ wcel 2108 ∉ wnel 3036 ∀wral 3051 ∃wrex 3060 {csn 4601 〈cop 4607 dom cdm 5654 ‘cfv 6531 0cc0 11129 Vtxcvtx 28975 iEdgciedg 28976 VtxDegcvtxdg 29445 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-rep 5249 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7729 ax-cnex 11185 ax-resscn 11186 ax-1cn 11187 ax-icn 11188 ax-addcl 11189 ax-addrcl 11190 ax-mulcl 11191 ax-mulrcl 11192 ax-mulcom 11193 ax-addass 11194 ax-mulass 11195 ax-distr 11196 ax-i2m1 11197 ax-1ne0 11198 ax-1rid 11199 ax-rnegex 11200 ax-rrecex 11201 ax-cnre 11202 ax-pre-lttri 11203 ax-pre-lttrn 11204 ax-pre-ltadd 11205 ax-pre-mulgt0 11206 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-nel 3037 df-ral 3052 df-rex 3061 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-pss 3946 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-int 4923 df-iun 4969 df-br 5120 df-opab 5182 df-mpt 5202 df-tr 5230 df-id 5548 df-eprel 5553 df-po 5561 df-so 5562 df-fr 5606 df-we 5608 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-pred 6290 df-ord 6355 df-on 6356 df-lim 6357 df-suc 6358 df-iota 6484 df-fun 6533 df-fn 6534 df-f 6535 df-f1 6536 df-fo 6537 df-f1o 6538 df-fv 6539 df-riota 7362 df-ov 7408 df-oprab 7409 df-mpo 7410 df-om 7862 df-1st 7988 df-2nd 7989 df-frecs 8280 df-wrecs 8311 df-recs 8385 df-rdg 8424 df-1o 8480 df-er 8719 df-en 8960 df-dom 8961 df-sdom 8962 df-fin 8963 df-card 9953 df-pnf 11271 df-mnf 11272 df-xr 11273 df-ltxr 11274 df-le 11275 df-sub 11468 df-neg 11469 df-nn 12241 df-n0 12502 df-xnn0 12575 df-z 12589 df-uz 12853 df-xadd 13129 df-fz 13525 df-hash 14349 df-vtxdg 29446 |
| This theorem is referenced by: p1evtxdeq 29493 eupth2lem3lem6 30214 |
| Copyright terms: Public domain | W3C validator |