| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 1hevtxdg0 | Structured version Visualization version GIF version | ||
| Description: The vertex degree of vertex 𝐷 in a graph 𝐺 with only one hyperedge 𝐸 is 0 if 𝐷 is not incident with the edge 𝐸. (Contributed by AV, 2-Mar-2021.) |
| Ref | Expression |
|---|---|
| 1hevtxdg0.i | ⊢ (𝜑 → (iEdg‘𝐺) = {〈𝐴, 𝐸〉}) |
| 1hevtxdg0.v | ⊢ (𝜑 → (Vtx‘𝐺) = 𝑉) |
| 1hevtxdg0.a | ⊢ (𝜑 → 𝐴 ∈ 𝑋) |
| 1hevtxdg0.d | ⊢ (𝜑 → 𝐷 ∈ 𝑉) |
| 1hevtxdg0.e | ⊢ (𝜑 → 𝐸 ∈ 𝑌) |
| 1hevtxdg0.n | ⊢ (𝜑 → 𝐷 ∉ 𝐸) |
| Ref | Expression |
|---|---|
| 1hevtxdg0 | ⊢ (𝜑 → ((VtxDeg‘𝐺)‘𝐷) = 0) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 1hevtxdg0.n | . . . . . . 7 ⊢ (𝜑 → 𝐷 ∉ 𝐸) | |
| 2 | df-nel 3034 | . . . . . . 7 ⊢ (𝐷 ∉ 𝐸 ↔ ¬ 𝐷 ∈ 𝐸) | |
| 3 | 1, 2 | sylib 218 | . . . . . 6 ⊢ (𝜑 → ¬ 𝐷 ∈ 𝐸) |
| 4 | 1hevtxdg0.i | . . . . . . . 8 ⊢ (𝜑 → (iEdg‘𝐺) = {〈𝐴, 𝐸〉}) | |
| 5 | 4 | fveq1d 6830 | . . . . . . 7 ⊢ (𝜑 → ((iEdg‘𝐺)‘𝐴) = ({〈𝐴, 𝐸〉}‘𝐴)) |
| 6 | 1hevtxdg0.a | . . . . . . . 8 ⊢ (𝜑 → 𝐴 ∈ 𝑋) | |
| 7 | 1hevtxdg0.e | . . . . . . . 8 ⊢ (𝜑 → 𝐸 ∈ 𝑌) | |
| 8 | fvsng 7120 | . . . . . . . 8 ⊢ ((𝐴 ∈ 𝑋 ∧ 𝐸 ∈ 𝑌) → ({〈𝐴, 𝐸〉}‘𝐴) = 𝐸) | |
| 9 | 6, 7, 8 | syl2anc 584 | . . . . . . 7 ⊢ (𝜑 → ({〈𝐴, 𝐸〉}‘𝐴) = 𝐸) |
| 10 | 5, 9 | eqtrd 2768 | . . . . . 6 ⊢ (𝜑 → ((iEdg‘𝐺)‘𝐴) = 𝐸) |
| 11 | 3, 10 | neleqtrrd 2856 | . . . . 5 ⊢ (𝜑 → ¬ 𝐷 ∈ ((iEdg‘𝐺)‘𝐴)) |
| 12 | fveq2 6828 | . . . . . . . . 9 ⊢ (𝑥 = 𝐴 → ((iEdg‘𝐺)‘𝑥) = ((iEdg‘𝐺)‘𝐴)) | |
| 13 | 12 | eleq2d 2819 | . . . . . . . 8 ⊢ (𝑥 = 𝐴 → (𝐷 ∈ ((iEdg‘𝐺)‘𝑥) ↔ 𝐷 ∈ ((iEdg‘𝐺)‘𝐴))) |
| 14 | 13 | notbid 318 | . . . . . . 7 ⊢ (𝑥 = 𝐴 → (¬ 𝐷 ∈ ((iEdg‘𝐺)‘𝑥) ↔ ¬ 𝐷 ∈ ((iEdg‘𝐺)‘𝐴))) |
| 15 | 14 | ralsng 4627 | . . . . . 6 ⊢ (𝐴 ∈ 𝑋 → (∀𝑥 ∈ {𝐴} ¬ 𝐷 ∈ ((iEdg‘𝐺)‘𝑥) ↔ ¬ 𝐷 ∈ ((iEdg‘𝐺)‘𝐴))) |
| 16 | 6, 15 | syl 17 | . . . . 5 ⊢ (𝜑 → (∀𝑥 ∈ {𝐴} ¬ 𝐷 ∈ ((iEdg‘𝐺)‘𝑥) ↔ ¬ 𝐷 ∈ ((iEdg‘𝐺)‘𝐴))) |
| 17 | 11, 16 | mpbird 257 | . . . 4 ⊢ (𝜑 → ∀𝑥 ∈ {𝐴} ¬ 𝐷 ∈ ((iEdg‘𝐺)‘𝑥)) |
| 18 | 4 | dmeqd 5849 | . . . . 5 ⊢ (𝜑 → dom (iEdg‘𝐺) = dom {〈𝐴, 𝐸〉}) |
| 19 | dmsnopg 6165 | . . . . . 6 ⊢ (𝐸 ∈ 𝑌 → dom {〈𝐴, 𝐸〉} = {𝐴}) | |
| 20 | 7, 19 | syl 17 | . . . . 5 ⊢ (𝜑 → dom {〈𝐴, 𝐸〉} = {𝐴}) |
| 21 | 18, 20 | eqtrd 2768 | . . . 4 ⊢ (𝜑 → dom (iEdg‘𝐺) = {𝐴}) |
| 22 | 17, 21 | raleqtrrdv 3297 | . . 3 ⊢ (𝜑 → ∀𝑥 ∈ dom (iEdg‘𝐺) ¬ 𝐷 ∈ ((iEdg‘𝐺)‘𝑥)) |
| 23 | ralnex 3059 | . . 3 ⊢ (∀𝑥 ∈ dom (iEdg‘𝐺) ¬ 𝐷 ∈ ((iEdg‘𝐺)‘𝑥) ↔ ¬ ∃𝑥 ∈ dom (iEdg‘𝐺)𝐷 ∈ ((iEdg‘𝐺)‘𝑥)) | |
| 24 | 22, 23 | sylib 218 | . 2 ⊢ (𝜑 → ¬ ∃𝑥 ∈ dom (iEdg‘𝐺)𝐷 ∈ ((iEdg‘𝐺)‘𝑥)) |
| 25 | 1hevtxdg0.d | . . . 4 ⊢ (𝜑 → 𝐷 ∈ 𝑉) | |
| 26 | 1hevtxdg0.v | . . . . 5 ⊢ (𝜑 → (Vtx‘𝐺) = 𝑉) | |
| 27 | 26 | eleq2d 2819 | . . . 4 ⊢ (𝜑 → (𝐷 ∈ (Vtx‘𝐺) ↔ 𝐷 ∈ 𝑉)) |
| 28 | 25, 27 | mpbird 257 | . . 3 ⊢ (𝜑 → 𝐷 ∈ (Vtx‘𝐺)) |
| 29 | eqid 2733 | . . . 4 ⊢ (Vtx‘𝐺) = (Vtx‘𝐺) | |
| 30 | eqid 2733 | . . . 4 ⊢ (iEdg‘𝐺) = (iEdg‘𝐺) | |
| 31 | eqid 2733 | . . . 4 ⊢ (VtxDeg‘𝐺) = (VtxDeg‘𝐺) | |
| 32 | 29, 30, 31 | vtxd0nedgb 29469 | . . 3 ⊢ (𝐷 ∈ (Vtx‘𝐺) → (((VtxDeg‘𝐺)‘𝐷) = 0 ↔ ¬ ∃𝑥 ∈ dom (iEdg‘𝐺)𝐷 ∈ ((iEdg‘𝐺)‘𝑥))) |
| 33 | 28, 32 | syl 17 | . 2 ⊢ (𝜑 → (((VtxDeg‘𝐺)‘𝐷) = 0 ↔ ¬ ∃𝑥 ∈ dom (iEdg‘𝐺)𝐷 ∈ ((iEdg‘𝐺)‘𝑥))) |
| 34 | 24, 33 | mpbird 257 | 1 ⊢ (𝜑 → ((VtxDeg‘𝐺)‘𝐷) = 0) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 = wceq 1541 ∈ wcel 2113 ∉ wnel 3033 ∀wral 3048 ∃wrex 3057 {csn 4575 〈cop 4581 dom cdm 5619 ‘cfv 6486 0cc0 11013 Vtxcvtx 28976 iEdgciedg 28977 VtxDegcvtxdg 29446 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-rep 5219 ax-sep 5236 ax-nul 5246 ax-pow 5305 ax-pr 5372 ax-un 7674 ax-cnex 11069 ax-resscn 11070 ax-1cn 11071 ax-icn 11072 ax-addcl 11073 ax-addrcl 11074 ax-mulcl 11075 ax-mulrcl 11076 ax-mulcom 11077 ax-addass 11078 ax-mulass 11079 ax-distr 11080 ax-i2m1 11081 ax-1ne0 11082 ax-1rid 11083 ax-rnegex 11084 ax-rrecex 11085 ax-cnre 11086 ax-pre-lttri 11087 ax-pre-lttrn 11088 ax-pre-ltadd 11089 ax-pre-mulgt0 11090 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-nel 3034 df-ral 3049 df-rex 3058 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3918 df-nul 4283 df-if 4475 df-pw 4551 df-sn 4576 df-pr 4578 df-op 4582 df-uni 4859 df-int 4898 df-iun 4943 df-br 5094 df-opab 5156 df-mpt 5175 df-tr 5201 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-pred 6253 df-ord 6314 df-on 6315 df-lim 6316 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-riota 7309 df-ov 7355 df-oprab 7356 df-mpo 7357 df-om 7803 df-1st 7927 df-2nd 7928 df-frecs 8217 df-wrecs 8248 df-recs 8297 df-rdg 8335 df-1o 8391 df-er 8628 df-en 8876 df-dom 8877 df-sdom 8878 df-fin 8879 df-card 9839 df-pnf 11155 df-mnf 11156 df-xr 11157 df-ltxr 11158 df-le 11159 df-sub 11353 df-neg 11354 df-nn 12133 df-n0 12389 df-xnn0 12462 df-z 12476 df-uz 12739 df-xadd 13014 df-fz 13410 df-hash 14240 df-vtxdg 29447 |
| This theorem is referenced by: p1evtxdeq 29494 eupth2lem3lem6 30215 |
| Copyright terms: Public domain | W3C validator |