Step | Hyp | Ref
| Expression |
1 | | 1hevtxdg0.n |
. . . . . . 7
β’ (π β π· β πΈ) |
2 | | df-nel 3046 |
. . . . . . 7
β’ (π· β πΈ β Β¬ π· β πΈ) |
3 | 1, 2 | sylib 217 |
. . . . . 6
β’ (π β Β¬ π· β πΈ) |
4 | | 1hevtxdg0.i |
. . . . . . . 8
β’ (π β (iEdgβπΊ) = {β¨π΄, πΈβ©}) |
5 | 4 | fveq1d 6893 |
. . . . . . 7
β’ (π β ((iEdgβπΊ)βπ΄) = ({β¨π΄, πΈβ©}βπ΄)) |
6 | | 1hevtxdg0.a |
. . . . . . . 8
β’ (π β π΄ β π) |
7 | | 1hevtxdg0.e |
. . . . . . . 8
β’ (π β πΈ β π) |
8 | | fvsng 7180 |
. . . . . . . 8
β’ ((π΄ β π β§ πΈ β π) β ({β¨π΄, πΈβ©}βπ΄) = πΈ) |
9 | 6, 7, 8 | syl2anc 583 |
. . . . . . 7
β’ (π β ({β¨π΄, πΈβ©}βπ΄) = πΈ) |
10 | 5, 9 | eqtrd 2771 |
. . . . . 6
β’ (π β ((iEdgβπΊ)βπ΄) = πΈ) |
11 | 3, 10 | neleqtrrd 2855 |
. . . . 5
β’ (π β Β¬ π· β ((iEdgβπΊ)βπ΄)) |
12 | | fveq2 6891 |
. . . . . . . . 9
β’ (π₯ = π΄ β ((iEdgβπΊ)βπ₯) = ((iEdgβπΊ)βπ΄)) |
13 | 12 | eleq2d 2818 |
. . . . . . . 8
β’ (π₯ = π΄ β (π· β ((iEdgβπΊ)βπ₯) β π· β ((iEdgβπΊ)βπ΄))) |
14 | 13 | notbid 318 |
. . . . . . 7
β’ (π₯ = π΄ β (Β¬ π· β ((iEdgβπΊ)βπ₯) β Β¬ π· β ((iEdgβπΊ)βπ΄))) |
15 | 14 | ralsng 4677 |
. . . . . 6
β’ (π΄ β π β (βπ₯ β {π΄} Β¬ π· β ((iEdgβπΊ)βπ₯) β Β¬ π· β ((iEdgβπΊ)βπ΄))) |
16 | 6, 15 | syl 17 |
. . . . 5
β’ (π β (βπ₯ β {π΄} Β¬ π· β ((iEdgβπΊ)βπ₯) β Β¬ π· β ((iEdgβπΊ)βπ΄))) |
17 | 11, 16 | mpbird 257 |
. . . 4
β’ (π β βπ₯ β {π΄} Β¬ π· β ((iEdgβπΊ)βπ₯)) |
18 | 4 | dmeqd 5905 |
. . . . . 6
β’ (π β dom (iEdgβπΊ) = dom {β¨π΄, πΈβ©}) |
19 | | dmsnopg 6212 |
. . . . . . 7
β’ (πΈ β π β dom {β¨π΄, πΈβ©} = {π΄}) |
20 | 7, 19 | syl 17 |
. . . . . 6
β’ (π β dom {β¨π΄, πΈβ©} = {π΄}) |
21 | 18, 20 | eqtrd 2771 |
. . . . 5
β’ (π β dom (iEdgβπΊ) = {π΄}) |
22 | 21 | raleqdv 3324 |
. . . 4
β’ (π β (βπ₯ β dom (iEdgβπΊ) Β¬ π· β ((iEdgβπΊ)βπ₯) β βπ₯ β {π΄} Β¬ π· β ((iEdgβπΊ)βπ₯))) |
23 | 17, 22 | mpbird 257 |
. . 3
β’ (π β βπ₯ β dom (iEdgβπΊ) Β¬ π· β ((iEdgβπΊ)βπ₯)) |
24 | | ralnex 3071 |
. . 3
β’
(βπ₯ β
dom (iEdgβπΊ) Β¬
π· β ((iEdgβπΊ)βπ₯) β Β¬ βπ₯ β dom (iEdgβπΊ)π· β ((iEdgβπΊ)βπ₯)) |
25 | 23, 24 | sylib 217 |
. 2
β’ (π β Β¬ βπ₯ β dom (iEdgβπΊ)π· β ((iEdgβπΊ)βπ₯)) |
26 | | 1hevtxdg0.d |
. . . 4
β’ (π β π· β π) |
27 | | 1hevtxdg0.v |
. . . . 5
β’ (π β (VtxβπΊ) = π) |
28 | 27 | eleq2d 2818 |
. . . 4
β’ (π β (π· β (VtxβπΊ) β π· β π)) |
29 | 26, 28 | mpbird 257 |
. . 3
β’ (π β π· β (VtxβπΊ)) |
30 | | eqid 2731 |
. . . 4
β’
(VtxβπΊ) =
(VtxβπΊ) |
31 | | eqid 2731 |
. . . 4
β’
(iEdgβπΊ) =
(iEdgβπΊ) |
32 | | eqid 2731 |
. . . 4
β’
(VtxDegβπΊ) =
(VtxDegβπΊ) |
33 | 30, 31, 32 | vtxd0nedgb 29013 |
. . 3
β’ (π· β (VtxβπΊ) β (((VtxDegβπΊ)βπ·) = 0 β Β¬ βπ₯ β dom (iEdgβπΊ)π· β ((iEdgβπΊ)βπ₯))) |
34 | 29, 33 | syl 17 |
. 2
β’ (π β (((VtxDegβπΊ)βπ·) = 0 β Β¬ βπ₯ β dom (iEdgβπΊ)π· β ((iEdgβπΊ)βπ₯))) |
35 | 25, 34 | mpbird 257 |
1
β’ (π β ((VtxDegβπΊ)βπ·) = 0) |