MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  1hevtxdg0 Structured version   Visualization version   GIF version

Theorem 1hevtxdg0 27775
Description: The vertex degree of vertex 𝐷 in a graph 𝐺 with only one hyperedge 𝐸 is 0 if 𝐷 is not incident with the edge 𝐸. (Contributed by AV, 2-Mar-2021.)
Hypotheses
Ref Expression
1hevtxdg0.i (𝜑 → (iEdg‘𝐺) = {⟨𝐴, 𝐸⟩})
1hevtxdg0.v (𝜑 → (Vtx‘𝐺) = 𝑉)
1hevtxdg0.a (𝜑𝐴𝑋)
1hevtxdg0.d (𝜑𝐷𝑉)
1hevtxdg0.e (𝜑𝐸𝑌)
1hevtxdg0.n (𝜑𝐷𝐸)
Assertion
Ref Expression
1hevtxdg0 (𝜑 → ((VtxDeg‘𝐺)‘𝐷) = 0)

Proof of Theorem 1hevtxdg0
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 1hevtxdg0.n . . . . . . 7 (𝜑𝐷𝐸)
2 df-nel 3049 . . . . . . 7 (𝐷𝐸 ↔ ¬ 𝐷𝐸)
31, 2sylib 217 . . . . . 6 (𝜑 → ¬ 𝐷𝐸)
4 1hevtxdg0.i . . . . . . . 8 (𝜑 → (iEdg‘𝐺) = {⟨𝐴, 𝐸⟩})
54fveq1d 6758 . . . . . . 7 (𝜑 → ((iEdg‘𝐺)‘𝐴) = ({⟨𝐴, 𝐸⟩}‘𝐴))
6 1hevtxdg0.a . . . . . . . 8 (𝜑𝐴𝑋)
7 1hevtxdg0.e . . . . . . . 8 (𝜑𝐸𝑌)
8 fvsng 7034 . . . . . . . 8 ((𝐴𝑋𝐸𝑌) → ({⟨𝐴, 𝐸⟩}‘𝐴) = 𝐸)
96, 7, 8syl2anc 583 . . . . . . 7 (𝜑 → ({⟨𝐴, 𝐸⟩}‘𝐴) = 𝐸)
105, 9eqtrd 2778 . . . . . 6 (𝜑 → ((iEdg‘𝐺)‘𝐴) = 𝐸)
113, 10neleqtrrd 2861 . . . . 5 (𝜑 → ¬ 𝐷 ∈ ((iEdg‘𝐺)‘𝐴))
12 fveq2 6756 . . . . . . . . 9 (𝑥 = 𝐴 → ((iEdg‘𝐺)‘𝑥) = ((iEdg‘𝐺)‘𝐴))
1312eleq2d 2824 . . . . . . . 8 (𝑥 = 𝐴 → (𝐷 ∈ ((iEdg‘𝐺)‘𝑥) ↔ 𝐷 ∈ ((iEdg‘𝐺)‘𝐴)))
1413notbid 317 . . . . . . 7 (𝑥 = 𝐴 → (¬ 𝐷 ∈ ((iEdg‘𝐺)‘𝑥) ↔ ¬ 𝐷 ∈ ((iEdg‘𝐺)‘𝐴)))
1514ralsng 4606 . . . . . 6 (𝐴𝑋 → (∀𝑥 ∈ {𝐴} ¬ 𝐷 ∈ ((iEdg‘𝐺)‘𝑥) ↔ ¬ 𝐷 ∈ ((iEdg‘𝐺)‘𝐴)))
166, 15syl 17 . . . . 5 (𝜑 → (∀𝑥 ∈ {𝐴} ¬ 𝐷 ∈ ((iEdg‘𝐺)‘𝑥) ↔ ¬ 𝐷 ∈ ((iEdg‘𝐺)‘𝐴)))
1711, 16mpbird 256 . . . 4 (𝜑 → ∀𝑥 ∈ {𝐴} ¬ 𝐷 ∈ ((iEdg‘𝐺)‘𝑥))
184dmeqd 5803 . . . . . 6 (𝜑 → dom (iEdg‘𝐺) = dom {⟨𝐴, 𝐸⟩})
19 dmsnopg 6105 . . . . . . 7 (𝐸𝑌 → dom {⟨𝐴, 𝐸⟩} = {𝐴})
207, 19syl 17 . . . . . 6 (𝜑 → dom {⟨𝐴, 𝐸⟩} = {𝐴})
2118, 20eqtrd 2778 . . . . 5 (𝜑 → dom (iEdg‘𝐺) = {𝐴})
2221raleqdv 3339 . . . 4 (𝜑 → (∀𝑥 ∈ dom (iEdg‘𝐺) ¬ 𝐷 ∈ ((iEdg‘𝐺)‘𝑥) ↔ ∀𝑥 ∈ {𝐴} ¬ 𝐷 ∈ ((iEdg‘𝐺)‘𝑥)))
2317, 22mpbird 256 . . 3 (𝜑 → ∀𝑥 ∈ dom (iEdg‘𝐺) ¬ 𝐷 ∈ ((iEdg‘𝐺)‘𝑥))
24 ralnex 3163 . . 3 (∀𝑥 ∈ dom (iEdg‘𝐺) ¬ 𝐷 ∈ ((iEdg‘𝐺)‘𝑥) ↔ ¬ ∃𝑥 ∈ dom (iEdg‘𝐺)𝐷 ∈ ((iEdg‘𝐺)‘𝑥))
2523, 24sylib 217 . 2 (𝜑 → ¬ ∃𝑥 ∈ dom (iEdg‘𝐺)𝐷 ∈ ((iEdg‘𝐺)‘𝑥))
26 1hevtxdg0.d . . . 4 (𝜑𝐷𝑉)
27 1hevtxdg0.v . . . . 5 (𝜑 → (Vtx‘𝐺) = 𝑉)
2827eleq2d 2824 . . . 4 (𝜑 → (𝐷 ∈ (Vtx‘𝐺) ↔ 𝐷𝑉))
2926, 28mpbird 256 . . 3 (𝜑𝐷 ∈ (Vtx‘𝐺))
30 eqid 2738 . . . 4 (Vtx‘𝐺) = (Vtx‘𝐺)
31 eqid 2738 . . . 4 (iEdg‘𝐺) = (iEdg‘𝐺)
32 eqid 2738 . . . 4 (VtxDeg‘𝐺) = (VtxDeg‘𝐺)
3330, 31, 32vtxd0nedgb 27758 . . 3 (𝐷 ∈ (Vtx‘𝐺) → (((VtxDeg‘𝐺)‘𝐷) = 0 ↔ ¬ ∃𝑥 ∈ dom (iEdg‘𝐺)𝐷 ∈ ((iEdg‘𝐺)‘𝑥)))
3429, 33syl 17 . 2 (𝜑 → (((VtxDeg‘𝐺)‘𝐷) = 0 ↔ ¬ ∃𝑥 ∈ dom (iEdg‘𝐺)𝐷 ∈ ((iEdg‘𝐺)‘𝑥)))
3525, 34mpbird 256 1 (𝜑 → ((VtxDeg‘𝐺)‘𝐷) = 0)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205   = wceq 1539  wcel 2108  wnel 3048  wral 3063  wrex 3064  {csn 4558  cop 4564  dom cdm 5580  cfv 6418  0cc0 10802  Vtxcvtx 27269  iEdgciedg 27270  VtxDegcvtxdg 27735
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-int 4877  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-1st 7804  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-1o 8267  df-er 8456  df-en 8692  df-dom 8693  df-sdom 8694  df-fin 8695  df-card 9628  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-nn 11904  df-n0 12164  df-xnn0 12236  df-z 12250  df-uz 12512  df-xadd 12778  df-fz 13169  df-hash 13973  df-vtxdg 27736
This theorem is referenced by:  p1evtxdeq  27783  eupth2lem3lem6  28498
  Copyright terms: Public domain W3C validator