| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 1hevtxdg0 | Structured version Visualization version GIF version | ||
| Description: The vertex degree of vertex 𝐷 in a graph 𝐺 with only one hyperedge 𝐸 is 0 if 𝐷 is not incident with the edge 𝐸. (Contributed by AV, 2-Mar-2021.) |
| Ref | Expression |
|---|---|
| 1hevtxdg0.i | ⊢ (𝜑 → (iEdg‘𝐺) = {〈𝐴, 𝐸〉}) |
| 1hevtxdg0.v | ⊢ (𝜑 → (Vtx‘𝐺) = 𝑉) |
| 1hevtxdg0.a | ⊢ (𝜑 → 𝐴 ∈ 𝑋) |
| 1hevtxdg0.d | ⊢ (𝜑 → 𝐷 ∈ 𝑉) |
| 1hevtxdg0.e | ⊢ (𝜑 → 𝐸 ∈ 𝑌) |
| 1hevtxdg0.n | ⊢ (𝜑 → 𝐷 ∉ 𝐸) |
| Ref | Expression |
|---|---|
| 1hevtxdg0 | ⊢ (𝜑 → ((VtxDeg‘𝐺)‘𝐷) = 0) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 1hevtxdg0.n | . . . . . . 7 ⊢ (𝜑 → 𝐷 ∉ 𝐸) | |
| 2 | df-nel 3033 | . . . . . . 7 ⊢ (𝐷 ∉ 𝐸 ↔ ¬ 𝐷 ∈ 𝐸) | |
| 3 | 1, 2 | sylib 218 | . . . . . 6 ⊢ (𝜑 → ¬ 𝐷 ∈ 𝐸) |
| 4 | 1hevtxdg0.i | . . . . . . . 8 ⊢ (𝜑 → (iEdg‘𝐺) = {〈𝐴, 𝐸〉}) | |
| 5 | 4 | fveq1d 6824 | . . . . . . 7 ⊢ (𝜑 → ((iEdg‘𝐺)‘𝐴) = ({〈𝐴, 𝐸〉}‘𝐴)) |
| 6 | 1hevtxdg0.a | . . . . . . . 8 ⊢ (𝜑 → 𝐴 ∈ 𝑋) | |
| 7 | 1hevtxdg0.e | . . . . . . . 8 ⊢ (𝜑 → 𝐸 ∈ 𝑌) | |
| 8 | fvsng 7114 | . . . . . . . 8 ⊢ ((𝐴 ∈ 𝑋 ∧ 𝐸 ∈ 𝑌) → ({〈𝐴, 𝐸〉}‘𝐴) = 𝐸) | |
| 9 | 6, 7, 8 | syl2anc 584 | . . . . . . 7 ⊢ (𝜑 → ({〈𝐴, 𝐸〉}‘𝐴) = 𝐸) |
| 10 | 5, 9 | eqtrd 2766 | . . . . . 6 ⊢ (𝜑 → ((iEdg‘𝐺)‘𝐴) = 𝐸) |
| 11 | 3, 10 | neleqtrrd 2854 | . . . . 5 ⊢ (𝜑 → ¬ 𝐷 ∈ ((iEdg‘𝐺)‘𝐴)) |
| 12 | fveq2 6822 | . . . . . . . . 9 ⊢ (𝑥 = 𝐴 → ((iEdg‘𝐺)‘𝑥) = ((iEdg‘𝐺)‘𝐴)) | |
| 13 | 12 | eleq2d 2817 | . . . . . . . 8 ⊢ (𝑥 = 𝐴 → (𝐷 ∈ ((iEdg‘𝐺)‘𝑥) ↔ 𝐷 ∈ ((iEdg‘𝐺)‘𝐴))) |
| 14 | 13 | notbid 318 | . . . . . . 7 ⊢ (𝑥 = 𝐴 → (¬ 𝐷 ∈ ((iEdg‘𝐺)‘𝑥) ↔ ¬ 𝐷 ∈ ((iEdg‘𝐺)‘𝐴))) |
| 15 | 14 | ralsng 4628 | . . . . . 6 ⊢ (𝐴 ∈ 𝑋 → (∀𝑥 ∈ {𝐴} ¬ 𝐷 ∈ ((iEdg‘𝐺)‘𝑥) ↔ ¬ 𝐷 ∈ ((iEdg‘𝐺)‘𝐴))) |
| 16 | 6, 15 | syl 17 | . . . . 5 ⊢ (𝜑 → (∀𝑥 ∈ {𝐴} ¬ 𝐷 ∈ ((iEdg‘𝐺)‘𝑥) ↔ ¬ 𝐷 ∈ ((iEdg‘𝐺)‘𝐴))) |
| 17 | 11, 16 | mpbird 257 | . . . 4 ⊢ (𝜑 → ∀𝑥 ∈ {𝐴} ¬ 𝐷 ∈ ((iEdg‘𝐺)‘𝑥)) |
| 18 | 4 | dmeqd 5845 | . . . . 5 ⊢ (𝜑 → dom (iEdg‘𝐺) = dom {〈𝐴, 𝐸〉}) |
| 19 | dmsnopg 6160 | . . . . . 6 ⊢ (𝐸 ∈ 𝑌 → dom {〈𝐴, 𝐸〉} = {𝐴}) | |
| 20 | 7, 19 | syl 17 | . . . . 5 ⊢ (𝜑 → dom {〈𝐴, 𝐸〉} = {𝐴}) |
| 21 | 18, 20 | eqtrd 2766 | . . . 4 ⊢ (𝜑 → dom (iEdg‘𝐺) = {𝐴}) |
| 22 | 17, 21 | raleqtrrdv 3296 | . . 3 ⊢ (𝜑 → ∀𝑥 ∈ dom (iEdg‘𝐺) ¬ 𝐷 ∈ ((iEdg‘𝐺)‘𝑥)) |
| 23 | ralnex 3058 | . . 3 ⊢ (∀𝑥 ∈ dom (iEdg‘𝐺) ¬ 𝐷 ∈ ((iEdg‘𝐺)‘𝑥) ↔ ¬ ∃𝑥 ∈ dom (iEdg‘𝐺)𝐷 ∈ ((iEdg‘𝐺)‘𝑥)) | |
| 24 | 22, 23 | sylib 218 | . 2 ⊢ (𝜑 → ¬ ∃𝑥 ∈ dom (iEdg‘𝐺)𝐷 ∈ ((iEdg‘𝐺)‘𝑥)) |
| 25 | 1hevtxdg0.d | . . . 4 ⊢ (𝜑 → 𝐷 ∈ 𝑉) | |
| 26 | 1hevtxdg0.v | . . . . 5 ⊢ (𝜑 → (Vtx‘𝐺) = 𝑉) | |
| 27 | 26 | eleq2d 2817 | . . . 4 ⊢ (𝜑 → (𝐷 ∈ (Vtx‘𝐺) ↔ 𝐷 ∈ 𝑉)) |
| 28 | 25, 27 | mpbird 257 | . . 3 ⊢ (𝜑 → 𝐷 ∈ (Vtx‘𝐺)) |
| 29 | eqid 2731 | . . . 4 ⊢ (Vtx‘𝐺) = (Vtx‘𝐺) | |
| 30 | eqid 2731 | . . . 4 ⊢ (iEdg‘𝐺) = (iEdg‘𝐺) | |
| 31 | eqid 2731 | . . . 4 ⊢ (VtxDeg‘𝐺) = (VtxDeg‘𝐺) | |
| 32 | 29, 30, 31 | vtxd0nedgb 29465 | . . 3 ⊢ (𝐷 ∈ (Vtx‘𝐺) → (((VtxDeg‘𝐺)‘𝐷) = 0 ↔ ¬ ∃𝑥 ∈ dom (iEdg‘𝐺)𝐷 ∈ ((iEdg‘𝐺)‘𝑥))) |
| 33 | 28, 32 | syl 17 | . 2 ⊢ (𝜑 → (((VtxDeg‘𝐺)‘𝐷) = 0 ↔ ¬ ∃𝑥 ∈ dom (iEdg‘𝐺)𝐷 ∈ ((iEdg‘𝐺)‘𝑥))) |
| 34 | 24, 33 | mpbird 257 | 1 ⊢ (𝜑 → ((VtxDeg‘𝐺)‘𝐷) = 0) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 = wceq 1541 ∈ wcel 2111 ∉ wnel 3032 ∀wral 3047 ∃wrex 3056 {csn 4576 〈cop 4582 dom cdm 5616 ‘cfv 6481 0cc0 11003 Vtxcvtx 28972 iEdgciedg 28973 VtxDegcvtxdg 29442 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5217 ax-sep 5234 ax-nul 5244 ax-pow 5303 ax-pr 5370 ax-un 7668 ax-cnex 11059 ax-resscn 11060 ax-1cn 11061 ax-icn 11062 ax-addcl 11063 ax-addrcl 11064 ax-mulcl 11065 ax-mulrcl 11066 ax-mulcom 11067 ax-addass 11068 ax-mulass 11069 ax-distr 11070 ax-i2m1 11071 ax-1ne0 11072 ax-1rid 11073 ax-rnegex 11074 ax-rrecex 11075 ax-cnre 11076 ax-pre-lttri 11077 ax-pre-lttrn 11078 ax-pre-ltadd 11079 ax-pre-mulgt0 11080 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3742 df-csb 3851 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-pss 3922 df-nul 4284 df-if 4476 df-pw 4552 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-int 4898 df-iun 4943 df-br 5092 df-opab 5154 df-mpt 5173 df-tr 5199 df-id 5511 df-eprel 5516 df-po 5524 df-so 5525 df-fr 5569 df-we 5571 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-rn 5627 df-res 5628 df-ima 5629 df-pred 6248 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-riota 7303 df-ov 7349 df-oprab 7350 df-mpo 7351 df-om 7797 df-1st 7921 df-2nd 7922 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-rdg 8329 df-1o 8385 df-er 8622 df-en 8870 df-dom 8871 df-sdom 8872 df-fin 8873 df-card 9829 df-pnf 11145 df-mnf 11146 df-xr 11147 df-ltxr 11148 df-le 11149 df-sub 11343 df-neg 11344 df-nn 12123 df-n0 12379 df-xnn0 12452 df-z 12466 df-uz 12730 df-xadd 13009 df-fz 13405 df-hash 14235 df-vtxdg 29443 |
| This theorem is referenced by: p1evtxdeq 29490 eupth2lem3lem6 30208 |
| Copyright terms: Public domain | W3C validator |