MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  omopth2 Structured version   Visualization version   GIF version

Theorem omopth2 8193
Description: An ordered pair-like theorem for ordinal multiplication. (Contributed by Mario Carneiro, 29-May-2015.)
Assertion
Ref Expression
omopth2 (((𝐴 ∈ On ∧ 𝐴 ≠ ∅) ∧ (𝐵 ∈ On ∧ 𝐶𝐴) ∧ (𝐷 ∈ On ∧ 𝐸𝐴)) → (((𝐴 ·o 𝐵) +o 𝐶) = ((𝐴 ·o 𝐷) +o 𝐸) ↔ (𝐵 = 𝐷𝐶 = 𝐸)))

Proof of Theorem omopth2
StepHypRef Expression
1 simpl2l 1223 . . . . . . 7 ((((𝐴 ∈ On ∧ 𝐴 ≠ ∅) ∧ (𝐵 ∈ On ∧ 𝐶𝐴) ∧ (𝐷 ∈ On ∧ 𝐸𝐴)) ∧ ((𝐴 ·o 𝐵) +o 𝐶) = ((𝐴 ·o 𝐷) +o 𝐸)) → 𝐵 ∈ On)
2 eloni 6169 . . . . . . 7 (𝐵 ∈ On → Ord 𝐵)
31, 2syl 17 . . . . . 6 ((((𝐴 ∈ On ∧ 𝐴 ≠ ∅) ∧ (𝐵 ∈ On ∧ 𝐶𝐴) ∧ (𝐷 ∈ On ∧ 𝐸𝐴)) ∧ ((𝐴 ·o 𝐵) +o 𝐶) = ((𝐴 ·o 𝐷) +o 𝐸)) → Ord 𝐵)
4 simpl3l 1225 . . . . . . 7 ((((𝐴 ∈ On ∧ 𝐴 ≠ ∅) ∧ (𝐵 ∈ On ∧ 𝐶𝐴) ∧ (𝐷 ∈ On ∧ 𝐸𝐴)) ∧ ((𝐴 ·o 𝐵) +o 𝐶) = ((𝐴 ·o 𝐷) +o 𝐸)) → 𝐷 ∈ On)
5 eloni 6169 . . . . . . 7 (𝐷 ∈ On → Ord 𝐷)
64, 5syl 17 . . . . . 6 ((((𝐴 ∈ On ∧ 𝐴 ≠ ∅) ∧ (𝐵 ∈ On ∧ 𝐶𝐴) ∧ (𝐷 ∈ On ∧ 𝐸𝐴)) ∧ ((𝐴 ·o 𝐵) +o 𝐶) = ((𝐴 ·o 𝐷) +o 𝐸)) → Ord 𝐷)
7 ordtri3or 6191 . . . . . 6 ((Ord 𝐵 ∧ Ord 𝐷) → (𝐵𝐷𝐵 = 𝐷𝐷𝐵))
83, 6, 7syl2anc 587 . . . . 5 ((((𝐴 ∈ On ∧ 𝐴 ≠ ∅) ∧ (𝐵 ∈ On ∧ 𝐶𝐴) ∧ (𝐷 ∈ On ∧ 𝐸𝐴)) ∧ ((𝐴 ·o 𝐵) +o 𝐶) = ((𝐴 ·o 𝐷) +o 𝐸)) → (𝐵𝐷𝐵 = 𝐷𝐷𝐵))
9 simpr 488 . . . . . . . . 9 ((((𝐴 ∈ On ∧ 𝐴 ≠ ∅) ∧ (𝐵 ∈ On ∧ 𝐶𝐴) ∧ (𝐷 ∈ On ∧ 𝐸𝐴)) ∧ ((𝐴 ·o 𝐵) +o 𝐶) = ((𝐴 ·o 𝐷) +o 𝐸)) → ((𝐴 ·o 𝐵) +o 𝐶) = ((𝐴 ·o 𝐷) +o 𝐸))
10 simpl1l 1221 . . . . . . . . . . . 12 ((((𝐴 ∈ On ∧ 𝐴 ≠ ∅) ∧ (𝐵 ∈ On ∧ 𝐶𝐴) ∧ (𝐷 ∈ On ∧ 𝐸𝐴)) ∧ ((𝐴 ·o 𝐵) +o 𝐶) = ((𝐴 ·o 𝐷) +o 𝐸)) → 𝐴 ∈ On)
11 omcl 8144 . . . . . . . . . . . 12 ((𝐴 ∈ On ∧ 𝐷 ∈ On) → (𝐴 ·o 𝐷) ∈ On)
1210, 4, 11syl2anc 587 . . . . . . . . . . 11 ((((𝐴 ∈ On ∧ 𝐴 ≠ ∅) ∧ (𝐵 ∈ On ∧ 𝐶𝐴) ∧ (𝐷 ∈ On ∧ 𝐸𝐴)) ∧ ((𝐴 ·o 𝐵) +o 𝐶) = ((𝐴 ·o 𝐷) +o 𝐸)) → (𝐴 ·o 𝐷) ∈ On)
13 simpl3r 1226 . . . . . . . . . . . 12 ((((𝐴 ∈ On ∧ 𝐴 ≠ ∅) ∧ (𝐵 ∈ On ∧ 𝐶𝐴) ∧ (𝐷 ∈ On ∧ 𝐸𝐴)) ∧ ((𝐴 ·o 𝐵) +o 𝐶) = ((𝐴 ·o 𝐷) +o 𝐸)) → 𝐸𝐴)
14 onelon 6184 . . . . . . . . . . . 12 ((𝐴 ∈ On ∧ 𝐸𝐴) → 𝐸 ∈ On)
1510, 13, 14syl2anc 587 . . . . . . . . . . 11 ((((𝐴 ∈ On ∧ 𝐴 ≠ ∅) ∧ (𝐵 ∈ On ∧ 𝐶𝐴) ∧ (𝐷 ∈ On ∧ 𝐸𝐴)) ∧ ((𝐴 ·o 𝐵) +o 𝐶) = ((𝐴 ·o 𝐷) +o 𝐸)) → 𝐸 ∈ On)
16 oacl 8143 . . . . . . . . . . 11 (((𝐴 ·o 𝐷) ∈ On ∧ 𝐸 ∈ On) → ((𝐴 ·o 𝐷) +o 𝐸) ∈ On)
1712, 15, 16syl2anc 587 . . . . . . . . . 10 ((((𝐴 ∈ On ∧ 𝐴 ≠ ∅) ∧ (𝐵 ∈ On ∧ 𝐶𝐴) ∧ (𝐷 ∈ On ∧ 𝐸𝐴)) ∧ ((𝐴 ·o 𝐵) +o 𝐶) = ((𝐴 ·o 𝐷) +o 𝐸)) → ((𝐴 ·o 𝐷) +o 𝐸) ∈ On)
18 eloni 6169 . . . . . . . . . 10 (((𝐴 ·o 𝐷) +o 𝐸) ∈ On → Ord ((𝐴 ·o 𝐷) +o 𝐸))
19 ordirr 6177 . . . . . . . . . 10 (Ord ((𝐴 ·o 𝐷) +o 𝐸) → ¬ ((𝐴 ·o 𝐷) +o 𝐸) ∈ ((𝐴 ·o 𝐷) +o 𝐸))
2017, 18, 193syl 18 . . . . . . . . 9 ((((𝐴 ∈ On ∧ 𝐴 ≠ ∅) ∧ (𝐵 ∈ On ∧ 𝐶𝐴) ∧ (𝐷 ∈ On ∧ 𝐸𝐴)) ∧ ((𝐴 ·o 𝐵) +o 𝐶) = ((𝐴 ·o 𝐷) +o 𝐸)) → ¬ ((𝐴 ·o 𝐷) +o 𝐸) ∈ ((𝐴 ·o 𝐷) +o 𝐸))
219, 20eqneltrd 2909 . . . . . . . 8 ((((𝐴 ∈ On ∧ 𝐴 ≠ ∅) ∧ (𝐵 ∈ On ∧ 𝐶𝐴) ∧ (𝐷 ∈ On ∧ 𝐸𝐴)) ∧ ((𝐴 ·o 𝐵) +o 𝐶) = ((𝐴 ·o 𝐷) +o 𝐸)) → ¬ ((𝐴 ·o 𝐵) +o 𝐶) ∈ ((𝐴 ·o 𝐷) +o 𝐸))
22 orc 864 . . . . . . . . 9 (𝐵𝐷 → (𝐵𝐷 ∨ (𝐵 = 𝐷𝐶𝐸)))
23 omeulem2 8192 . . . . . . . . . 10 (((𝐴 ∈ On ∧ 𝐴 ≠ ∅) ∧ (𝐵 ∈ On ∧ 𝐶𝐴) ∧ (𝐷 ∈ On ∧ 𝐸𝐴)) → ((𝐵𝐷 ∨ (𝐵 = 𝐷𝐶𝐸)) → ((𝐴 ·o 𝐵) +o 𝐶) ∈ ((𝐴 ·o 𝐷) +o 𝐸)))
2423adantr 484 . . . . . . . . 9 ((((𝐴 ∈ On ∧ 𝐴 ≠ ∅) ∧ (𝐵 ∈ On ∧ 𝐶𝐴) ∧ (𝐷 ∈ On ∧ 𝐸𝐴)) ∧ ((𝐴 ·o 𝐵) +o 𝐶) = ((𝐴 ·o 𝐷) +o 𝐸)) → ((𝐵𝐷 ∨ (𝐵 = 𝐷𝐶𝐸)) → ((𝐴 ·o 𝐵) +o 𝐶) ∈ ((𝐴 ·o 𝐷) +o 𝐸)))
2522, 24syl5 34 . . . . . . . 8 ((((𝐴 ∈ On ∧ 𝐴 ≠ ∅) ∧ (𝐵 ∈ On ∧ 𝐶𝐴) ∧ (𝐷 ∈ On ∧ 𝐸𝐴)) ∧ ((𝐴 ·o 𝐵) +o 𝐶) = ((𝐴 ·o 𝐷) +o 𝐸)) → (𝐵𝐷 → ((𝐴 ·o 𝐵) +o 𝐶) ∈ ((𝐴 ·o 𝐷) +o 𝐸)))
2621, 25mtod 201 . . . . . . 7 ((((𝐴 ∈ On ∧ 𝐴 ≠ ∅) ∧ (𝐵 ∈ On ∧ 𝐶𝐴) ∧ (𝐷 ∈ On ∧ 𝐸𝐴)) ∧ ((𝐴 ·o 𝐵) +o 𝐶) = ((𝐴 ·o 𝐷) +o 𝐸)) → ¬ 𝐵𝐷)
2726pm2.21d 121 . . . . . 6 ((((𝐴 ∈ On ∧ 𝐴 ≠ ∅) ∧ (𝐵 ∈ On ∧ 𝐶𝐴) ∧ (𝐷 ∈ On ∧ 𝐸𝐴)) ∧ ((𝐴 ·o 𝐵) +o 𝐶) = ((𝐴 ·o 𝐷) +o 𝐸)) → (𝐵𝐷𝐵 = 𝐷))
28 idd 24 . . . . . 6 ((((𝐴 ∈ On ∧ 𝐴 ≠ ∅) ∧ (𝐵 ∈ On ∧ 𝐶𝐴) ∧ (𝐷 ∈ On ∧ 𝐸𝐴)) ∧ ((𝐴 ·o 𝐵) +o 𝐶) = ((𝐴 ·o 𝐷) +o 𝐸)) → (𝐵 = 𝐷𝐵 = 𝐷))
2920, 9neleqtrrd 2912 . . . . . . . 8 ((((𝐴 ∈ On ∧ 𝐴 ≠ ∅) ∧ (𝐵 ∈ On ∧ 𝐶𝐴) ∧ (𝐷 ∈ On ∧ 𝐸𝐴)) ∧ ((𝐴 ·o 𝐵) +o 𝐶) = ((𝐴 ·o 𝐷) +o 𝐸)) → ¬ ((𝐴 ·o 𝐷) +o 𝐸) ∈ ((𝐴 ·o 𝐵) +o 𝐶))
30 orc 864 . . . . . . . . 9 (𝐷𝐵 → (𝐷𝐵 ∨ (𝐷 = 𝐵𝐸𝐶)))
31 simpl1r 1222 . . . . . . . . . 10 ((((𝐴 ∈ On ∧ 𝐴 ≠ ∅) ∧ (𝐵 ∈ On ∧ 𝐶𝐴) ∧ (𝐷 ∈ On ∧ 𝐸𝐴)) ∧ ((𝐴 ·o 𝐵) +o 𝐶) = ((𝐴 ·o 𝐷) +o 𝐸)) → 𝐴 ≠ ∅)
32 simpl2r 1224 . . . . . . . . . 10 ((((𝐴 ∈ On ∧ 𝐴 ≠ ∅) ∧ (𝐵 ∈ On ∧ 𝐶𝐴) ∧ (𝐷 ∈ On ∧ 𝐸𝐴)) ∧ ((𝐴 ·o 𝐵) +o 𝐶) = ((𝐴 ·o 𝐷) +o 𝐸)) → 𝐶𝐴)
33 omeulem2 8192 . . . . . . . . . 10 (((𝐴 ∈ On ∧ 𝐴 ≠ ∅) ∧ (𝐷 ∈ On ∧ 𝐸𝐴) ∧ (𝐵 ∈ On ∧ 𝐶𝐴)) → ((𝐷𝐵 ∨ (𝐷 = 𝐵𝐸𝐶)) → ((𝐴 ·o 𝐷) +o 𝐸) ∈ ((𝐴 ·o 𝐵) +o 𝐶)))
3410, 31, 4, 13, 1, 32, 33syl222anc 1383 . . . . . . . . 9 ((((𝐴 ∈ On ∧ 𝐴 ≠ ∅) ∧ (𝐵 ∈ On ∧ 𝐶𝐴) ∧ (𝐷 ∈ On ∧ 𝐸𝐴)) ∧ ((𝐴 ·o 𝐵) +o 𝐶) = ((𝐴 ·o 𝐷) +o 𝐸)) → ((𝐷𝐵 ∨ (𝐷 = 𝐵𝐸𝐶)) → ((𝐴 ·o 𝐷) +o 𝐸) ∈ ((𝐴 ·o 𝐵) +o 𝐶)))
3530, 34syl5 34 . . . . . . . 8 ((((𝐴 ∈ On ∧ 𝐴 ≠ ∅) ∧ (𝐵 ∈ On ∧ 𝐶𝐴) ∧ (𝐷 ∈ On ∧ 𝐸𝐴)) ∧ ((𝐴 ·o 𝐵) +o 𝐶) = ((𝐴 ·o 𝐷) +o 𝐸)) → (𝐷𝐵 → ((𝐴 ·o 𝐷) +o 𝐸) ∈ ((𝐴 ·o 𝐵) +o 𝐶)))
3629, 35mtod 201 . . . . . . 7 ((((𝐴 ∈ On ∧ 𝐴 ≠ ∅) ∧ (𝐵 ∈ On ∧ 𝐶𝐴) ∧ (𝐷 ∈ On ∧ 𝐸𝐴)) ∧ ((𝐴 ·o 𝐵) +o 𝐶) = ((𝐴 ·o 𝐷) +o 𝐸)) → ¬ 𝐷𝐵)
3736pm2.21d 121 . . . . . 6 ((((𝐴 ∈ On ∧ 𝐴 ≠ ∅) ∧ (𝐵 ∈ On ∧ 𝐶𝐴) ∧ (𝐷 ∈ On ∧ 𝐸𝐴)) ∧ ((𝐴 ·o 𝐵) +o 𝐶) = ((𝐴 ·o 𝐷) +o 𝐸)) → (𝐷𝐵𝐵 = 𝐷))
3827, 28, 373jaod 1425 . . . . 5 ((((𝐴 ∈ On ∧ 𝐴 ≠ ∅) ∧ (𝐵 ∈ On ∧ 𝐶𝐴) ∧ (𝐷 ∈ On ∧ 𝐸𝐴)) ∧ ((𝐴 ·o 𝐵) +o 𝐶) = ((𝐴 ·o 𝐷) +o 𝐸)) → ((𝐵𝐷𝐵 = 𝐷𝐷𝐵) → 𝐵 = 𝐷))
398, 38mpd 15 . . . 4 ((((𝐴 ∈ On ∧ 𝐴 ≠ ∅) ∧ (𝐵 ∈ On ∧ 𝐶𝐴) ∧ (𝐷 ∈ On ∧ 𝐸𝐴)) ∧ ((𝐴 ·o 𝐵) +o 𝐶) = ((𝐴 ·o 𝐷) +o 𝐸)) → 𝐵 = 𝐷)
40 onelon 6184 . . . . . . . 8 ((𝐴 ∈ On ∧ 𝐶𝐴) → 𝐶 ∈ On)
41 eloni 6169 . . . . . . . 8 (𝐶 ∈ On → Ord 𝐶)
4240, 41syl 17 . . . . . . 7 ((𝐴 ∈ On ∧ 𝐶𝐴) → Ord 𝐶)
4310, 32, 42syl2anc 587 . . . . . 6 ((((𝐴 ∈ On ∧ 𝐴 ≠ ∅) ∧ (𝐵 ∈ On ∧ 𝐶𝐴) ∧ (𝐷 ∈ On ∧ 𝐸𝐴)) ∧ ((𝐴 ·o 𝐵) +o 𝐶) = ((𝐴 ·o 𝐷) +o 𝐸)) → Ord 𝐶)
44 eloni 6169 . . . . . . . 8 (𝐸 ∈ On → Ord 𝐸)
4514, 44syl 17 . . . . . . 7 ((𝐴 ∈ On ∧ 𝐸𝐴) → Ord 𝐸)
4610, 13, 45syl2anc 587 . . . . . 6 ((((𝐴 ∈ On ∧ 𝐴 ≠ ∅) ∧ (𝐵 ∈ On ∧ 𝐶𝐴) ∧ (𝐷 ∈ On ∧ 𝐸𝐴)) ∧ ((𝐴 ·o 𝐵) +o 𝐶) = ((𝐴 ·o 𝐷) +o 𝐸)) → Ord 𝐸)
47 ordtri3or 6191 . . . . . 6 ((Ord 𝐶 ∧ Ord 𝐸) → (𝐶𝐸𝐶 = 𝐸𝐸𝐶))
4843, 46, 47syl2anc 587 . . . . 5 ((((𝐴 ∈ On ∧ 𝐴 ≠ ∅) ∧ (𝐵 ∈ On ∧ 𝐶𝐴) ∧ (𝐷 ∈ On ∧ 𝐸𝐴)) ∧ ((𝐴 ·o 𝐵) +o 𝐶) = ((𝐴 ·o 𝐷) +o 𝐸)) → (𝐶𝐸𝐶 = 𝐸𝐸𝐶))
49 olc 865 . . . . . . . . . 10 ((𝐵 = 𝐷𝐶𝐸) → (𝐵𝐷 ∨ (𝐵 = 𝐷𝐶𝐸)))
5049, 24syl5 34 . . . . . . . . 9 ((((𝐴 ∈ On ∧ 𝐴 ≠ ∅) ∧ (𝐵 ∈ On ∧ 𝐶𝐴) ∧ (𝐷 ∈ On ∧ 𝐸𝐴)) ∧ ((𝐴 ·o 𝐵) +o 𝐶) = ((𝐴 ·o 𝐷) +o 𝐸)) → ((𝐵 = 𝐷𝐶𝐸) → ((𝐴 ·o 𝐵) +o 𝐶) ∈ ((𝐴 ·o 𝐷) +o 𝐸)))
5139, 50mpand 694 . . . . . . . 8 ((((𝐴 ∈ On ∧ 𝐴 ≠ ∅) ∧ (𝐵 ∈ On ∧ 𝐶𝐴) ∧ (𝐷 ∈ On ∧ 𝐸𝐴)) ∧ ((𝐴 ·o 𝐵) +o 𝐶) = ((𝐴 ·o 𝐷) +o 𝐸)) → (𝐶𝐸 → ((𝐴 ·o 𝐵) +o 𝐶) ∈ ((𝐴 ·o 𝐷) +o 𝐸)))
5221, 51mtod 201 . . . . . . 7 ((((𝐴 ∈ On ∧ 𝐴 ≠ ∅) ∧ (𝐵 ∈ On ∧ 𝐶𝐴) ∧ (𝐷 ∈ On ∧ 𝐸𝐴)) ∧ ((𝐴 ·o 𝐵) +o 𝐶) = ((𝐴 ·o 𝐷) +o 𝐸)) → ¬ 𝐶𝐸)
5352pm2.21d 121 . . . . . 6 ((((𝐴 ∈ On ∧ 𝐴 ≠ ∅) ∧ (𝐵 ∈ On ∧ 𝐶𝐴) ∧ (𝐷 ∈ On ∧ 𝐸𝐴)) ∧ ((𝐴 ·o 𝐵) +o 𝐶) = ((𝐴 ·o 𝐷) +o 𝐸)) → (𝐶𝐸𝐶 = 𝐸))
54 idd 24 . . . . . 6 ((((𝐴 ∈ On ∧ 𝐴 ≠ ∅) ∧ (𝐵 ∈ On ∧ 𝐶𝐴) ∧ (𝐷 ∈ On ∧ 𝐸𝐴)) ∧ ((𝐴 ·o 𝐵) +o 𝐶) = ((𝐴 ·o 𝐷) +o 𝐸)) → (𝐶 = 𝐸𝐶 = 𝐸))
5539eqcomd 2804 . . . . . . . . 9 ((((𝐴 ∈ On ∧ 𝐴 ≠ ∅) ∧ (𝐵 ∈ On ∧ 𝐶𝐴) ∧ (𝐷 ∈ On ∧ 𝐸𝐴)) ∧ ((𝐴 ·o 𝐵) +o 𝐶) = ((𝐴 ·o 𝐷) +o 𝐸)) → 𝐷 = 𝐵)
56 olc 865 . . . . . . . . . 10 ((𝐷 = 𝐵𝐸𝐶) → (𝐷𝐵 ∨ (𝐷 = 𝐵𝐸𝐶)))
5756, 34syl5 34 . . . . . . . . 9 ((((𝐴 ∈ On ∧ 𝐴 ≠ ∅) ∧ (𝐵 ∈ On ∧ 𝐶𝐴) ∧ (𝐷 ∈ On ∧ 𝐸𝐴)) ∧ ((𝐴 ·o 𝐵) +o 𝐶) = ((𝐴 ·o 𝐷) +o 𝐸)) → ((𝐷 = 𝐵𝐸𝐶) → ((𝐴 ·o 𝐷) +o 𝐸) ∈ ((𝐴 ·o 𝐵) +o 𝐶)))
5855, 57mpand 694 . . . . . . . 8 ((((𝐴 ∈ On ∧ 𝐴 ≠ ∅) ∧ (𝐵 ∈ On ∧ 𝐶𝐴) ∧ (𝐷 ∈ On ∧ 𝐸𝐴)) ∧ ((𝐴 ·o 𝐵) +o 𝐶) = ((𝐴 ·o 𝐷) +o 𝐸)) → (𝐸𝐶 → ((𝐴 ·o 𝐷) +o 𝐸) ∈ ((𝐴 ·o 𝐵) +o 𝐶)))
5929, 58mtod 201 . . . . . . 7 ((((𝐴 ∈ On ∧ 𝐴 ≠ ∅) ∧ (𝐵 ∈ On ∧ 𝐶𝐴) ∧ (𝐷 ∈ On ∧ 𝐸𝐴)) ∧ ((𝐴 ·o 𝐵) +o 𝐶) = ((𝐴 ·o 𝐷) +o 𝐸)) → ¬ 𝐸𝐶)
6059pm2.21d 121 . . . . . 6 ((((𝐴 ∈ On ∧ 𝐴 ≠ ∅) ∧ (𝐵 ∈ On ∧ 𝐶𝐴) ∧ (𝐷 ∈ On ∧ 𝐸𝐴)) ∧ ((𝐴 ·o 𝐵) +o 𝐶) = ((𝐴 ·o 𝐷) +o 𝐸)) → (𝐸𝐶𝐶 = 𝐸))
6153, 54, 603jaod 1425 . . . . 5 ((((𝐴 ∈ On ∧ 𝐴 ≠ ∅) ∧ (𝐵 ∈ On ∧ 𝐶𝐴) ∧ (𝐷 ∈ On ∧ 𝐸𝐴)) ∧ ((𝐴 ·o 𝐵) +o 𝐶) = ((𝐴 ·o 𝐷) +o 𝐸)) → ((𝐶𝐸𝐶 = 𝐸𝐸𝐶) → 𝐶 = 𝐸))
6248, 61mpd 15 . . . 4 ((((𝐴 ∈ On ∧ 𝐴 ≠ ∅) ∧ (𝐵 ∈ On ∧ 𝐶𝐴) ∧ (𝐷 ∈ On ∧ 𝐸𝐴)) ∧ ((𝐴 ·o 𝐵) +o 𝐶) = ((𝐴 ·o 𝐷) +o 𝐸)) → 𝐶 = 𝐸)
6339, 62jca 515 . . 3 ((((𝐴 ∈ On ∧ 𝐴 ≠ ∅) ∧ (𝐵 ∈ On ∧ 𝐶𝐴) ∧ (𝐷 ∈ On ∧ 𝐸𝐴)) ∧ ((𝐴 ·o 𝐵) +o 𝐶) = ((𝐴 ·o 𝐷) +o 𝐸)) → (𝐵 = 𝐷𝐶 = 𝐸))
6463ex 416 . 2 (((𝐴 ∈ On ∧ 𝐴 ≠ ∅) ∧ (𝐵 ∈ On ∧ 𝐶𝐴) ∧ (𝐷 ∈ On ∧ 𝐸𝐴)) → (((𝐴 ·o 𝐵) +o 𝐶) = ((𝐴 ·o 𝐷) +o 𝐸) → (𝐵 = 𝐷𝐶 = 𝐸)))
65 oveq2 7143 . . 3 (𝐵 = 𝐷 → (𝐴 ·o 𝐵) = (𝐴 ·o 𝐷))
66 id 22 . . 3 (𝐶 = 𝐸𝐶 = 𝐸)
6765, 66oveqan12d 7154 . 2 ((𝐵 = 𝐷𝐶 = 𝐸) → ((𝐴 ·o 𝐵) +o 𝐶) = ((𝐴 ·o 𝐷) +o 𝐸))
6864, 67impbid1 228 1 (((𝐴 ∈ On ∧ 𝐴 ≠ ∅) ∧ (𝐵 ∈ On ∧ 𝐶𝐴) ∧ (𝐷 ∈ On ∧ 𝐸𝐴)) → (((𝐴 ·o 𝐵) +o 𝐶) = ((𝐴 ·o 𝐷) +o 𝐸) ↔ (𝐵 = 𝐷𝐶 = 𝐸)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 209  wa 399  wo 844  w3o 1083  w3a 1084   = wceq 1538  wcel 2111  wne 2987  c0 4243  Ord word 6158  Oncon0 6159  (class class class)co 7135   +o coa 8082   ·o comu 8083
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-rep 5154  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-ral 3111  df-rex 3112  df-reu 3113  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4801  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-pred 6116  df-ord 6162  df-on 6163  df-lim 6164  df-suc 6165  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-ov 7138  df-oprab 7139  df-mpo 7140  df-om 7561  df-wrecs 7930  df-recs 7991  df-rdg 8029  df-oadd 8089  df-omul 8090
This theorem is referenced by:  omeu  8194  dfac12lem2  9555
  Copyright terms: Public domain W3C validator