MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  omopth2 Structured version   Visualization version   GIF version

Theorem omopth2 7901
Description: An ordered pair-like theorem for ordinal multiplication. (Contributed by Mario Carneiro, 29-May-2015.)
Assertion
Ref Expression
omopth2 (((𝐴 ∈ On ∧ 𝐴 ≠ ∅) ∧ (𝐵 ∈ On ∧ 𝐶𝐴) ∧ (𝐷 ∈ On ∧ 𝐸𝐴)) → (((𝐴 ·𝑜 𝐵) +𝑜 𝐶) = ((𝐴 ·𝑜 𝐷) +𝑜 𝐸) ↔ (𝐵 = 𝐷𝐶 = 𝐸)))

Proof of Theorem omopth2
StepHypRef Expression
1 simpl2l 1290 . . . . . . 7 ((((𝐴 ∈ On ∧ 𝐴 ≠ ∅) ∧ (𝐵 ∈ On ∧ 𝐶𝐴) ∧ (𝐷 ∈ On ∧ 𝐸𝐴)) ∧ ((𝐴 ·𝑜 𝐵) +𝑜 𝐶) = ((𝐴 ·𝑜 𝐷) +𝑜 𝐸)) → 𝐵 ∈ On)
2 eloni 5946 . . . . . . 7 (𝐵 ∈ On → Ord 𝐵)
31, 2syl 17 . . . . . 6 ((((𝐴 ∈ On ∧ 𝐴 ≠ ∅) ∧ (𝐵 ∈ On ∧ 𝐶𝐴) ∧ (𝐷 ∈ On ∧ 𝐸𝐴)) ∧ ((𝐴 ·𝑜 𝐵) +𝑜 𝐶) = ((𝐴 ·𝑜 𝐷) +𝑜 𝐸)) → Ord 𝐵)
4 simpl3l 1294 . . . . . . 7 ((((𝐴 ∈ On ∧ 𝐴 ≠ ∅) ∧ (𝐵 ∈ On ∧ 𝐶𝐴) ∧ (𝐷 ∈ On ∧ 𝐸𝐴)) ∧ ((𝐴 ·𝑜 𝐵) +𝑜 𝐶) = ((𝐴 ·𝑜 𝐷) +𝑜 𝐸)) → 𝐷 ∈ On)
5 eloni 5946 . . . . . . 7 (𝐷 ∈ On → Ord 𝐷)
64, 5syl 17 . . . . . 6 ((((𝐴 ∈ On ∧ 𝐴 ≠ ∅) ∧ (𝐵 ∈ On ∧ 𝐶𝐴) ∧ (𝐷 ∈ On ∧ 𝐸𝐴)) ∧ ((𝐴 ·𝑜 𝐵) +𝑜 𝐶) = ((𝐴 ·𝑜 𝐷) +𝑜 𝐸)) → Ord 𝐷)
7 ordtri3or 5968 . . . . . 6 ((Ord 𝐵 ∧ Ord 𝐷) → (𝐵𝐷𝐵 = 𝐷𝐷𝐵))
83, 6, 7syl2anc 575 . . . . 5 ((((𝐴 ∈ On ∧ 𝐴 ≠ ∅) ∧ (𝐵 ∈ On ∧ 𝐶𝐴) ∧ (𝐷 ∈ On ∧ 𝐸𝐴)) ∧ ((𝐴 ·𝑜 𝐵) +𝑜 𝐶) = ((𝐴 ·𝑜 𝐷) +𝑜 𝐸)) → (𝐵𝐷𝐵 = 𝐷𝐷𝐵))
9 simpr 473 . . . . . . . . 9 ((((𝐴 ∈ On ∧ 𝐴 ≠ ∅) ∧ (𝐵 ∈ On ∧ 𝐶𝐴) ∧ (𝐷 ∈ On ∧ 𝐸𝐴)) ∧ ((𝐴 ·𝑜 𝐵) +𝑜 𝐶) = ((𝐴 ·𝑜 𝐷) +𝑜 𝐸)) → ((𝐴 ·𝑜 𝐵) +𝑜 𝐶) = ((𝐴 ·𝑜 𝐷) +𝑜 𝐸))
10 simpl1l 1286 . . . . . . . . . . . 12 ((((𝐴 ∈ On ∧ 𝐴 ≠ ∅) ∧ (𝐵 ∈ On ∧ 𝐶𝐴) ∧ (𝐷 ∈ On ∧ 𝐸𝐴)) ∧ ((𝐴 ·𝑜 𝐵) +𝑜 𝐶) = ((𝐴 ·𝑜 𝐷) +𝑜 𝐸)) → 𝐴 ∈ On)
11 omcl 7853 . . . . . . . . . . . 12 ((𝐴 ∈ On ∧ 𝐷 ∈ On) → (𝐴 ·𝑜 𝐷) ∈ On)
1210, 4, 11syl2anc 575 . . . . . . . . . . 11 ((((𝐴 ∈ On ∧ 𝐴 ≠ ∅) ∧ (𝐵 ∈ On ∧ 𝐶𝐴) ∧ (𝐷 ∈ On ∧ 𝐸𝐴)) ∧ ((𝐴 ·𝑜 𝐵) +𝑜 𝐶) = ((𝐴 ·𝑜 𝐷) +𝑜 𝐸)) → (𝐴 ·𝑜 𝐷) ∈ On)
13 simpl3r 1296 . . . . . . . . . . . 12 ((((𝐴 ∈ On ∧ 𝐴 ≠ ∅) ∧ (𝐵 ∈ On ∧ 𝐶𝐴) ∧ (𝐷 ∈ On ∧ 𝐸𝐴)) ∧ ((𝐴 ·𝑜 𝐵) +𝑜 𝐶) = ((𝐴 ·𝑜 𝐷) +𝑜 𝐸)) → 𝐸𝐴)
14 onelon 5961 . . . . . . . . . . . 12 ((𝐴 ∈ On ∧ 𝐸𝐴) → 𝐸 ∈ On)
1510, 13, 14syl2anc 575 . . . . . . . . . . 11 ((((𝐴 ∈ On ∧ 𝐴 ≠ ∅) ∧ (𝐵 ∈ On ∧ 𝐶𝐴) ∧ (𝐷 ∈ On ∧ 𝐸𝐴)) ∧ ((𝐴 ·𝑜 𝐵) +𝑜 𝐶) = ((𝐴 ·𝑜 𝐷) +𝑜 𝐸)) → 𝐸 ∈ On)
16 oacl 7852 . . . . . . . . . . 11 (((𝐴 ·𝑜 𝐷) ∈ On ∧ 𝐸 ∈ On) → ((𝐴 ·𝑜 𝐷) +𝑜 𝐸) ∈ On)
1712, 15, 16syl2anc 575 . . . . . . . . . 10 ((((𝐴 ∈ On ∧ 𝐴 ≠ ∅) ∧ (𝐵 ∈ On ∧ 𝐶𝐴) ∧ (𝐷 ∈ On ∧ 𝐸𝐴)) ∧ ((𝐴 ·𝑜 𝐵) +𝑜 𝐶) = ((𝐴 ·𝑜 𝐷) +𝑜 𝐸)) → ((𝐴 ·𝑜 𝐷) +𝑜 𝐸) ∈ On)
18 eloni 5946 . . . . . . . . . 10 (((𝐴 ·𝑜 𝐷) +𝑜 𝐸) ∈ On → Ord ((𝐴 ·𝑜 𝐷) +𝑜 𝐸))
19 ordirr 5954 . . . . . . . . . 10 (Ord ((𝐴 ·𝑜 𝐷) +𝑜 𝐸) → ¬ ((𝐴 ·𝑜 𝐷) +𝑜 𝐸) ∈ ((𝐴 ·𝑜 𝐷) +𝑜 𝐸))
2017, 18, 193syl 18 . . . . . . . . 9 ((((𝐴 ∈ On ∧ 𝐴 ≠ ∅) ∧ (𝐵 ∈ On ∧ 𝐶𝐴) ∧ (𝐷 ∈ On ∧ 𝐸𝐴)) ∧ ((𝐴 ·𝑜 𝐵) +𝑜 𝐶) = ((𝐴 ·𝑜 𝐷) +𝑜 𝐸)) → ¬ ((𝐴 ·𝑜 𝐷) +𝑜 𝐸) ∈ ((𝐴 ·𝑜 𝐷) +𝑜 𝐸))
219, 20eqneltrd 2904 . . . . . . . 8 ((((𝐴 ∈ On ∧ 𝐴 ≠ ∅) ∧ (𝐵 ∈ On ∧ 𝐶𝐴) ∧ (𝐷 ∈ On ∧ 𝐸𝐴)) ∧ ((𝐴 ·𝑜 𝐵) +𝑜 𝐶) = ((𝐴 ·𝑜 𝐷) +𝑜 𝐸)) → ¬ ((𝐴 ·𝑜 𝐵) +𝑜 𝐶) ∈ ((𝐴 ·𝑜 𝐷) +𝑜 𝐸))
22 orc 885 . . . . . . . . 9 (𝐵𝐷 → (𝐵𝐷 ∨ (𝐵 = 𝐷𝐶𝐸)))
23 omeulem2 7900 . . . . . . . . . 10 (((𝐴 ∈ On ∧ 𝐴 ≠ ∅) ∧ (𝐵 ∈ On ∧ 𝐶𝐴) ∧ (𝐷 ∈ On ∧ 𝐸𝐴)) → ((𝐵𝐷 ∨ (𝐵 = 𝐷𝐶𝐸)) → ((𝐴 ·𝑜 𝐵) +𝑜 𝐶) ∈ ((𝐴 ·𝑜 𝐷) +𝑜 𝐸)))
2423adantr 468 . . . . . . . . 9 ((((𝐴 ∈ On ∧ 𝐴 ≠ ∅) ∧ (𝐵 ∈ On ∧ 𝐶𝐴) ∧ (𝐷 ∈ On ∧ 𝐸𝐴)) ∧ ((𝐴 ·𝑜 𝐵) +𝑜 𝐶) = ((𝐴 ·𝑜 𝐷) +𝑜 𝐸)) → ((𝐵𝐷 ∨ (𝐵 = 𝐷𝐶𝐸)) → ((𝐴 ·𝑜 𝐵) +𝑜 𝐶) ∈ ((𝐴 ·𝑜 𝐷) +𝑜 𝐸)))
2522, 24syl5 34 . . . . . . . 8 ((((𝐴 ∈ On ∧ 𝐴 ≠ ∅) ∧ (𝐵 ∈ On ∧ 𝐶𝐴) ∧ (𝐷 ∈ On ∧ 𝐸𝐴)) ∧ ((𝐴 ·𝑜 𝐵) +𝑜 𝐶) = ((𝐴 ·𝑜 𝐷) +𝑜 𝐸)) → (𝐵𝐷 → ((𝐴 ·𝑜 𝐵) +𝑜 𝐶) ∈ ((𝐴 ·𝑜 𝐷) +𝑜 𝐸)))
2621, 25mtod 189 . . . . . . 7 ((((𝐴 ∈ On ∧ 𝐴 ≠ ∅) ∧ (𝐵 ∈ On ∧ 𝐶𝐴) ∧ (𝐷 ∈ On ∧ 𝐸𝐴)) ∧ ((𝐴 ·𝑜 𝐵) +𝑜 𝐶) = ((𝐴 ·𝑜 𝐷) +𝑜 𝐸)) → ¬ 𝐵𝐷)
2726pm2.21d 119 . . . . . 6 ((((𝐴 ∈ On ∧ 𝐴 ≠ ∅) ∧ (𝐵 ∈ On ∧ 𝐶𝐴) ∧ (𝐷 ∈ On ∧ 𝐸𝐴)) ∧ ((𝐴 ·𝑜 𝐵) +𝑜 𝐶) = ((𝐴 ·𝑜 𝐷) +𝑜 𝐸)) → (𝐵𝐷𝐵 = 𝐷))
28 idd 24 . . . . . 6 ((((𝐴 ∈ On ∧ 𝐴 ≠ ∅) ∧ (𝐵 ∈ On ∧ 𝐶𝐴) ∧ (𝐷 ∈ On ∧ 𝐸𝐴)) ∧ ((𝐴 ·𝑜 𝐵) +𝑜 𝐶) = ((𝐴 ·𝑜 𝐷) +𝑜 𝐸)) → (𝐵 = 𝐷𝐵 = 𝐷))
2920, 9neleqtrrd 2907 . . . . . . . 8 ((((𝐴 ∈ On ∧ 𝐴 ≠ ∅) ∧ (𝐵 ∈ On ∧ 𝐶𝐴) ∧ (𝐷 ∈ On ∧ 𝐸𝐴)) ∧ ((𝐴 ·𝑜 𝐵) +𝑜 𝐶) = ((𝐴 ·𝑜 𝐷) +𝑜 𝐸)) → ¬ ((𝐴 ·𝑜 𝐷) +𝑜 𝐸) ∈ ((𝐴 ·𝑜 𝐵) +𝑜 𝐶))
30 orc 885 . . . . . . . . 9 (𝐷𝐵 → (𝐷𝐵 ∨ (𝐷 = 𝐵𝐸𝐶)))
31 simpl1r 1288 . . . . . . . . . 10 ((((𝐴 ∈ On ∧ 𝐴 ≠ ∅) ∧ (𝐵 ∈ On ∧ 𝐶𝐴) ∧ (𝐷 ∈ On ∧ 𝐸𝐴)) ∧ ((𝐴 ·𝑜 𝐵) +𝑜 𝐶) = ((𝐴 ·𝑜 𝐷) +𝑜 𝐸)) → 𝐴 ≠ ∅)
32 simpl2r 1292 . . . . . . . . . 10 ((((𝐴 ∈ On ∧ 𝐴 ≠ ∅) ∧ (𝐵 ∈ On ∧ 𝐶𝐴) ∧ (𝐷 ∈ On ∧ 𝐸𝐴)) ∧ ((𝐴 ·𝑜 𝐵) +𝑜 𝐶) = ((𝐴 ·𝑜 𝐷) +𝑜 𝐸)) → 𝐶𝐴)
33 omeulem2 7900 . . . . . . . . . 10 (((𝐴 ∈ On ∧ 𝐴 ≠ ∅) ∧ (𝐷 ∈ On ∧ 𝐸𝐴) ∧ (𝐵 ∈ On ∧ 𝐶𝐴)) → ((𝐷𝐵 ∨ (𝐷 = 𝐵𝐸𝐶)) → ((𝐴 ·𝑜 𝐷) +𝑜 𝐸) ∈ ((𝐴 ·𝑜 𝐵) +𝑜 𝐶)))
3410, 31, 4, 13, 1, 32, 33syl222anc 1498 . . . . . . . . 9 ((((𝐴 ∈ On ∧ 𝐴 ≠ ∅) ∧ (𝐵 ∈ On ∧ 𝐶𝐴) ∧ (𝐷 ∈ On ∧ 𝐸𝐴)) ∧ ((𝐴 ·𝑜 𝐵) +𝑜 𝐶) = ((𝐴 ·𝑜 𝐷) +𝑜 𝐸)) → ((𝐷𝐵 ∨ (𝐷 = 𝐵𝐸𝐶)) → ((𝐴 ·𝑜 𝐷) +𝑜 𝐸) ∈ ((𝐴 ·𝑜 𝐵) +𝑜 𝐶)))
3530, 34syl5 34 . . . . . . . 8 ((((𝐴 ∈ On ∧ 𝐴 ≠ ∅) ∧ (𝐵 ∈ On ∧ 𝐶𝐴) ∧ (𝐷 ∈ On ∧ 𝐸𝐴)) ∧ ((𝐴 ·𝑜 𝐵) +𝑜 𝐶) = ((𝐴 ·𝑜 𝐷) +𝑜 𝐸)) → (𝐷𝐵 → ((𝐴 ·𝑜 𝐷) +𝑜 𝐸) ∈ ((𝐴 ·𝑜 𝐵) +𝑜 𝐶)))
3629, 35mtod 189 . . . . . . 7 ((((𝐴 ∈ On ∧ 𝐴 ≠ ∅) ∧ (𝐵 ∈ On ∧ 𝐶𝐴) ∧ (𝐷 ∈ On ∧ 𝐸𝐴)) ∧ ((𝐴 ·𝑜 𝐵) +𝑜 𝐶) = ((𝐴 ·𝑜 𝐷) +𝑜 𝐸)) → ¬ 𝐷𝐵)
3736pm2.21d 119 . . . . . 6 ((((𝐴 ∈ On ∧ 𝐴 ≠ ∅) ∧ (𝐵 ∈ On ∧ 𝐶𝐴) ∧ (𝐷 ∈ On ∧ 𝐸𝐴)) ∧ ((𝐴 ·𝑜 𝐵) +𝑜 𝐶) = ((𝐴 ·𝑜 𝐷) +𝑜 𝐸)) → (𝐷𝐵𝐵 = 𝐷))
3827, 28, 373jaod 1546 . . . . 5 ((((𝐴 ∈ On ∧ 𝐴 ≠ ∅) ∧ (𝐵 ∈ On ∧ 𝐶𝐴) ∧ (𝐷 ∈ On ∧ 𝐸𝐴)) ∧ ((𝐴 ·𝑜 𝐵) +𝑜 𝐶) = ((𝐴 ·𝑜 𝐷) +𝑜 𝐸)) → ((𝐵𝐷𝐵 = 𝐷𝐷𝐵) → 𝐵 = 𝐷))
398, 38mpd 15 . . . 4 ((((𝐴 ∈ On ∧ 𝐴 ≠ ∅) ∧ (𝐵 ∈ On ∧ 𝐶𝐴) ∧ (𝐷 ∈ On ∧ 𝐸𝐴)) ∧ ((𝐴 ·𝑜 𝐵) +𝑜 𝐶) = ((𝐴 ·𝑜 𝐷) +𝑜 𝐸)) → 𝐵 = 𝐷)
40 onelon 5961 . . . . . . . 8 ((𝐴 ∈ On ∧ 𝐶𝐴) → 𝐶 ∈ On)
41 eloni 5946 . . . . . . . 8 (𝐶 ∈ On → Ord 𝐶)
4240, 41syl 17 . . . . . . 7 ((𝐴 ∈ On ∧ 𝐶𝐴) → Ord 𝐶)
4310, 32, 42syl2anc 575 . . . . . 6 ((((𝐴 ∈ On ∧ 𝐴 ≠ ∅) ∧ (𝐵 ∈ On ∧ 𝐶𝐴) ∧ (𝐷 ∈ On ∧ 𝐸𝐴)) ∧ ((𝐴 ·𝑜 𝐵) +𝑜 𝐶) = ((𝐴 ·𝑜 𝐷) +𝑜 𝐸)) → Ord 𝐶)
44 eloni 5946 . . . . . . . 8 (𝐸 ∈ On → Ord 𝐸)
4514, 44syl 17 . . . . . . 7 ((𝐴 ∈ On ∧ 𝐸𝐴) → Ord 𝐸)
4610, 13, 45syl2anc 575 . . . . . 6 ((((𝐴 ∈ On ∧ 𝐴 ≠ ∅) ∧ (𝐵 ∈ On ∧ 𝐶𝐴) ∧ (𝐷 ∈ On ∧ 𝐸𝐴)) ∧ ((𝐴 ·𝑜 𝐵) +𝑜 𝐶) = ((𝐴 ·𝑜 𝐷) +𝑜 𝐸)) → Ord 𝐸)
47 ordtri3or 5968 . . . . . 6 ((Ord 𝐶 ∧ Ord 𝐸) → (𝐶𝐸𝐶 = 𝐸𝐸𝐶))
4843, 46, 47syl2anc 575 . . . . 5 ((((𝐴 ∈ On ∧ 𝐴 ≠ ∅) ∧ (𝐵 ∈ On ∧ 𝐶𝐴) ∧ (𝐷 ∈ On ∧ 𝐸𝐴)) ∧ ((𝐴 ·𝑜 𝐵) +𝑜 𝐶) = ((𝐴 ·𝑜 𝐷) +𝑜 𝐸)) → (𝐶𝐸𝐶 = 𝐸𝐸𝐶))
49 olc 886 . . . . . . . . . 10 ((𝐵 = 𝐷𝐶𝐸) → (𝐵𝐷 ∨ (𝐵 = 𝐷𝐶𝐸)))
5049, 24syl5 34 . . . . . . . . 9 ((((𝐴 ∈ On ∧ 𝐴 ≠ ∅) ∧ (𝐵 ∈ On ∧ 𝐶𝐴) ∧ (𝐷 ∈ On ∧ 𝐸𝐴)) ∧ ((𝐴 ·𝑜 𝐵) +𝑜 𝐶) = ((𝐴 ·𝑜 𝐷) +𝑜 𝐸)) → ((𝐵 = 𝐷𝐶𝐸) → ((𝐴 ·𝑜 𝐵) +𝑜 𝐶) ∈ ((𝐴 ·𝑜 𝐷) +𝑜 𝐸)))
5139, 50mpand 678 . . . . . . . 8 ((((𝐴 ∈ On ∧ 𝐴 ≠ ∅) ∧ (𝐵 ∈ On ∧ 𝐶𝐴) ∧ (𝐷 ∈ On ∧ 𝐸𝐴)) ∧ ((𝐴 ·𝑜 𝐵) +𝑜 𝐶) = ((𝐴 ·𝑜 𝐷) +𝑜 𝐸)) → (𝐶𝐸 → ((𝐴 ·𝑜 𝐵) +𝑜 𝐶) ∈ ((𝐴 ·𝑜 𝐷) +𝑜 𝐸)))
5221, 51mtod 189 . . . . . . 7 ((((𝐴 ∈ On ∧ 𝐴 ≠ ∅) ∧ (𝐵 ∈ On ∧ 𝐶𝐴) ∧ (𝐷 ∈ On ∧ 𝐸𝐴)) ∧ ((𝐴 ·𝑜 𝐵) +𝑜 𝐶) = ((𝐴 ·𝑜 𝐷) +𝑜 𝐸)) → ¬ 𝐶𝐸)
5352pm2.21d 119 . . . . . 6 ((((𝐴 ∈ On ∧ 𝐴 ≠ ∅) ∧ (𝐵 ∈ On ∧ 𝐶𝐴) ∧ (𝐷 ∈ On ∧ 𝐸𝐴)) ∧ ((𝐴 ·𝑜 𝐵) +𝑜 𝐶) = ((𝐴 ·𝑜 𝐷) +𝑜 𝐸)) → (𝐶𝐸𝐶 = 𝐸))
54 idd 24 . . . . . 6 ((((𝐴 ∈ On ∧ 𝐴 ≠ ∅) ∧ (𝐵 ∈ On ∧ 𝐶𝐴) ∧ (𝐷 ∈ On ∧ 𝐸𝐴)) ∧ ((𝐴 ·𝑜 𝐵) +𝑜 𝐶) = ((𝐴 ·𝑜 𝐷) +𝑜 𝐸)) → (𝐶 = 𝐸𝐶 = 𝐸))
5539eqcomd 2812 . . . . . . . . 9 ((((𝐴 ∈ On ∧ 𝐴 ≠ ∅) ∧ (𝐵 ∈ On ∧ 𝐶𝐴) ∧ (𝐷 ∈ On ∧ 𝐸𝐴)) ∧ ((𝐴 ·𝑜 𝐵) +𝑜 𝐶) = ((𝐴 ·𝑜 𝐷) +𝑜 𝐸)) → 𝐷 = 𝐵)
56 olc 886 . . . . . . . . . 10 ((𝐷 = 𝐵𝐸𝐶) → (𝐷𝐵 ∨ (𝐷 = 𝐵𝐸𝐶)))
5756, 34syl5 34 . . . . . . . . 9 ((((𝐴 ∈ On ∧ 𝐴 ≠ ∅) ∧ (𝐵 ∈ On ∧ 𝐶𝐴) ∧ (𝐷 ∈ On ∧ 𝐸𝐴)) ∧ ((𝐴 ·𝑜 𝐵) +𝑜 𝐶) = ((𝐴 ·𝑜 𝐷) +𝑜 𝐸)) → ((𝐷 = 𝐵𝐸𝐶) → ((𝐴 ·𝑜 𝐷) +𝑜 𝐸) ∈ ((𝐴 ·𝑜 𝐵) +𝑜 𝐶)))
5855, 57mpand 678 . . . . . . . 8 ((((𝐴 ∈ On ∧ 𝐴 ≠ ∅) ∧ (𝐵 ∈ On ∧ 𝐶𝐴) ∧ (𝐷 ∈ On ∧ 𝐸𝐴)) ∧ ((𝐴 ·𝑜 𝐵) +𝑜 𝐶) = ((𝐴 ·𝑜 𝐷) +𝑜 𝐸)) → (𝐸𝐶 → ((𝐴 ·𝑜 𝐷) +𝑜 𝐸) ∈ ((𝐴 ·𝑜 𝐵) +𝑜 𝐶)))
5929, 58mtod 189 . . . . . . 7 ((((𝐴 ∈ On ∧ 𝐴 ≠ ∅) ∧ (𝐵 ∈ On ∧ 𝐶𝐴) ∧ (𝐷 ∈ On ∧ 𝐸𝐴)) ∧ ((𝐴 ·𝑜 𝐵) +𝑜 𝐶) = ((𝐴 ·𝑜 𝐷) +𝑜 𝐸)) → ¬ 𝐸𝐶)
6059pm2.21d 119 . . . . . 6 ((((𝐴 ∈ On ∧ 𝐴 ≠ ∅) ∧ (𝐵 ∈ On ∧ 𝐶𝐴) ∧ (𝐷 ∈ On ∧ 𝐸𝐴)) ∧ ((𝐴 ·𝑜 𝐵) +𝑜 𝐶) = ((𝐴 ·𝑜 𝐷) +𝑜 𝐸)) → (𝐸𝐶𝐶 = 𝐸))
6153, 54, 603jaod 1546 . . . . 5 ((((𝐴 ∈ On ∧ 𝐴 ≠ ∅) ∧ (𝐵 ∈ On ∧ 𝐶𝐴) ∧ (𝐷 ∈ On ∧ 𝐸𝐴)) ∧ ((𝐴 ·𝑜 𝐵) +𝑜 𝐶) = ((𝐴 ·𝑜 𝐷) +𝑜 𝐸)) → ((𝐶𝐸𝐶 = 𝐸𝐸𝐶) → 𝐶 = 𝐸))
6248, 61mpd 15 . . . 4 ((((𝐴 ∈ On ∧ 𝐴 ≠ ∅) ∧ (𝐵 ∈ On ∧ 𝐶𝐴) ∧ (𝐷 ∈ On ∧ 𝐸𝐴)) ∧ ((𝐴 ·𝑜 𝐵) +𝑜 𝐶) = ((𝐴 ·𝑜 𝐷) +𝑜 𝐸)) → 𝐶 = 𝐸)
6339, 62jca 503 . . 3 ((((𝐴 ∈ On ∧ 𝐴 ≠ ∅) ∧ (𝐵 ∈ On ∧ 𝐶𝐴) ∧ (𝐷 ∈ On ∧ 𝐸𝐴)) ∧ ((𝐴 ·𝑜 𝐵) +𝑜 𝐶) = ((𝐴 ·𝑜 𝐷) +𝑜 𝐸)) → (𝐵 = 𝐷𝐶 = 𝐸))
6463ex 399 . 2 (((𝐴 ∈ On ∧ 𝐴 ≠ ∅) ∧ (𝐵 ∈ On ∧ 𝐶𝐴) ∧ (𝐷 ∈ On ∧ 𝐸𝐴)) → (((𝐴 ·𝑜 𝐵) +𝑜 𝐶) = ((𝐴 ·𝑜 𝐷) +𝑜 𝐸) → (𝐵 = 𝐷𝐶 = 𝐸)))
65 oveq2 6882 . . 3 (𝐵 = 𝐷 → (𝐴 ·𝑜 𝐵) = (𝐴 ·𝑜 𝐷))
66 id 22 . . 3 (𝐶 = 𝐸𝐶 = 𝐸)
6765, 66oveqan12d 6893 . 2 ((𝐵 = 𝐷𝐶 = 𝐸) → ((𝐴 ·𝑜 𝐵) +𝑜 𝐶) = ((𝐴 ·𝑜 𝐷) +𝑜 𝐸))
6864, 67impbid1 216 1 (((𝐴 ∈ On ∧ 𝐴 ≠ ∅) ∧ (𝐵 ∈ On ∧ 𝐶𝐴) ∧ (𝐷 ∈ On ∧ 𝐸𝐴)) → (((𝐴 ·𝑜 𝐵) +𝑜 𝐶) = ((𝐴 ·𝑜 𝐷) +𝑜 𝐸) ↔ (𝐵 = 𝐷𝐶 = 𝐸)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 197  wa 384  wo 865  w3o 1099  w3a 1100   = wceq 1637  wcel 2156  wne 2978  c0 4116  Ord word 5935  Oncon0 5936  (class class class)co 6874   +𝑜 coa 7793   ·𝑜 comu 7794
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1877  ax-4 1894  ax-5 2001  ax-6 2068  ax-7 2104  ax-8 2158  ax-9 2165  ax-10 2185  ax-11 2201  ax-12 2214  ax-13 2420  ax-ext 2784  ax-rep 4964  ax-sep 4975  ax-nul 4983  ax-pow 5035  ax-pr 5096  ax-un 7179
This theorem depends on definitions:  df-bi 198  df-an 385  df-or 866  df-3or 1101  df-3an 1102  df-tru 1641  df-ex 1860  df-nf 1864  df-sb 2061  df-eu 2634  df-mo 2635  df-clab 2793  df-cleq 2799  df-clel 2802  df-nfc 2937  df-ne 2979  df-ral 3101  df-rex 3102  df-reu 3103  df-rab 3105  df-v 3393  df-sbc 3634  df-csb 3729  df-dif 3772  df-un 3774  df-in 3776  df-ss 3783  df-pss 3785  df-nul 4117  df-if 4280  df-pw 4353  df-sn 4371  df-pr 4373  df-tp 4375  df-op 4377  df-uni 4631  df-iun 4714  df-br 4845  df-opab 4907  df-mpt 4924  df-tr 4947  df-id 5219  df-eprel 5224  df-po 5232  df-so 5233  df-fr 5270  df-we 5272  df-xp 5317  df-rel 5318  df-cnv 5319  df-co 5320  df-dm 5321  df-rn 5322  df-res 5323  df-ima 5324  df-pred 5893  df-ord 5939  df-on 5940  df-lim 5941  df-suc 5942  df-iota 6064  df-fun 6103  df-fn 6104  df-f 6105  df-f1 6106  df-fo 6107  df-f1o 6108  df-fv 6109  df-ov 6877  df-oprab 6878  df-mpt2 6879  df-om 7296  df-wrecs 7642  df-recs 7704  df-rdg 7742  df-oadd 7800  df-omul 7801
This theorem is referenced by:  omeu  7902  dfac12lem2  9251
  Copyright terms: Public domain W3C validator