Proof of Theorem omopth2
Step | Hyp | Ref
| Expression |
1 | | simpl2l 1224 |
. . . . . . 7
⊢ ((((𝐴 ∈ On ∧ 𝐴 ≠ ∅) ∧ (𝐵 ∈ On ∧ 𝐶 ∈ 𝐴) ∧ (𝐷 ∈ On ∧ 𝐸 ∈ 𝐴)) ∧ ((𝐴 ·o 𝐵) +o 𝐶) = ((𝐴 ·o 𝐷) +o 𝐸)) → 𝐵 ∈ On) |
2 | | eloni 6261 |
. . . . . . 7
⊢ (𝐵 ∈ On → Ord 𝐵) |
3 | 1, 2 | syl 17 |
. . . . . 6
⊢ ((((𝐴 ∈ On ∧ 𝐴 ≠ ∅) ∧ (𝐵 ∈ On ∧ 𝐶 ∈ 𝐴) ∧ (𝐷 ∈ On ∧ 𝐸 ∈ 𝐴)) ∧ ((𝐴 ·o 𝐵) +o 𝐶) = ((𝐴 ·o 𝐷) +o 𝐸)) → Ord 𝐵) |
4 | | simpl3l 1226 |
. . . . . . 7
⊢ ((((𝐴 ∈ On ∧ 𝐴 ≠ ∅) ∧ (𝐵 ∈ On ∧ 𝐶 ∈ 𝐴) ∧ (𝐷 ∈ On ∧ 𝐸 ∈ 𝐴)) ∧ ((𝐴 ·o 𝐵) +o 𝐶) = ((𝐴 ·o 𝐷) +o 𝐸)) → 𝐷 ∈ On) |
5 | | eloni 6261 |
. . . . . . 7
⊢ (𝐷 ∈ On → Ord 𝐷) |
6 | 4, 5 | syl 17 |
. . . . . 6
⊢ ((((𝐴 ∈ On ∧ 𝐴 ≠ ∅) ∧ (𝐵 ∈ On ∧ 𝐶 ∈ 𝐴) ∧ (𝐷 ∈ On ∧ 𝐸 ∈ 𝐴)) ∧ ((𝐴 ·o 𝐵) +o 𝐶) = ((𝐴 ·o 𝐷) +o 𝐸)) → Ord 𝐷) |
7 | | ordtri3or 6283 |
. . . . . 6
⊢ ((Ord
𝐵 ∧ Ord 𝐷) → (𝐵 ∈ 𝐷 ∨ 𝐵 = 𝐷 ∨ 𝐷 ∈ 𝐵)) |
8 | 3, 6, 7 | syl2anc 583 |
. . . . 5
⊢ ((((𝐴 ∈ On ∧ 𝐴 ≠ ∅) ∧ (𝐵 ∈ On ∧ 𝐶 ∈ 𝐴) ∧ (𝐷 ∈ On ∧ 𝐸 ∈ 𝐴)) ∧ ((𝐴 ·o 𝐵) +o 𝐶) = ((𝐴 ·o 𝐷) +o 𝐸)) → (𝐵 ∈ 𝐷 ∨ 𝐵 = 𝐷 ∨ 𝐷 ∈ 𝐵)) |
9 | | simpr 484 |
. . . . . . . . 9
⊢ ((((𝐴 ∈ On ∧ 𝐴 ≠ ∅) ∧ (𝐵 ∈ On ∧ 𝐶 ∈ 𝐴) ∧ (𝐷 ∈ On ∧ 𝐸 ∈ 𝐴)) ∧ ((𝐴 ·o 𝐵) +o 𝐶) = ((𝐴 ·o 𝐷) +o 𝐸)) → ((𝐴 ·o 𝐵) +o 𝐶) = ((𝐴 ·o 𝐷) +o 𝐸)) |
10 | | simpl1l 1222 |
. . . . . . . . . . . 12
⊢ ((((𝐴 ∈ On ∧ 𝐴 ≠ ∅) ∧ (𝐵 ∈ On ∧ 𝐶 ∈ 𝐴) ∧ (𝐷 ∈ On ∧ 𝐸 ∈ 𝐴)) ∧ ((𝐴 ·o 𝐵) +o 𝐶) = ((𝐴 ·o 𝐷) +o 𝐸)) → 𝐴 ∈ On) |
11 | | omcl 8328 |
. . . . . . . . . . . 12
⊢ ((𝐴 ∈ On ∧ 𝐷 ∈ On) → (𝐴 ·o 𝐷) ∈ On) |
12 | 10, 4, 11 | syl2anc 583 |
. . . . . . . . . . 11
⊢ ((((𝐴 ∈ On ∧ 𝐴 ≠ ∅) ∧ (𝐵 ∈ On ∧ 𝐶 ∈ 𝐴) ∧ (𝐷 ∈ On ∧ 𝐸 ∈ 𝐴)) ∧ ((𝐴 ·o 𝐵) +o 𝐶) = ((𝐴 ·o 𝐷) +o 𝐸)) → (𝐴 ·o 𝐷) ∈ On) |
13 | | simpl3r 1227 |
. . . . . . . . . . . 12
⊢ ((((𝐴 ∈ On ∧ 𝐴 ≠ ∅) ∧ (𝐵 ∈ On ∧ 𝐶 ∈ 𝐴) ∧ (𝐷 ∈ On ∧ 𝐸 ∈ 𝐴)) ∧ ((𝐴 ·o 𝐵) +o 𝐶) = ((𝐴 ·o 𝐷) +o 𝐸)) → 𝐸 ∈ 𝐴) |
14 | | onelon 6276 |
. . . . . . . . . . . 12
⊢ ((𝐴 ∈ On ∧ 𝐸 ∈ 𝐴) → 𝐸 ∈ On) |
15 | 10, 13, 14 | syl2anc 583 |
. . . . . . . . . . 11
⊢ ((((𝐴 ∈ On ∧ 𝐴 ≠ ∅) ∧ (𝐵 ∈ On ∧ 𝐶 ∈ 𝐴) ∧ (𝐷 ∈ On ∧ 𝐸 ∈ 𝐴)) ∧ ((𝐴 ·o 𝐵) +o 𝐶) = ((𝐴 ·o 𝐷) +o 𝐸)) → 𝐸 ∈ On) |
16 | | oacl 8327 |
. . . . . . . . . . 11
⊢ (((𝐴 ·o 𝐷) ∈ On ∧ 𝐸 ∈ On) → ((𝐴 ·o 𝐷) +o 𝐸) ∈ On) |
17 | 12, 15, 16 | syl2anc 583 |
. . . . . . . . . 10
⊢ ((((𝐴 ∈ On ∧ 𝐴 ≠ ∅) ∧ (𝐵 ∈ On ∧ 𝐶 ∈ 𝐴) ∧ (𝐷 ∈ On ∧ 𝐸 ∈ 𝐴)) ∧ ((𝐴 ·o 𝐵) +o 𝐶) = ((𝐴 ·o 𝐷) +o 𝐸)) → ((𝐴 ·o 𝐷) +o 𝐸) ∈ On) |
18 | | eloni 6261 |
. . . . . . . . . 10
⊢ (((𝐴 ·o 𝐷) +o 𝐸) ∈ On → Ord ((𝐴 ·o 𝐷) +o 𝐸)) |
19 | | ordirr 6269 |
. . . . . . . . . 10
⊢ (Ord
((𝐴 ·o
𝐷) +o 𝐸) → ¬ ((𝐴 ·o 𝐷) +o 𝐸) ∈ ((𝐴 ·o 𝐷) +o 𝐸)) |
20 | 17, 18, 19 | 3syl 18 |
. . . . . . . . 9
⊢ ((((𝐴 ∈ On ∧ 𝐴 ≠ ∅) ∧ (𝐵 ∈ On ∧ 𝐶 ∈ 𝐴) ∧ (𝐷 ∈ On ∧ 𝐸 ∈ 𝐴)) ∧ ((𝐴 ·o 𝐵) +o 𝐶) = ((𝐴 ·o 𝐷) +o 𝐸)) → ¬ ((𝐴 ·o 𝐷) +o 𝐸) ∈ ((𝐴 ·o 𝐷) +o 𝐸)) |
21 | 9, 20 | eqneltrd 2858 |
. . . . . . . 8
⊢ ((((𝐴 ∈ On ∧ 𝐴 ≠ ∅) ∧ (𝐵 ∈ On ∧ 𝐶 ∈ 𝐴) ∧ (𝐷 ∈ On ∧ 𝐸 ∈ 𝐴)) ∧ ((𝐴 ·o 𝐵) +o 𝐶) = ((𝐴 ·o 𝐷) +o 𝐸)) → ¬ ((𝐴 ·o 𝐵) +o 𝐶) ∈ ((𝐴 ·o 𝐷) +o 𝐸)) |
22 | | orc 863 |
. . . . . . . . 9
⊢ (𝐵 ∈ 𝐷 → (𝐵 ∈ 𝐷 ∨ (𝐵 = 𝐷 ∧ 𝐶 ∈ 𝐸))) |
23 | | omeulem2 8376 |
. . . . . . . . . 10
⊢ (((𝐴 ∈ On ∧ 𝐴 ≠ ∅) ∧ (𝐵 ∈ On ∧ 𝐶 ∈ 𝐴) ∧ (𝐷 ∈ On ∧ 𝐸 ∈ 𝐴)) → ((𝐵 ∈ 𝐷 ∨ (𝐵 = 𝐷 ∧ 𝐶 ∈ 𝐸)) → ((𝐴 ·o 𝐵) +o 𝐶) ∈ ((𝐴 ·o 𝐷) +o 𝐸))) |
24 | 23 | adantr 480 |
. . . . . . . . 9
⊢ ((((𝐴 ∈ On ∧ 𝐴 ≠ ∅) ∧ (𝐵 ∈ On ∧ 𝐶 ∈ 𝐴) ∧ (𝐷 ∈ On ∧ 𝐸 ∈ 𝐴)) ∧ ((𝐴 ·o 𝐵) +o 𝐶) = ((𝐴 ·o 𝐷) +o 𝐸)) → ((𝐵 ∈ 𝐷 ∨ (𝐵 = 𝐷 ∧ 𝐶 ∈ 𝐸)) → ((𝐴 ·o 𝐵) +o 𝐶) ∈ ((𝐴 ·o 𝐷) +o 𝐸))) |
25 | 22, 24 | syl5 34 |
. . . . . . . 8
⊢ ((((𝐴 ∈ On ∧ 𝐴 ≠ ∅) ∧ (𝐵 ∈ On ∧ 𝐶 ∈ 𝐴) ∧ (𝐷 ∈ On ∧ 𝐸 ∈ 𝐴)) ∧ ((𝐴 ·o 𝐵) +o 𝐶) = ((𝐴 ·o 𝐷) +o 𝐸)) → (𝐵 ∈ 𝐷 → ((𝐴 ·o 𝐵) +o 𝐶) ∈ ((𝐴 ·o 𝐷) +o 𝐸))) |
26 | 21, 25 | mtod 197 |
. . . . . . 7
⊢ ((((𝐴 ∈ On ∧ 𝐴 ≠ ∅) ∧ (𝐵 ∈ On ∧ 𝐶 ∈ 𝐴) ∧ (𝐷 ∈ On ∧ 𝐸 ∈ 𝐴)) ∧ ((𝐴 ·o 𝐵) +o 𝐶) = ((𝐴 ·o 𝐷) +o 𝐸)) → ¬ 𝐵 ∈ 𝐷) |
27 | 26 | pm2.21d 121 |
. . . . . 6
⊢ ((((𝐴 ∈ On ∧ 𝐴 ≠ ∅) ∧ (𝐵 ∈ On ∧ 𝐶 ∈ 𝐴) ∧ (𝐷 ∈ On ∧ 𝐸 ∈ 𝐴)) ∧ ((𝐴 ·o 𝐵) +o 𝐶) = ((𝐴 ·o 𝐷) +o 𝐸)) → (𝐵 ∈ 𝐷 → 𝐵 = 𝐷)) |
28 | | idd 24 |
. . . . . 6
⊢ ((((𝐴 ∈ On ∧ 𝐴 ≠ ∅) ∧ (𝐵 ∈ On ∧ 𝐶 ∈ 𝐴) ∧ (𝐷 ∈ On ∧ 𝐸 ∈ 𝐴)) ∧ ((𝐴 ·o 𝐵) +o 𝐶) = ((𝐴 ·o 𝐷) +o 𝐸)) → (𝐵 = 𝐷 → 𝐵 = 𝐷)) |
29 | 20, 9 | neleqtrrd 2861 |
. . . . . . . 8
⊢ ((((𝐴 ∈ On ∧ 𝐴 ≠ ∅) ∧ (𝐵 ∈ On ∧ 𝐶 ∈ 𝐴) ∧ (𝐷 ∈ On ∧ 𝐸 ∈ 𝐴)) ∧ ((𝐴 ·o 𝐵) +o 𝐶) = ((𝐴 ·o 𝐷) +o 𝐸)) → ¬ ((𝐴 ·o 𝐷) +o 𝐸) ∈ ((𝐴 ·o 𝐵) +o 𝐶)) |
30 | | orc 863 |
. . . . . . . . 9
⊢ (𝐷 ∈ 𝐵 → (𝐷 ∈ 𝐵 ∨ (𝐷 = 𝐵 ∧ 𝐸 ∈ 𝐶))) |
31 | | simpl1r 1223 |
. . . . . . . . . 10
⊢ ((((𝐴 ∈ On ∧ 𝐴 ≠ ∅) ∧ (𝐵 ∈ On ∧ 𝐶 ∈ 𝐴) ∧ (𝐷 ∈ On ∧ 𝐸 ∈ 𝐴)) ∧ ((𝐴 ·o 𝐵) +o 𝐶) = ((𝐴 ·o 𝐷) +o 𝐸)) → 𝐴 ≠ ∅) |
32 | | simpl2r 1225 |
. . . . . . . . . 10
⊢ ((((𝐴 ∈ On ∧ 𝐴 ≠ ∅) ∧ (𝐵 ∈ On ∧ 𝐶 ∈ 𝐴) ∧ (𝐷 ∈ On ∧ 𝐸 ∈ 𝐴)) ∧ ((𝐴 ·o 𝐵) +o 𝐶) = ((𝐴 ·o 𝐷) +o 𝐸)) → 𝐶 ∈ 𝐴) |
33 | | omeulem2 8376 |
. . . . . . . . . 10
⊢ (((𝐴 ∈ On ∧ 𝐴 ≠ ∅) ∧ (𝐷 ∈ On ∧ 𝐸 ∈ 𝐴) ∧ (𝐵 ∈ On ∧ 𝐶 ∈ 𝐴)) → ((𝐷 ∈ 𝐵 ∨ (𝐷 = 𝐵 ∧ 𝐸 ∈ 𝐶)) → ((𝐴 ·o 𝐷) +o 𝐸) ∈ ((𝐴 ·o 𝐵) +o 𝐶))) |
34 | 10, 31, 4, 13, 1, 32, 33 | syl222anc 1384 |
. . . . . . . . 9
⊢ ((((𝐴 ∈ On ∧ 𝐴 ≠ ∅) ∧ (𝐵 ∈ On ∧ 𝐶 ∈ 𝐴) ∧ (𝐷 ∈ On ∧ 𝐸 ∈ 𝐴)) ∧ ((𝐴 ·o 𝐵) +o 𝐶) = ((𝐴 ·o 𝐷) +o 𝐸)) → ((𝐷 ∈ 𝐵 ∨ (𝐷 = 𝐵 ∧ 𝐸 ∈ 𝐶)) → ((𝐴 ·o 𝐷) +o 𝐸) ∈ ((𝐴 ·o 𝐵) +o 𝐶))) |
35 | 30, 34 | syl5 34 |
. . . . . . . 8
⊢ ((((𝐴 ∈ On ∧ 𝐴 ≠ ∅) ∧ (𝐵 ∈ On ∧ 𝐶 ∈ 𝐴) ∧ (𝐷 ∈ On ∧ 𝐸 ∈ 𝐴)) ∧ ((𝐴 ·o 𝐵) +o 𝐶) = ((𝐴 ·o 𝐷) +o 𝐸)) → (𝐷 ∈ 𝐵 → ((𝐴 ·o 𝐷) +o 𝐸) ∈ ((𝐴 ·o 𝐵) +o 𝐶))) |
36 | 29, 35 | mtod 197 |
. . . . . . 7
⊢ ((((𝐴 ∈ On ∧ 𝐴 ≠ ∅) ∧ (𝐵 ∈ On ∧ 𝐶 ∈ 𝐴) ∧ (𝐷 ∈ On ∧ 𝐸 ∈ 𝐴)) ∧ ((𝐴 ·o 𝐵) +o 𝐶) = ((𝐴 ·o 𝐷) +o 𝐸)) → ¬ 𝐷 ∈ 𝐵) |
37 | 36 | pm2.21d 121 |
. . . . . 6
⊢ ((((𝐴 ∈ On ∧ 𝐴 ≠ ∅) ∧ (𝐵 ∈ On ∧ 𝐶 ∈ 𝐴) ∧ (𝐷 ∈ On ∧ 𝐸 ∈ 𝐴)) ∧ ((𝐴 ·o 𝐵) +o 𝐶) = ((𝐴 ·o 𝐷) +o 𝐸)) → (𝐷 ∈ 𝐵 → 𝐵 = 𝐷)) |
38 | 27, 28, 37 | 3jaod 1426 |
. . . . 5
⊢ ((((𝐴 ∈ On ∧ 𝐴 ≠ ∅) ∧ (𝐵 ∈ On ∧ 𝐶 ∈ 𝐴) ∧ (𝐷 ∈ On ∧ 𝐸 ∈ 𝐴)) ∧ ((𝐴 ·o 𝐵) +o 𝐶) = ((𝐴 ·o 𝐷) +o 𝐸)) → ((𝐵 ∈ 𝐷 ∨ 𝐵 = 𝐷 ∨ 𝐷 ∈ 𝐵) → 𝐵 = 𝐷)) |
39 | 8, 38 | mpd 15 |
. . . 4
⊢ ((((𝐴 ∈ On ∧ 𝐴 ≠ ∅) ∧ (𝐵 ∈ On ∧ 𝐶 ∈ 𝐴) ∧ (𝐷 ∈ On ∧ 𝐸 ∈ 𝐴)) ∧ ((𝐴 ·o 𝐵) +o 𝐶) = ((𝐴 ·o 𝐷) +o 𝐸)) → 𝐵 = 𝐷) |
40 | | onelon 6276 |
. . . . . . . 8
⊢ ((𝐴 ∈ On ∧ 𝐶 ∈ 𝐴) → 𝐶 ∈ On) |
41 | | eloni 6261 |
. . . . . . . 8
⊢ (𝐶 ∈ On → Ord 𝐶) |
42 | 40, 41 | syl 17 |
. . . . . . 7
⊢ ((𝐴 ∈ On ∧ 𝐶 ∈ 𝐴) → Ord 𝐶) |
43 | 10, 32, 42 | syl2anc 583 |
. . . . . 6
⊢ ((((𝐴 ∈ On ∧ 𝐴 ≠ ∅) ∧ (𝐵 ∈ On ∧ 𝐶 ∈ 𝐴) ∧ (𝐷 ∈ On ∧ 𝐸 ∈ 𝐴)) ∧ ((𝐴 ·o 𝐵) +o 𝐶) = ((𝐴 ·o 𝐷) +o 𝐸)) → Ord 𝐶) |
44 | | eloni 6261 |
. . . . . . . 8
⊢ (𝐸 ∈ On → Ord 𝐸) |
45 | 14, 44 | syl 17 |
. . . . . . 7
⊢ ((𝐴 ∈ On ∧ 𝐸 ∈ 𝐴) → Ord 𝐸) |
46 | 10, 13, 45 | syl2anc 583 |
. . . . . 6
⊢ ((((𝐴 ∈ On ∧ 𝐴 ≠ ∅) ∧ (𝐵 ∈ On ∧ 𝐶 ∈ 𝐴) ∧ (𝐷 ∈ On ∧ 𝐸 ∈ 𝐴)) ∧ ((𝐴 ·o 𝐵) +o 𝐶) = ((𝐴 ·o 𝐷) +o 𝐸)) → Ord 𝐸) |
47 | | ordtri3or 6283 |
. . . . . 6
⊢ ((Ord
𝐶 ∧ Ord 𝐸) → (𝐶 ∈ 𝐸 ∨ 𝐶 = 𝐸 ∨ 𝐸 ∈ 𝐶)) |
48 | 43, 46, 47 | syl2anc 583 |
. . . . 5
⊢ ((((𝐴 ∈ On ∧ 𝐴 ≠ ∅) ∧ (𝐵 ∈ On ∧ 𝐶 ∈ 𝐴) ∧ (𝐷 ∈ On ∧ 𝐸 ∈ 𝐴)) ∧ ((𝐴 ·o 𝐵) +o 𝐶) = ((𝐴 ·o 𝐷) +o 𝐸)) → (𝐶 ∈ 𝐸 ∨ 𝐶 = 𝐸 ∨ 𝐸 ∈ 𝐶)) |
49 | | olc 864 |
. . . . . . . . . 10
⊢ ((𝐵 = 𝐷 ∧ 𝐶 ∈ 𝐸) → (𝐵 ∈ 𝐷 ∨ (𝐵 = 𝐷 ∧ 𝐶 ∈ 𝐸))) |
50 | 49, 24 | syl5 34 |
. . . . . . . . 9
⊢ ((((𝐴 ∈ On ∧ 𝐴 ≠ ∅) ∧ (𝐵 ∈ On ∧ 𝐶 ∈ 𝐴) ∧ (𝐷 ∈ On ∧ 𝐸 ∈ 𝐴)) ∧ ((𝐴 ·o 𝐵) +o 𝐶) = ((𝐴 ·o 𝐷) +o 𝐸)) → ((𝐵 = 𝐷 ∧ 𝐶 ∈ 𝐸) → ((𝐴 ·o 𝐵) +o 𝐶) ∈ ((𝐴 ·o 𝐷) +o 𝐸))) |
51 | 39, 50 | mpand 691 |
. . . . . . . 8
⊢ ((((𝐴 ∈ On ∧ 𝐴 ≠ ∅) ∧ (𝐵 ∈ On ∧ 𝐶 ∈ 𝐴) ∧ (𝐷 ∈ On ∧ 𝐸 ∈ 𝐴)) ∧ ((𝐴 ·o 𝐵) +o 𝐶) = ((𝐴 ·o 𝐷) +o 𝐸)) → (𝐶 ∈ 𝐸 → ((𝐴 ·o 𝐵) +o 𝐶) ∈ ((𝐴 ·o 𝐷) +o 𝐸))) |
52 | 21, 51 | mtod 197 |
. . . . . . 7
⊢ ((((𝐴 ∈ On ∧ 𝐴 ≠ ∅) ∧ (𝐵 ∈ On ∧ 𝐶 ∈ 𝐴) ∧ (𝐷 ∈ On ∧ 𝐸 ∈ 𝐴)) ∧ ((𝐴 ·o 𝐵) +o 𝐶) = ((𝐴 ·o 𝐷) +o 𝐸)) → ¬ 𝐶 ∈ 𝐸) |
53 | 52 | pm2.21d 121 |
. . . . . 6
⊢ ((((𝐴 ∈ On ∧ 𝐴 ≠ ∅) ∧ (𝐵 ∈ On ∧ 𝐶 ∈ 𝐴) ∧ (𝐷 ∈ On ∧ 𝐸 ∈ 𝐴)) ∧ ((𝐴 ·o 𝐵) +o 𝐶) = ((𝐴 ·o 𝐷) +o 𝐸)) → (𝐶 ∈ 𝐸 → 𝐶 = 𝐸)) |
54 | | idd 24 |
. . . . . 6
⊢ ((((𝐴 ∈ On ∧ 𝐴 ≠ ∅) ∧ (𝐵 ∈ On ∧ 𝐶 ∈ 𝐴) ∧ (𝐷 ∈ On ∧ 𝐸 ∈ 𝐴)) ∧ ((𝐴 ·o 𝐵) +o 𝐶) = ((𝐴 ·o 𝐷) +o 𝐸)) → (𝐶 = 𝐸 → 𝐶 = 𝐸)) |
55 | 39 | eqcomd 2744 |
. . . . . . . . 9
⊢ ((((𝐴 ∈ On ∧ 𝐴 ≠ ∅) ∧ (𝐵 ∈ On ∧ 𝐶 ∈ 𝐴) ∧ (𝐷 ∈ On ∧ 𝐸 ∈ 𝐴)) ∧ ((𝐴 ·o 𝐵) +o 𝐶) = ((𝐴 ·o 𝐷) +o 𝐸)) → 𝐷 = 𝐵) |
56 | | olc 864 |
. . . . . . . . . 10
⊢ ((𝐷 = 𝐵 ∧ 𝐸 ∈ 𝐶) → (𝐷 ∈ 𝐵 ∨ (𝐷 = 𝐵 ∧ 𝐸 ∈ 𝐶))) |
57 | 56, 34 | syl5 34 |
. . . . . . . . 9
⊢ ((((𝐴 ∈ On ∧ 𝐴 ≠ ∅) ∧ (𝐵 ∈ On ∧ 𝐶 ∈ 𝐴) ∧ (𝐷 ∈ On ∧ 𝐸 ∈ 𝐴)) ∧ ((𝐴 ·o 𝐵) +o 𝐶) = ((𝐴 ·o 𝐷) +o 𝐸)) → ((𝐷 = 𝐵 ∧ 𝐸 ∈ 𝐶) → ((𝐴 ·o 𝐷) +o 𝐸) ∈ ((𝐴 ·o 𝐵) +o 𝐶))) |
58 | 55, 57 | mpand 691 |
. . . . . . . 8
⊢ ((((𝐴 ∈ On ∧ 𝐴 ≠ ∅) ∧ (𝐵 ∈ On ∧ 𝐶 ∈ 𝐴) ∧ (𝐷 ∈ On ∧ 𝐸 ∈ 𝐴)) ∧ ((𝐴 ·o 𝐵) +o 𝐶) = ((𝐴 ·o 𝐷) +o 𝐸)) → (𝐸 ∈ 𝐶 → ((𝐴 ·o 𝐷) +o 𝐸) ∈ ((𝐴 ·o 𝐵) +o 𝐶))) |
59 | 29, 58 | mtod 197 |
. . . . . . 7
⊢ ((((𝐴 ∈ On ∧ 𝐴 ≠ ∅) ∧ (𝐵 ∈ On ∧ 𝐶 ∈ 𝐴) ∧ (𝐷 ∈ On ∧ 𝐸 ∈ 𝐴)) ∧ ((𝐴 ·o 𝐵) +o 𝐶) = ((𝐴 ·o 𝐷) +o 𝐸)) → ¬ 𝐸 ∈ 𝐶) |
60 | 59 | pm2.21d 121 |
. . . . . 6
⊢ ((((𝐴 ∈ On ∧ 𝐴 ≠ ∅) ∧ (𝐵 ∈ On ∧ 𝐶 ∈ 𝐴) ∧ (𝐷 ∈ On ∧ 𝐸 ∈ 𝐴)) ∧ ((𝐴 ·o 𝐵) +o 𝐶) = ((𝐴 ·o 𝐷) +o 𝐸)) → (𝐸 ∈ 𝐶 → 𝐶 = 𝐸)) |
61 | 53, 54, 60 | 3jaod 1426 |
. . . . 5
⊢ ((((𝐴 ∈ On ∧ 𝐴 ≠ ∅) ∧ (𝐵 ∈ On ∧ 𝐶 ∈ 𝐴) ∧ (𝐷 ∈ On ∧ 𝐸 ∈ 𝐴)) ∧ ((𝐴 ·o 𝐵) +o 𝐶) = ((𝐴 ·o 𝐷) +o 𝐸)) → ((𝐶 ∈ 𝐸 ∨ 𝐶 = 𝐸 ∨ 𝐸 ∈ 𝐶) → 𝐶 = 𝐸)) |
62 | 48, 61 | mpd 15 |
. . . 4
⊢ ((((𝐴 ∈ On ∧ 𝐴 ≠ ∅) ∧ (𝐵 ∈ On ∧ 𝐶 ∈ 𝐴) ∧ (𝐷 ∈ On ∧ 𝐸 ∈ 𝐴)) ∧ ((𝐴 ·o 𝐵) +o 𝐶) = ((𝐴 ·o 𝐷) +o 𝐸)) → 𝐶 = 𝐸) |
63 | 39, 62 | jca 511 |
. . 3
⊢ ((((𝐴 ∈ On ∧ 𝐴 ≠ ∅) ∧ (𝐵 ∈ On ∧ 𝐶 ∈ 𝐴) ∧ (𝐷 ∈ On ∧ 𝐸 ∈ 𝐴)) ∧ ((𝐴 ·o 𝐵) +o 𝐶) = ((𝐴 ·o 𝐷) +o 𝐸)) → (𝐵 = 𝐷 ∧ 𝐶 = 𝐸)) |
64 | 63 | ex 412 |
. 2
⊢ (((𝐴 ∈ On ∧ 𝐴 ≠ ∅) ∧ (𝐵 ∈ On ∧ 𝐶 ∈ 𝐴) ∧ (𝐷 ∈ On ∧ 𝐸 ∈ 𝐴)) → (((𝐴 ·o 𝐵) +o 𝐶) = ((𝐴 ·o 𝐷) +o 𝐸) → (𝐵 = 𝐷 ∧ 𝐶 = 𝐸))) |
65 | | oveq2 7263 |
. . 3
⊢ (𝐵 = 𝐷 → (𝐴 ·o 𝐵) = (𝐴 ·o 𝐷)) |
66 | | id 22 |
. . 3
⊢ (𝐶 = 𝐸 → 𝐶 = 𝐸) |
67 | 65, 66 | oveqan12d 7274 |
. 2
⊢ ((𝐵 = 𝐷 ∧ 𝐶 = 𝐸) → ((𝐴 ·o 𝐵) +o 𝐶) = ((𝐴 ·o 𝐷) +o 𝐸)) |
68 | 64, 67 | impbid1 224 |
1
⊢ (((𝐴 ∈ On ∧ 𝐴 ≠ ∅) ∧ (𝐵 ∈ On ∧ 𝐶 ∈ 𝐴) ∧ (𝐷 ∈ On ∧ 𝐸 ∈ 𝐴)) → (((𝐴 ·o 𝐵) +o 𝐶) = ((𝐴 ·o 𝐷) +o 𝐸) ↔ (𝐵 = 𝐷 ∧ 𝐶 = 𝐸))) |