MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  omopth2 Structured version   Visualization version   GIF version

Theorem omopth2 8505
Description: An ordered pair-like theorem for ordinal multiplication. (Contributed by Mario Carneiro, 29-May-2015.)
Assertion
Ref Expression
omopth2 (((𝐴 ∈ On ∧ 𝐴 ≠ ∅) ∧ (𝐵 ∈ On ∧ 𝐶𝐴) ∧ (𝐷 ∈ On ∧ 𝐸𝐴)) → (((𝐴 ·o 𝐵) +o 𝐶) = ((𝐴 ·o 𝐷) +o 𝐸) ↔ (𝐵 = 𝐷𝐶 = 𝐸)))

Proof of Theorem omopth2
StepHypRef Expression
1 simpl2l 1227 . . . . . . 7 ((((𝐴 ∈ On ∧ 𝐴 ≠ ∅) ∧ (𝐵 ∈ On ∧ 𝐶𝐴) ∧ (𝐷 ∈ On ∧ 𝐸𝐴)) ∧ ((𝐴 ·o 𝐵) +o 𝐶) = ((𝐴 ·o 𝐷) +o 𝐸)) → 𝐵 ∈ On)
2 eloni 6321 . . . . . . 7 (𝐵 ∈ On → Ord 𝐵)
31, 2syl 17 . . . . . 6 ((((𝐴 ∈ On ∧ 𝐴 ≠ ∅) ∧ (𝐵 ∈ On ∧ 𝐶𝐴) ∧ (𝐷 ∈ On ∧ 𝐸𝐴)) ∧ ((𝐴 ·o 𝐵) +o 𝐶) = ((𝐴 ·o 𝐷) +o 𝐸)) → Ord 𝐵)
4 simpl3l 1229 . . . . . . 7 ((((𝐴 ∈ On ∧ 𝐴 ≠ ∅) ∧ (𝐵 ∈ On ∧ 𝐶𝐴) ∧ (𝐷 ∈ On ∧ 𝐸𝐴)) ∧ ((𝐴 ·o 𝐵) +o 𝐶) = ((𝐴 ·o 𝐷) +o 𝐸)) → 𝐷 ∈ On)
5 eloni 6321 . . . . . . 7 (𝐷 ∈ On → Ord 𝐷)
64, 5syl 17 . . . . . 6 ((((𝐴 ∈ On ∧ 𝐴 ≠ ∅) ∧ (𝐵 ∈ On ∧ 𝐶𝐴) ∧ (𝐷 ∈ On ∧ 𝐸𝐴)) ∧ ((𝐴 ·o 𝐵) +o 𝐶) = ((𝐴 ·o 𝐷) +o 𝐸)) → Ord 𝐷)
7 ordtri3or 6343 . . . . . 6 ((Ord 𝐵 ∧ Ord 𝐷) → (𝐵𝐷𝐵 = 𝐷𝐷𝐵))
83, 6, 7syl2anc 584 . . . . 5 ((((𝐴 ∈ On ∧ 𝐴 ≠ ∅) ∧ (𝐵 ∈ On ∧ 𝐶𝐴) ∧ (𝐷 ∈ On ∧ 𝐸𝐴)) ∧ ((𝐴 ·o 𝐵) +o 𝐶) = ((𝐴 ·o 𝐷) +o 𝐸)) → (𝐵𝐷𝐵 = 𝐷𝐷𝐵))
9 simpr 484 . . . . . . . . 9 ((((𝐴 ∈ On ∧ 𝐴 ≠ ∅) ∧ (𝐵 ∈ On ∧ 𝐶𝐴) ∧ (𝐷 ∈ On ∧ 𝐸𝐴)) ∧ ((𝐴 ·o 𝐵) +o 𝐶) = ((𝐴 ·o 𝐷) +o 𝐸)) → ((𝐴 ·o 𝐵) +o 𝐶) = ((𝐴 ·o 𝐷) +o 𝐸))
10 simpl1l 1225 . . . . . . . . . . . 12 ((((𝐴 ∈ On ∧ 𝐴 ≠ ∅) ∧ (𝐵 ∈ On ∧ 𝐶𝐴) ∧ (𝐷 ∈ On ∧ 𝐸𝐴)) ∧ ((𝐴 ·o 𝐵) +o 𝐶) = ((𝐴 ·o 𝐷) +o 𝐸)) → 𝐴 ∈ On)
11 omcl 8457 . . . . . . . . . . . 12 ((𝐴 ∈ On ∧ 𝐷 ∈ On) → (𝐴 ·o 𝐷) ∈ On)
1210, 4, 11syl2anc 584 . . . . . . . . . . 11 ((((𝐴 ∈ On ∧ 𝐴 ≠ ∅) ∧ (𝐵 ∈ On ∧ 𝐶𝐴) ∧ (𝐷 ∈ On ∧ 𝐸𝐴)) ∧ ((𝐴 ·o 𝐵) +o 𝐶) = ((𝐴 ·o 𝐷) +o 𝐸)) → (𝐴 ·o 𝐷) ∈ On)
13 simpl3r 1230 . . . . . . . . . . . 12 ((((𝐴 ∈ On ∧ 𝐴 ≠ ∅) ∧ (𝐵 ∈ On ∧ 𝐶𝐴) ∧ (𝐷 ∈ On ∧ 𝐸𝐴)) ∧ ((𝐴 ·o 𝐵) +o 𝐶) = ((𝐴 ·o 𝐷) +o 𝐸)) → 𝐸𝐴)
14 onelon 6336 . . . . . . . . . . . 12 ((𝐴 ∈ On ∧ 𝐸𝐴) → 𝐸 ∈ On)
1510, 13, 14syl2anc 584 . . . . . . . . . . 11 ((((𝐴 ∈ On ∧ 𝐴 ≠ ∅) ∧ (𝐵 ∈ On ∧ 𝐶𝐴) ∧ (𝐷 ∈ On ∧ 𝐸𝐴)) ∧ ((𝐴 ·o 𝐵) +o 𝐶) = ((𝐴 ·o 𝐷) +o 𝐸)) → 𝐸 ∈ On)
16 oacl 8456 . . . . . . . . . . 11 (((𝐴 ·o 𝐷) ∈ On ∧ 𝐸 ∈ On) → ((𝐴 ·o 𝐷) +o 𝐸) ∈ On)
1712, 15, 16syl2anc 584 . . . . . . . . . 10 ((((𝐴 ∈ On ∧ 𝐴 ≠ ∅) ∧ (𝐵 ∈ On ∧ 𝐶𝐴) ∧ (𝐷 ∈ On ∧ 𝐸𝐴)) ∧ ((𝐴 ·o 𝐵) +o 𝐶) = ((𝐴 ·o 𝐷) +o 𝐸)) → ((𝐴 ·o 𝐷) +o 𝐸) ∈ On)
18 eloni 6321 . . . . . . . . . 10 (((𝐴 ·o 𝐷) +o 𝐸) ∈ On → Ord ((𝐴 ·o 𝐷) +o 𝐸))
19 ordirr 6329 . . . . . . . . . 10 (Ord ((𝐴 ·o 𝐷) +o 𝐸) → ¬ ((𝐴 ·o 𝐷) +o 𝐸) ∈ ((𝐴 ·o 𝐷) +o 𝐸))
2017, 18, 193syl 18 . . . . . . . . 9 ((((𝐴 ∈ On ∧ 𝐴 ≠ ∅) ∧ (𝐵 ∈ On ∧ 𝐶𝐴) ∧ (𝐷 ∈ On ∧ 𝐸𝐴)) ∧ ((𝐴 ·o 𝐵) +o 𝐶) = ((𝐴 ·o 𝐷) +o 𝐸)) → ¬ ((𝐴 ·o 𝐷) +o 𝐸) ∈ ((𝐴 ·o 𝐷) +o 𝐸))
219, 20eqneltrd 2853 . . . . . . . 8 ((((𝐴 ∈ On ∧ 𝐴 ≠ ∅) ∧ (𝐵 ∈ On ∧ 𝐶𝐴) ∧ (𝐷 ∈ On ∧ 𝐸𝐴)) ∧ ((𝐴 ·o 𝐵) +o 𝐶) = ((𝐴 ·o 𝐷) +o 𝐸)) → ¬ ((𝐴 ·o 𝐵) +o 𝐶) ∈ ((𝐴 ·o 𝐷) +o 𝐸))
22 orc 867 . . . . . . . . 9 (𝐵𝐷 → (𝐵𝐷 ∨ (𝐵 = 𝐷𝐶𝐸)))
23 omeulem2 8504 . . . . . . . . . 10 (((𝐴 ∈ On ∧ 𝐴 ≠ ∅) ∧ (𝐵 ∈ On ∧ 𝐶𝐴) ∧ (𝐷 ∈ On ∧ 𝐸𝐴)) → ((𝐵𝐷 ∨ (𝐵 = 𝐷𝐶𝐸)) → ((𝐴 ·o 𝐵) +o 𝐶) ∈ ((𝐴 ·o 𝐷) +o 𝐸)))
2423adantr 480 . . . . . . . . 9 ((((𝐴 ∈ On ∧ 𝐴 ≠ ∅) ∧ (𝐵 ∈ On ∧ 𝐶𝐴) ∧ (𝐷 ∈ On ∧ 𝐸𝐴)) ∧ ((𝐴 ·o 𝐵) +o 𝐶) = ((𝐴 ·o 𝐷) +o 𝐸)) → ((𝐵𝐷 ∨ (𝐵 = 𝐷𝐶𝐸)) → ((𝐴 ·o 𝐵) +o 𝐶) ∈ ((𝐴 ·o 𝐷) +o 𝐸)))
2522, 24syl5 34 . . . . . . . 8 ((((𝐴 ∈ On ∧ 𝐴 ≠ ∅) ∧ (𝐵 ∈ On ∧ 𝐶𝐴) ∧ (𝐷 ∈ On ∧ 𝐸𝐴)) ∧ ((𝐴 ·o 𝐵) +o 𝐶) = ((𝐴 ·o 𝐷) +o 𝐸)) → (𝐵𝐷 → ((𝐴 ·o 𝐵) +o 𝐶) ∈ ((𝐴 ·o 𝐷) +o 𝐸)))
2621, 25mtod 198 . . . . . . 7 ((((𝐴 ∈ On ∧ 𝐴 ≠ ∅) ∧ (𝐵 ∈ On ∧ 𝐶𝐴) ∧ (𝐷 ∈ On ∧ 𝐸𝐴)) ∧ ((𝐴 ·o 𝐵) +o 𝐶) = ((𝐴 ·o 𝐷) +o 𝐸)) → ¬ 𝐵𝐷)
2726pm2.21d 121 . . . . . 6 ((((𝐴 ∈ On ∧ 𝐴 ≠ ∅) ∧ (𝐵 ∈ On ∧ 𝐶𝐴) ∧ (𝐷 ∈ On ∧ 𝐸𝐴)) ∧ ((𝐴 ·o 𝐵) +o 𝐶) = ((𝐴 ·o 𝐷) +o 𝐸)) → (𝐵𝐷𝐵 = 𝐷))
28 idd 24 . . . . . 6 ((((𝐴 ∈ On ∧ 𝐴 ≠ ∅) ∧ (𝐵 ∈ On ∧ 𝐶𝐴) ∧ (𝐷 ∈ On ∧ 𝐸𝐴)) ∧ ((𝐴 ·o 𝐵) +o 𝐶) = ((𝐴 ·o 𝐷) +o 𝐸)) → (𝐵 = 𝐷𝐵 = 𝐷))
2920, 9neleqtrrd 2856 . . . . . . . 8 ((((𝐴 ∈ On ∧ 𝐴 ≠ ∅) ∧ (𝐵 ∈ On ∧ 𝐶𝐴) ∧ (𝐷 ∈ On ∧ 𝐸𝐴)) ∧ ((𝐴 ·o 𝐵) +o 𝐶) = ((𝐴 ·o 𝐷) +o 𝐸)) → ¬ ((𝐴 ·o 𝐷) +o 𝐸) ∈ ((𝐴 ·o 𝐵) +o 𝐶))
30 orc 867 . . . . . . . . 9 (𝐷𝐵 → (𝐷𝐵 ∨ (𝐷 = 𝐵𝐸𝐶)))
31 simpl1r 1226 . . . . . . . . . 10 ((((𝐴 ∈ On ∧ 𝐴 ≠ ∅) ∧ (𝐵 ∈ On ∧ 𝐶𝐴) ∧ (𝐷 ∈ On ∧ 𝐸𝐴)) ∧ ((𝐴 ·o 𝐵) +o 𝐶) = ((𝐴 ·o 𝐷) +o 𝐸)) → 𝐴 ≠ ∅)
32 simpl2r 1228 . . . . . . . . . 10 ((((𝐴 ∈ On ∧ 𝐴 ≠ ∅) ∧ (𝐵 ∈ On ∧ 𝐶𝐴) ∧ (𝐷 ∈ On ∧ 𝐸𝐴)) ∧ ((𝐴 ·o 𝐵) +o 𝐶) = ((𝐴 ·o 𝐷) +o 𝐸)) → 𝐶𝐴)
33 omeulem2 8504 . . . . . . . . . 10 (((𝐴 ∈ On ∧ 𝐴 ≠ ∅) ∧ (𝐷 ∈ On ∧ 𝐸𝐴) ∧ (𝐵 ∈ On ∧ 𝐶𝐴)) → ((𝐷𝐵 ∨ (𝐷 = 𝐵𝐸𝐶)) → ((𝐴 ·o 𝐷) +o 𝐸) ∈ ((𝐴 ·o 𝐵) +o 𝐶)))
3410, 31, 4, 13, 1, 32, 33syl222anc 1388 . . . . . . . . 9 ((((𝐴 ∈ On ∧ 𝐴 ≠ ∅) ∧ (𝐵 ∈ On ∧ 𝐶𝐴) ∧ (𝐷 ∈ On ∧ 𝐸𝐴)) ∧ ((𝐴 ·o 𝐵) +o 𝐶) = ((𝐴 ·o 𝐷) +o 𝐸)) → ((𝐷𝐵 ∨ (𝐷 = 𝐵𝐸𝐶)) → ((𝐴 ·o 𝐷) +o 𝐸) ∈ ((𝐴 ·o 𝐵) +o 𝐶)))
3530, 34syl5 34 . . . . . . . 8 ((((𝐴 ∈ On ∧ 𝐴 ≠ ∅) ∧ (𝐵 ∈ On ∧ 𝐶𝐴) ∧ (𝐷 ∈ On ∧ 𝐸𝐴)) ∧ ((𝐴 ·o 𝐵) +o 𝐶) = ((𝐴 ·o 𝐷) +o 𝐸)) → (𝐷𝐵 → ((𝐴 ·o 𝐷) +o 𝐸) ∈ ((𝐴 ·o 𝐵) +o 𝐶)))
3629, 35mtod 198 . . . . . . 7 ((((𝐴 ∈ On ∧ 𝐴 ≠ ∅) ∧ (𝐵 ∈ On ∧ 𝐶𝐴) ∧ (𝐷 ∈ On ∧ 𝐸𝐴)) ∧ ((𝐴 ·o 𝐵) +o 𝐶) = ((𝐴 ·o 𝐷) +o 𝐸)) → ¬ 𝐷𝐵)
3736pm2.21d 121 . . . . . 6 ((((𝐴 ∈ On ∧ 𝐴 ≠ ∅) ∧ (𝐵 ∈ On ∧ 𝐶𝐴) ∧ (𝐷 ∈ On ∧ 𝐸𝐴)) ∧ ((𝐴 ·o 𝐵) +o 𝐶) = ((𝐴 ·o 𝐷) +o 𝐸)) → (𝐷𝐵𝐵 = 𝐷))
3827, 28, 373jaod 1431 . . . . 5 ((((𝐴 ∈ On ∧ 𝐴 ≠ ∅) ∧ (𝐵 ∈ On ∧ 𝐶𝐴) ∧ (𝐷 ∈ On ∧ 𝐸𝐴)) ∧ ((𝐴 ·o 𝐵) +o 𝐶) = ((𝐴 ·o 𝐷) +o 𝐸)) → ((𝐵𝐷𝐵 = 𝐷𝐷𝐵) → 𝐵 = 𝐷))
398, 38mpd 15 . . . 4 ((((𝐴 ∈ On ∧ 𝐴 ≠ ∅) ∧ (𝐵 ∈ On ∧ 𝐶𝐴) ∧ (𝐷 ∈ On ∧ 𝐸𝐴)) ∧ ((𝐴 ·o 𝐵) +o 𝐶) = ((𝐴 ·o 𝐷) +o 𝐸)) → 𝐵 = 𝐷)
40 onelon 6336 . . . . . . . 8 ((𝐴 ∈ On ∧ 𝐶𝐴) → 𝐶 ∈ On)
41 eloni 6321 . . . . . . . 8 (𝐶 ∈ On → Ord 𝐶)
4240, 41syl 17 . . . . . . 7 ((𝐴 ∈ On ∧ 𝐶𝐴) → Ord 𝐶)
4310, 32, 42syl2anc 584 . . . . . 6 ((((𝐴 ∈ On ∧ 𝐴 ≠ ∅) ∧ (𝐵 ∈ On ∧ 𝐶𝐴) ∧ (𝐷 ∈ On ∧ 𝐸𝐴)) ∧ ((𝐴 ·o 𝐵) +o 𝐶) = ((𝐴 ·o 𝐷) +o 𝐸)) → Ord 𝐶)
44 eloni 6321 . . . . . . . 8 (𝐸 ∈ On → Ord 𝐸)
4514, 44syl 17 . . . . . . 7 ((𝐴 ∈ On ∧ 𝐸𝐴) → Ord 𝐸)
4610, 13, 45syl2anc 584 . . . . . 6 ((((𝐴 ∈ On ∧ 𝐴 ≠ ∅) ∧ (𝐵 ∈ On ∧ 𝐶𝐴) ∧ (𝐷 ∈ On ∧ 𝐸𝐴)) ∧ ((𝐴 ·o 𝐵) +o 𝐶) = ((𝐴 ·o 𝐷) +o 𝐸)) → Ord 𝐸)
47 ordtri3or 6343 . . . . . 6 ((Ord 𝐶 ∧ Ord 𝐸) → (𝐶𝐸𝐶 = 𝐸𝐸𝐶))
4843, 46, 47syl2anc 584 . . . . 5 ((((𝐴 ∈ On ∧ 𝐴 ≠ ∅) ∧ (𝐵 ∈ On ∧ 𝐶𝐴) ∧ (𝐷 ∈ On ∧ 𝐸𝐴)) ∧ ((𝐴 ·o 𝐵) +o 𝐶) = ((𝐴 ·o 𝐷) +o 𝐸)) → (𝐶𝐸𝐶 = 𝐸𝐸𝐶))
49 olc 868 . . . . . . . . . 10 ((𝐵 = 𝐷𝐶𝐸) → (𝐵𝐷 ∨ (𝐵 = 𝐷𝐶𝐸)))
5049, 24syl5 34 . . . . . . . . 9 ((((𝐴 ∈ On ∧ 𝐴 ≠ ∅) ∧ (𝐵 ∈ On ∧ 𝐶𝐴) ∧ (𝐷 ∈ On ∧ 𝐸𝐴)) ∧ ((𝐴 ·o 𝐵) +o 𝐶) = ((𝐴 ·o 𝐷) +o 𝐸)) → ((𝐵 = 𝐷𝐶𝐸) → ((𝐴 ·o 𝐵) +o 𝐶) ∈ ((𝐴 ·o 𝐷) +o 𝐸)))
5139, 50mpand 695 . . . . . . . 8 ((((𝐴 ∈ On ∧ 𝐴 ≠ ∅) ∧ (𝐵 ∈ On ∧ 𝐶𝐴) ∧ (𝐷 ∈ On ∧ 𝐸𝐴)) ∧ ((𝐴 ·o 𝐵) +o 𝐶) = ((𝐴 ·o 𝐷) +o 𝐸)) → (𝐶𝐸 → ((𝐴 ·o 𝐵) +o 𝐶) ∈ ((𝐴 ·o 𝐷) +o 𝐸)))
5221, 51mtod 198 . . . . . . 7 ((((𝐴 ∈ On ∧ 𝐴 ≠ ∅) ∧ (𝐵 ∈ On ∧ 𝐶𝐴) ∧ (𝐷 ∈ On ∧ 𝐸𝐴)) ∧ ((𝐴 ·o 𝐵) +o 𝐶) = ((𝐴 ·o 𝐷) +o 𝐸)) → ¬ 𝐶𝐸)
5352pm2.21d 121 . . . . . 6 ((((𝐴 ∈ On ∧ 𝐴 ≠ ∅) ∧ (𝐵 ∈ On ∧ 𝐶𝐴) ∧ (𝐷 ∈ On ∧ 𝐸𝐴)) ∧ ((𝐴 ·o 𝐵) +o 𝐶) = ((𝐴 ·o 𝐷) +o 𝐸)) → (𝐶𝐸𝐶 = 𝐸))
54 idd 24 . . . . . 6 ((((𝐴 ∈ On ∧ 𝐴 ≠ ∅) ∧ (𝐵 ∈ On ∧ 𝐶𝐴) ∧ (𝐷 ∈ On ∧ 𝐸𝐴)) ∧ ((𝐴 ·o 𝐵) +o 𝐶) = ((𝐴 ·o 𝐷) +o 𝐸)) → (𝐶 = 𝐸𝐶 = 𝐸))
5539eqcomd 2739 . . . . . . . . 9 ((((𝐴 ∈ On ∧ 𝐴 ≠ ∅) ∧ (𝐵 ∈ On ∧ 𝐶𝐴) ∧ (𝐷 ∈ On ∧ 𝐸𝐴)) ∧ ((𝐴 ·o 𝐵) +o 𝐶) = ((𝐴 ·o 𝐷) +o 𝐸)) → 𝐷 = 𝐵)
56 olc 868 . . . . . . . . . 10 ((𝐷 = 𝐵𝐸𝐶) → (𝐷𝐵 ∨ (𝐷 = 𝐵𝐸𝐶)))
5756, 34syl5 34 . . . . . . . . 9 ((((𝐴 ∈ On ∧ 𝐴 ≠ ∅) ∧ (𝐵 ∈ On ∧ 𝐶𝐴) ∧ (𝐷 ∈ On ∧ 𝐸𝐴)) ∧ ((𝐴 ·o 𝐵) +o 𝐶) = ((𝐴 ·o 𝐷) +o 𝐸)) → ((𝐷 = 𝐵𝐸𝐶) → ((𝐴 ·o 𝐷) +o 𝐸) ∈ ((𝐴 ·o 𝐵) +o 𝐶)))
5855, 57mpand 695 . . . . . . . 8 ((((𝐴 ∈ On ∧ 𝐴 ≠ ∅) ∧ (𝐵 ∈ On ∧ 𝐶𝐴) ∧ (𝐷 ∈ On ∧ 𝐸𝐴)) ∧ ((𝐴 ·o 𝐵) +o 𝐶) = ((𝐴 ·o 𝐷) +o 𝐸)) → (𝐸𝐶 → ((𝐴 ·o 𝐷) +o 𝐸) ∈ ((𝐴 ·o 𝐵) +o 𝐶)))
5929, 58mtod 198 . . . . . . 7 ((((𝐴 ∈ On ∧ 𝐴 ≠ ∅) ∧ (𝐵 ∈ On ∧ 𝐶𝐴) ∧ (𝐷 ∈ On ∧ 𝐸𝐴)) ∧ ((𝐴 ·o 𝐵) +o 𝐶) = ((𝐴 ·o 𝐷) +o 𝐸)) → ¬ 𝐸𝐶)
6059pm2.21d 121 . . . . . 6 ((((𝐴 ∈ On ∧ 𝐴 ≠ ∅) ∧ (𝐵 ∈ On ∧ 𝐶𝐴) ∧ (𝐷 ∈ On ∧ 𝐸𝐴)) ∧ ((𝐴 ·o 𝐵) +o 𝐶) = ((𝐴 ·o 𝐷) +o 𝐸)) → (𝐸𝐶𝐶 = 𝐸))
6153, 54, 603jaod 1431 . . . . 5 ((((𝐴 ∈ On ∧ 𝐴 ≠ ∅) ∧ (𝐵 ∈ On ∧ 𝐶𝐴) ∧ (𝐷 ∈ On ∧ 𝐸𝐴)) ∧ ((𝐴 ·o 𝐵) +o 𝐶) = ((𝐴 ·o 𝐷) +o 𝐸)) → ((𝐶𝐸𝐶 = 𝐸𝐸𝐶) → 𝐶 = 𝐸))
6248, 61mpd 15 . . . 4 ((((𝐴 ∈ On ∧ 𝐴 ≠ ∅) ∧ (𝐵 ∈ On ∧ 𝐶𝐴) ∧ (𝐷 ∈ On ∧ 𝐸𝐴)) ∧ ((𝐴 ·o 𝐵) +o 𝐶) = ((𝐴 ·o 𝐷) +o 𝐸)) → 𝐶 = 𝐸)
6339, 62jca 511 . . 3 ((((𝐴 ∈ On ∧ 𝐴 ≠ ∅) ∧ (𝐵 ∈ On ∧ 𝐶𝐴) ∧ (𝐷 ∈ On ∧ 𝐸𝐴)) ∧ ((𝐴 ·o 𝐵) +o 𝐶) = ((𝐴 ·o 𝐷) +o 𝐸)) → (𝐵 = 𝐷𝐶 = 𝐸))
6463ex 412 . 2 (((𝐴 ∈ On ∧ 𝐴 ≠ ∅) ∧ (𝐵 ∈ On ∧ 𝐶𝐴) ∧ (𝐷 ∈ On ∧ 𝐸𝐴)) → (((𝐴 ·o 𝐵) +o 𝐶) = ((𝐴 ·o 𝐷) +o 𝐸) → (𝐵 = 𝐷𝐶 = 𝐸)))
65 oveq2 7360 . . 3 (𝐵 = 𝐷 → (𝐴 ·o 𝐵) = (𝐴 ·o 𝐷))
66 id 22 . . 3 (𝐶 = 𝐸𝐶 = 𝐸)
6765, 66oveqan12d 7371 . 2 ((𝐵 = 𝐷𝐶 = 𝐸) → ((𝐴 ·o 𝐵) +o 𝐶) = ((𝐴 ·o 𝐷) +o 𝐸))
6864, 67impbid1 225 1 (((𝐴 ∈ On ∧ 𝐴 ≠ ∅) ∧ (𝐵 ∈ On ∧ 𝐶𝐴) ∧ (𝐷 ∈ On ∧ 𝐸𝐴)) → (((𝐴 ·o 𝐵) +o 𝐶) = ((𝐴 ·o 𝐷) +o 𝐸) ↔ (𝐵 = 𝐷𝐶 = 𝐸)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 847  w3o 1085  w3a 1086   = wceq 1541  wcel 2113  wne 2929  c0 4282  Ord word 6310  Oncon0 6311  (class class class)co 7352   +o coa 8388   ·o comu 8389
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-rep 5219  ax-sep 5236  ax-nul 5246  ax-pr 5372  ax-un 7674
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-ral 3049  df-rex 3058  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-pss 3918  df-nul 4283  df-if 4475  df-pw 4551  df-sn 4576  df-pr 4578  df-op 4582  df-uni 4859  df-iun 4943  df-br 5094  df-opab 5156  df-mpt 5175  df-tr 5201  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-ov 7355  df-oprab 7356  df-mpo 7357  df-om 7803  df-2nd 7928  df-frecs 8217  df-wrecs 8248  df-recs 8297  df-rdg 8335  df-oadd 8395  df-omul 8396
This theorem is referenced by:  omeu  8506  dfac12lem2  10043
  Copyright terms: Public domain W3C validator