Proof of Theorem omopth2
| Step | Hyp | Ref
| Expression |
| 1 | | simpl2l 1227 |
. . . . . . 7
⊢ ((((𝐴 ∈ On ∧ 𝐴 ≠ ∅) ∧ (𝐵 ∈ On ∧ 𝐶 ∈ 𝐴) ∧ (𝐷 ∈ On ∧ 𝐸 ∈ 𝐴)) ∧ ((𝐴 ·o 𝐵) +o 𝐶) = ((𝐴 ·o 𝐷) +o 𝐸)) → 𝐵 ∈ On) |
| 2 | | eloni 6362 |
. . . . . . 7
⊢ (𝐵 ∈ On → Ord 𝐵) |
| 3 | 1, 2 | syl 17 |
. . . . . 6
⊢ ((((𝐴 ∈ On ∧ 𝐴 ≠ ∅) ∧ (𝐵 ∈ On ∧ 𝐶 ∈ 𝐴) ∧ (𝐷 ∈ On ∧ 𝐸 ∈ 𝐴)) ∧ ((𝐴 ·o 𝐵) +o 𝐶) = ((𝐴 ·o 𝐷) +o 𝐸)) → Ord 𝐵) |
| 4 | | simpl3l 1229 |
. . . . . . 7
⊢ ((((𝐴 ∈ On ∧ 𝐴 ≠ ∅) ∧ (𝐵 ∈ On ∧ 𝐶 ∈ 𝐴) ∧ (𝐷 ∈ On ∧ 𝐸 ∈ 𝐴)) ∧ ((𝐴 ·o 𝐵) +o 𝐶) = ((𝐴 ·o 𝐷) +o 𝐸)) → 𝐷 ∈ On) |
| 5 | | eloni 6362 |
. . . . . . 7
⊢ (𝐷 ∈ On → Ord 𝐷) |
| 6 | 4, 5 | syl 17 |
. . . . . 6
⊢ ((((𝐴 ∈ On ∧ 𝐴 ≠ ∅) ∧ (𝐵 ∈ On ∧ 𝐶 ∈ 𝐴) ∧ (𝐷 ∈ On ∧ 𝐸 ∈ 𝐴)) ∧ ((𝐴 ·o 𝐵) +o 𝐶) = ((𝐴 ·o 𝐷) +o 𝐸)) → Ord 𝐷) |
| 7 | | ordtri3or 6384 |
. . . . . 6
⊢ ((Ord
𝐵 ∧ Ord 𝐷) → (𝐵 ∈ 𝐷 ∨ 𝐵 = 𝐷 ∨ 𝐷 ∈ 𝐵)) |
| 8 | 3, 6, 7 | syl2anc 584 |
. . . . 5
⊢ ((((𝐴 ∈ On ∧ 𝐴 ≠ ∅) ∧ (𝐵 ∈ On ∧ 𝐶 ∈ 𝐴) ∧ (𝐷 ∈ On ∧ 𝐸 ∈ 𝐴)) ∧ ((𝐴 ·o 𝐵) +o 𝐶) = ((𝐴 ·o 𝐷) +o 𝐸)) → (𝐵 ∈ 𝐷 ∨ 𝐵 = 𝐷 ∨ 𝐷 ∈ 𝐵)) |
| 9 | | simpr 484 |
. . . . . . . . 9
⊢ ((((𝐴 ∈ On ∧ 𝐴 ≠ ∅) ∧ (𝐵 ∈ On ∧ 𝐶 ∈ 𝐴) ∧ (𝐷 ∈ On ∧ 𝐸 ∈ 𝐴)) ∧ ((𝐴 ·o 𝐵) +o 𝐶) = ((𝐴 ·o 𝐷) +o 𝐸)) → ((𝐴 ·o 𝐵) +o 𝐶) = ((𝐴 ·o 𝐷) +o 𝐸)) |
| 10 | | simpl1l 1225 |
. . . . . . . . . . . 12
⊢ ((((𝐴 ∈ On ∧ 𝐴 ≠ ∅) ∧ (𝐵 ∈ On ∧ 𝐶 ∈ 𝐴) ∧ (𝐷 ∈ On ∧ 𝐸 ∈ 𝐴)) ∧ ((𝐴 ·o 𝐵) +o 𝐶) = ((𝐴 ·o 𝐷) +o 𝐸)) → 𝐴 ∈ On) |
| 11 | | omcl 8548 |
. . . . . . . . . . . 12
⊢ ((𝐴 ∈ On ∧ 𝐷 ∈ On) → (𝐴 ·o 𝐷) ∈ On) |
| 12 | 10, 4, 11 | syl2anc 584 |
. . . . . . . . . . 11
⊢ ((((𝐴 ∈ On ∧ 𝐴 ≠ ∅) ∧ (𝐵 ∈ On ∧ 𝐶 ∈ 𝐴) ∧ (𝐷 ∈ On ∧ 𝐸 ∈ 𝐴)) ∧ ((𝐴 ·o 𝐵) +o 𝐶) = ((𝐴 ·o 𝐷) +o 𝐸)) → (𝐴 ·o 𝐷) ∈ On) |
| 13 | | simpl3r 1230 |
. . . . . . . . . . . 12
⊢ ((((𝐴 ∈ On ∧ 𝐴 ≠ ∅) ∧ (𝐵 ∈ On ∧ 𝐶 ∈ 𝐴) ∧ (𝐷 ∈ On ∧ 𝐸 ∈ 𝐴)) ∧ ((𝐴 ·o 𝐵) +o 𝐶) = ((𝐴 ·o 𝐷) +o 𝐸)) → 𝐸 ∈ 𝐴) |
| 14 | | onelon 6377 |
. . . . . . . . . . . 12
⊢ ((𝐴 ∈ On ∧ 𝐸 ∈ 𝐴) → 𝐸 ∈ On) |
| 15 | 10, 13, 14 | syl2anc 584 |
. . . . . . . . . . 11
⊢ ((((𝐴 ∈ On ∧ 𝐴 ≠ ∅) ∧ (𝐵 ∈ On ∧ 𝐶 ∈ 𝐴) ∧ (𝐷 ∈ On ∧ 𝐸 ∈ 𝐴)) ∧ ((𝐴 ·o 𝐵) +o 𝐶) = ((𝐴 ·o 𝐷) +o 𝐸)) → 𝐸 ∈ On) |
| 16 | | oacl 8547 |
. . . . . . . . . . 11
⊢ (((𝐴 ·o 𝐷) ∈ On ∧ 𝐸 ∈ On) → ((𝐴 ·o 𝐷) +o 𝐸) ∈ On) |
| 17 | 12, 15, 16 | syl2anc 584 |
. . . . . . . . . 10
⊢ ((((𝐴 ∈ On ∧ 𝐴 ≠ ∅) ∧ (𝐵 ∈ On ∧ 𝐶 ∈ 𝐴) ∧ (𝐷 ∈ On ∧ 𝐸 ∈ 𝐴)) ∧ ((𝐴 ·o 𝐵) +o 𝐶) = ((𝐴 ·o 𝐷) +o 𝐸)) → ((𝐴 ·o 𝐷) +o 𝐸) ∈ On) |
| 18 | | eloni 6362 |
. . . . . . . . . 10
⊢ (((𝐴 ·o 𝐷) +o 𝐸) ∈ On → Ord ((𝐴 ·o 𝐷) +o 𝐸)) |
| 19 | | ordirr 6370 |
. . . . . . . . . 10
⊢ (Ord
((𝐴 ·o
𝐷) +o 𝐸) → ¬ ((𝐴 ·o 𝐷) +o 𝐸) ∈ ((𝐴 ·o 𝐷) +o 𝐸)) |
| 20 | 17, 18, 19 | 3syl 18 |
. . . . . . . . 9
⊢ ((((𝐴 ∈ On ∧ 𝐴 ≠ ∅) ∧ (𝐵 ∈ On ∧ 𝐶 ∈ 𝐴) ∧ (𝐷 ∈ On ∧ 𝐸 ∈ 𝐴)) ∧ ((𝐴 ·o 𝐵) +o 𝐶) = ((𝐴 ·o 𝐷) +o 𝐸)) → ¬ ((𝐴 ·o 𝐷) +o 𝐸) ∈ ((𝐴 ·o 𝐷) +o 𝐸)) |
| 21 | 9, 20 | eqneltrd 2854 |
. . . . . . . 8
⊢ ((((𝐴 ∈ On ∧ 𝐴 ≠ ∅) ∧ (𝐵 ∈ On ∧ 𝐶 ∈ 𝐴) ∧ (𝐷 ∈ On ∧ 𝐸 ∈ 𝐴)) ∧ ((𝐴 ·o 𝐵) +o 𝐶) = ((𝐴 ·o 𝐷) +o 𝐸)) → ¬ ((𝐴 ·o 𝐵) +o 𝐶) ∈ ((𝐴 ·o 𝐷) +o 𝐸)) |
| 22 | | orc 867 |
. . . . . . . . 9
⊢ (𝐵 ∈ 𝐷 → (𝐵 ∈ 𝐷 ∨ (𝐵 = 𝐷 ∧ 𝐶 ∈ 𝐸))) |
| 23 | | omeulem2 8595 |
. . . . . . . . . 10
⊢ (((𝐴 ∈ On ∧ 𝐴 ≠ ∅) ∧ (𝐵 ∈ On ∧ 𝐶 ∈ 𝐴) ∧ (𝐷 ∈ On ∧ 𝐸 ∈ 𝐴)) → ((𝐵 ∈ 𝐷 ∨ (𝐵 = 𝐷 ∧ 𝐶 ∈ 𝐸)) → ((𝐴 ·o 𝐵) +o 𝐶) ∈ ((𝐴 ·o 𝐷) +o 𝐸))) |
| 24 | 23 | adantr 480 |
. . . . . . . . 9
⊢ ((((𝐴 ∈ On ∧ 𝐴 ≠ ∅) ∧ (𝐵 ∈ On ∧ 𝐶 ∈ 𝐴) ∧ (𝐷 ∈ On ∧ 𝐸 ∈ 𝐴)) ∧ ((𝐴 ·o 𝐵) +o 𝐶) = ((𝐴 ·o 𝐷) +o 𝐸)) → ((𝐵 ∈ 𝐷 ∨ (𝐵 = 𝐷 ∧ 𝐶 ∈ 𝐸)) → ((𝐴 ·o 𝐵) +o 𝐶) ∈ ((𝐴 ·o 𝐷) +o 𝐸))) |
| 25 | 22, 24 | syl5 34 |
. . . . . . . 8
⊢ ((((𝐴 ∈ On ∧ 𝐴 ≠ ∅) ∧ (𝐵 ∈ On ∧ 𝐶 ∈ 𝐴) ∧ (𝐷 ∈ On ∧ 𝐸 ∈ 𝐴)) ∧ ((𝐴 ·o 𝐵) +o 𝐶) = ((𝐴 ·o 𝐷) +o 𝐸)) → (𝐵 ∈ 𝐷 → ((𝐴 ·o 𝐵) +o 𝐶) ∈ ((𝐴 ·o 𝐷) +o 𝐸))) |
| 26 | 21, 25 | mtod 198 |
. . . . . . 7
⊢ ((((𝐴 ∈ On ∧ 𝐴 ≠ ∅) ∧ (𝐵 ∈ On ∧ 𝐶 ∈ 𝐴) ∧ (𝐷 ∈ On ∧ 𝐸 ∈ 𝐴)) ∧ ((𝐴 ·o 𝐵) +o 𝐶) = ((𝐴 ·o 𝐷) +o 𝐸)) → ¬ 𝐵 ∈ 𝐷) |
| 27 | 26 | pm2.21d 121 |
. . . . . 6
⊢ ((((𝐴 ∈ On ∧ 𝐴 ≠ ∅) ∧ (𝐵 ∈ On ∧ 𝐶 ∈ 𝐴) ∧ (𝐷 ∈ On ∧ 𝐸 ∈ 𝐴)) ∧ ((𝐴 ·o 𝐵) +o 𝐶) = ((𝐴 ·o 𝐷) +o 𝐸)) → (𝐵 ∈ 𝐷 → 𝐵 = 𝐷)) |
| 28 | | idd 24 |
. . . . . 6
⊢ ((((𝐴 ∈ On ∧ 𝐴 ≠ ∅) ∧ (𝐵 ∈ On ∧ 𝐶 ∈ 𝐴) ∧ (𝐷 ∈ On ∧ 𝐸 ∈ 𝐴)) ∧ ((𝐴 ·o 𝐵) +o 𝐶) = ((𝐴 ·o 𝐷) +o 𝐸)) → (𝐵 = 𝐷 → 𝐵 = 𝐷)) |
| 29 | 20, 9 | neleqtrrd 2857 |
. . . . . . . 8
⊢ ((((𝐴 ∈ On ∧ 𝐴 ≠ ∅) ∧ (𝐵 ∈ On ∧ 𝐶 ∈ 𝐴) ∧ (𝐷 ∈ On ∧ 𝐸 ∈ 𝐴)) ∧ ((𝐴 ·o 𝐵) +o 𝐶) = ((𝐴 ·o 𝐷) +o 𝐸)) → ¬ ((𝐴 ·o 𝐷) +o 𝐸) ∈ ((𝐴 ·o 𝐵) +o 𝐶)) |
| 30 | | orc 867 |
. . . . . . . . 9
⊢ (𝐷 ∈ 𝐵 → (𝐷 ∈ 𝐵 ∨ (𝐷 = 𝐵 ∧ 𝐸 ∈ 𝐶))) |
| 31 | | simpl1r 1226 |
. . . . . . . . . 10
⊢ ((((𝐴 ∈ On ∧ 𝐴 ≠ ∅) ∧ (𝐵 ∈ On ∧ 𝐶 ∈ 𝐴) ∧ (𝐷 ∈ On ∧ 𝐸 ∈ 𝐴)) ∧ ((𝐴 ·o 𝐵) +o 𝐶) = ((𝐴 ·o 𝐷) +o 𝐸)) → 𝐴 ≠ ∅) |
| 32 | | simpl2r 1228 |
. . . . . . . . . 10
⊢ ((((𝐴 ∈ On ∧ 𝐴 ≠ ∅) ∧ (𝐵 ∈ On ∧ 𝐶 ∈ 𝐴) ∧ (𝐷 ∈ On ∧ 𝐸 ∈ 𝐴)) ∧ ((𝐴 ·o 𝐵) +o 𝐶) = ((𝐴 ·o 𝐷) +o 𝐸)) → 𝐶 ∈ 𝐴) |
| 33 | | omeulem2 8595 |
. . . . . . . . . 10
⊢ (((𝐴 ∈ On ∧ 𝐴 ≠ ∅) ∧ (𝐷 ∈ On ∧ 𝐸 ∈ 𝐴) ∧ (𝐵 ∈ On ∧ 𝐶 ∈ 𝐴)) → ((𝐷 ∈ 𝐵 ∨ (𝐷 = 𝐵 ∧ 𝐸 ∈ 𝐶)) → ((𝐴 ·o 𝐷) +o 𝐸) ∈ ((𝐴 ·o 𝐵) +o 𝐶))) |
| 34 | 10, 31, 4, 13, 1, 32, 33 | syl222anc 1388 |
. . . . . . . . 9
⊢ ((((𝐴 ∈ On ∧ 𝐴 ≠ ∅) ∧ (𝐵 ∈ On ∧ 𝐶 ∈ 𝐴) ∧ (𝐷 ∈ On ∧ 𝐸 ∈ 𝐴)) ∧ ((𝐴 ·o 𝐵) +o 𝐶) = ((𝐴 ·o 𝐷) +o 𝐸)) → ((𝐷 ∈ 𝐵 ∨ (𝐷 = 𝐵 ∧ 𝐸 ∈ 𝐶)) → ((𝐴 ·o 𝐷) +o 𝐸) ∈ ((𝐴 ·o 𝐵) +o 𝐶))) |
| 35 | 30, 34 | syl5 34 |
. . . . . . . 8
⊢ ((((𝐴 ∈ On ∧ 𝐴 ≠ ∅) ∧ (𝐵 ∈ On ∧ 𝐶 ∈ 𝐴) ∧ (𝐷 ∈ On ∧ 𝐸 ∈ 𝐴)) ∧ ((𝐴 ·o 𝐵) +o 𝐶) = ((𝐴 ·o 𝐷) +o 𝐸)) → (𝐷 ∈ 𝐵 → ((𝐴 ·o 𝐷) +o 𝐸) ∈ ((𝐴 ·o 𝐵) +o 𝐶))) |
| 36 | 29, 35 | mtod 198 |
. . . . . . 7
⊢ ((((𝐴 ∈ On ∧ 𝐴 ≠ ∅) ∧ (𝐵 ∈ On ∧ 𝐶 ∈ 𝐴) ∧ (𝐷 ∈ On ∧ 𝐸 ∈ 𝐴)) ∧ ((𝐴 ·o 𝐵) +o 𝐶) = ((𝐴 ·o 𝐷) +o 𝐸)) → ¬ 𝐷 ∈ 𝐵) |
| 37 | 36 | pm2.21d 121 |
. . . . . 6
⊢ ((((𝐴 ∈ On ∧ 𝐴 ≠ ∅) ∧ (𝐵 ∈ On ∧ 𝐶 ∈ 𝐴) ∧ (𝐷 ∈ On ∧ 𝐸 ∈ 𝐴)) ∧ ((𝐴 ·o 𝐵) +o 𝐶) = ((𝐴 ·o 𝐷) +o 𝐸)) → (𝐷 ∈ 𝐵 → 𝐵 = 𝐷)) |
| 38 | 27, 28, 37 | 3jaod 1431 |
. . . . 5
⊢ ((((𝐴 ∈ On ∧ 𝐴 ≠ ∅) ∧ (𝐵 ∈ On ∧ 𝐶 ∈ 𝐴) ∧ (𝐷 ∈ On ∧ 𝐸 ∈ 𝐴)) ∧ ((𝐴 ·o 𝐵) +o 𝐶) = ((𝐴 ·o 𝐷) +o 𝐸)) → ((𝐵 ∈ 𝐷 ∨ 𝐵 = 𝐷 ∨ 𝐷 ∈ 𝐵) → 𝐵 = 𝐷)) |
| 39 | 8, 38 | mpd 15 |
. . . 4
⊢ ((((𝐴 ∈ On ∧ 𝐴 ≠ ∅) ∧ (𝐵 ∈ On ∧ 𝐶 ∈ 𝐴) ∧ (𝐷 ∈ On ∧ 𝐸 ∈ 𝐴)) ∧ ((𝐴 ·o 𝐵) +o 𝐶) = ((𝐴 ·o 𝐷) +o 𝐸)) → 𝐵 = 𝐷) |
| 40 | | onelon 6377 |
. . . . . . . 8
⊢ ((𝐴 ∈ On ∧ 𝐶 ∈ 𝐴) → 𝐶 ∈ On) |
| 41 | | eloni 6362 |
. . . . . . . 8
⊢ (𝐶 ∈ On → Ord 𝐶) |
| 42 | 40, 41 | syl 17 |
. . . . . . 7
⊢ ((𝐴 ∈ On ∧ 𝐶 ∈ 𝐴) → Ord 𝐶) |
| 43 | 10, 32, 42 | syl2anc 584 |
. . . . . 6
⊢ ((((𝐴 ∈ On ∧ 𝐴 ≠ ∅) ∧ (𝐵 ∈ On ∧ 𝐶 ∈ 𝐴) ∧ (𝐷 ∈ On ∧ 𝐸 ∈ 𝐴)) ∧ ((𝐴 ·o 𝐵) +o 𝐶) = ((𝐴 ·o 𝐷) +o 𝐸)) → Ord 𝐶) |
| 44 | | eloni 6362 |
. . . . . . . 8
⊢ (𝐸 ∈ On → Ord 𝐸) |
| 45 | 14, 44 | syl 17 |
. . . . . . 7
⊢ ((𝐴 ∈ On ∧ 𝐸 ∈ 𝐴) → Ord 𝐸) |
| 46 | 10, 13, 45 | syl2anc 584 |
. . . . . 6
⊢ ((((𝐴 ∈ On ∧ 𝐴 ≠ ∅) ∧ (𝐵 ∈ On ∧ 𝐶 ∈ 𝐴) ∧ (𝐷 ∈ On ∧ 𝐸 ∈ 𝐴)) ∧ ((𝐴 ·o 𝐵) +o 𝐶) = ((𝐴 ·o 𝐷) +o 𝐸)) → Ord 𝐸) |
| 47 | | ordtri3or 6384 |
. . . . . 6
⊢ ((Ord
𝐶 ∧ Ord 𝐸) → (𝐶 ∈ 𝐸 ∨ 𝐶 = 𝐸 ∨ 𝐸 ∈ 𝐶)) |
| 48 | 43, 46, 47 | syl2anc 584 |
. . . . 5
⊢ ((((𝐴 ∈ On ∧ 𝐴 ≠ ∅) ∧ (𝐵 ∈ On ∧ 𝐶 ∈ 𝐴) ∧ (𝐷 ∈ On ∧ 𝐸 ∈ 𝐴)) ∧ ((𝐴 ·o 𝐵) +o 𝐶) = ((𝐴 ·o 𝐷) +o 𝐸)) → (𝐶 ∈ 𝐸 ∨ 𝐶 = 𝐸 ∨ 𝐸 ∈ 𝐶)) |
| 49 | | olc 868 |
. . . . . . . . . 10
⊢ ((𝐵 = 𝐷 ∧ 𝐶 ∈ 𝐸) → (𝐵 ∈ 𝐷 ∨ (𝐵 = 𝐷 ∧ 𝐶 ∈ 𝐸))) |
| 50 | 49, 24 | syl5 34 |
. . . . . . . . 9
⊢ ((((𝐴 ∈ On ∧ 𝐴 ≠ ∅) ∧ (𝐵 ∈ On ∧ 𝐶 ∈ 𝐴) ∧ (𝐷 ∈ On ∧ 𝐸 ∈ 𝐴)) ∧ ((𝐴 ·o 𝐵) +o 𝐶) = ((𝐴 ·o 𝐷) +o 𝐸)) → ((𝐵 = 𝐷 ∧ 𝐶 ∈ 𝐸) → ((𝐴 ·o 𝐵) +o 𝐶) ∈ ((𝐴 ·o 𝐷) +o 𝐸))) |
| 51 | 39, 50 | mpand 695 |
. . . . . . . 8
⊢ ((((𝐴 ∈ On ∧ 𝐴 ≠ ∅) ∧ (𝐵 ∈ On ∧ 𝐶 ∈ 𝐴) ∧ (𝐷 ∈ On ∧ 𝐸 ∈ 𝐴)) ∧ ((𝐴 ·o 𝐵) +o 𝐶) = ((𝐴 ·o 𝐷) +o 𝐸)) → (𝐶 ∈ 𝐸 → ((𝐴 ·o 𝐵) +o 𝐶) ∈ ((𝐴 ·o 𝐷) +o 𝐸))) |
| 52 | 21, 51 | mtod 198 |
. . . . . . 7
⊢ ((((𝐴 ∈ On ∧ 𝐴 ≠ ∅) ∧ (𝐵 ∈ On ∧ 𝐶 ∈ 𝐴) ∧ (𝐷 ∈ On ∧ 𝐸 ∈ 𝐴)) ∧ ((𝐴 ·o 𝐵) +o 𝐶) = ((𝐴 ·o 𝐷) +o 𝐸)) → ¬ 𝐶 ∈ 𝐸) |
| 53 | 52 | pm2.21d 121 |
. . . . . 6
⊢ ((((𝐴 ∈ On ∧ 𝐴 ≠ ∅) ∧ (𝐵 ∈ On ∧ 𝐶 ∈ 𝐴) ∧ (𝐷 ∈ On ∧ 𝐸 ∈ 𝐴)) ∧ ((𝐴 ·o 𝐵) +o 𝐶) = ((𝐴 ·o 𝐷) +o 𝐸)) → (𝐶 ∈ 𝐸 → 𝐶 = 𝐸)) |
| 54 | | idd 24 |
. . . . . 6
⊢ ((((𝐴 ∈ On ∧ 𝐴 ≠ ∅) ∧ (𝐵 ∈ On ∧ 𝐶 ∈ 𝐴) ∧ (𝐷 ∈ On ∧ 𝐸 ∈ 𝐴)) ∧ ((𝐴 ·o 𝐵) +o 𝐶) = ((𝐴 ·o 𝐷) +o 𝐸)) → (𝐶 = 𝐸 → 𝐶 = 𝐸)) |
| 55 | 39 | eqcomd 2741 |
. . . . . . . . 9
⊢ ((((𝐴 ∈ On ∧ 𝐴 ≠ ∅) ∧ (𝐵 ∈ On ∧ 𝐶 ∈ 𝐴) ∧ (𝐷 ∈ On ∧ 𝐸 ∈ 𝐴)) ∧ ((𝐴 ·o 𝐵) +o 𝐶) = ((𝐴 ·o 𝐷) +o 𝐸)) → 𝐷 = 𝐵) |
| 56 | | olc 868 |
. . . . . . . . . 10
⊢ ((𝐷 = 𝐵 ∧ 𝐸 ∈ 𝐶) → (𝐷 ∈ 𝐵 ∨ (𝐷 = 𝐵 ∧ 𝐸 ∈ 𝐶))) |
| 57 | 56, 34 | syl5 34 |
. . . . . . . . 9
⊢ ((((𝐴 ∈ On ∧ 𝐴 ≠ ∅) ∧ (𝐵 ∈ On ∧ 𝐶 ∈ 𝐴) ∧ (𝐷 ∈ On ∧ 𝐸 ∈ 𝐴)) ∧ ((𝐴 ·o 𝐵) +o 𝐶) = ((𝐴 ·o 𝐷) +o 𝐸)) → ((𝐷 = 𝐵 ∧ 𝐸 ∈ 𝐶) → ((𝐴 ·o 𝐷) +o 𝐸) ∈ ((𝐴 ·o 𝐵) +o 𝐶))) |
| 58 | 55, 57 | mpand 695 |
. . . . . . . 8
⊢ ((((𝐴 ∈ On ∧ 𝐴 ≠ ∅) ∧ (𝐵 ∈ On ∧ 𝐶 ∈ 𝐴) ∧ (𝐷 ∈ On ∧ 𝐸 ∈ 𝐴)) ∧ ((𝐴 ·o 𝐵) +o 𝐶) = ((𝐴 ·o 𝐷) +o 𝐸)) → (𝐸 ∈ 𝐶 → ((𝐴 ·o 𝐷) +o 𝐸) ∈ ((𝐴 ·o 𝐵) +o 𝐶))) |
| 59 | 29, 58 | mtod 198 |
. . . . . . 7
⊢ ((((𝐴 ∈ On ∧ 𝐴 ≠ ∅) ∧ (𝐵 ∈ On ∧ 𝐶 ∈ 𝐴) ∧ (𝐷 ∈ On ∧ 𝐸 ∈ 𝐴)) ∧ ((𝐴 ·o 𝐵) +o 𝐶) = ((𝐴 ·o 𝐷) +o 𝐸)) → ¬ 𝐸 ∈ 𝐶) |
| 60 | 59 | pm2.21d 121 |
. . . . . 6
⊢ ((((𝐴 ∈ On ∧ 𝐴 ≠ ∅) ∧ (𝐵 ∈ On ∧ 𝐶 ∈ 𝐴) ∧ (𝐷 ∈ On ∧ 𝐸 ∈ 𝐴)) ∧ ((𝐴 ·o 𝐵) +o 𝐶) = ((𝐴 ·o 𝐷) +o 𝐸)) → (𝐸 ∈ 𝐶 → 𝐶 = 𝐸)) |
| 61 | 53, 54, 60 | 3jaod 1431 |
. . . . 5
⊢ ((((𝐴 ∈ On ∧ 𝐴 ≠ ∅) ∧ (𝐵 ∈ On ∧ 𝐶 ∈ 𝐴) ∧ (𝐷 ∈ On ∧ 𝐸 ∈ 𝐴)) ∧ ((𝐴 ·o 𝐵) +o 𝐶) = ((𝐴 ·o 𝐷) +o 𝐸)) → ((𝐶 ∈ 𝐸 ∨ 𝐶 = 𝐸 ∨ 𝐸 ∈ 𝐶) → 𝐶 = 𝐸)) |
| 62 | 48, 61 | mpd 15 |
. . . 4
⊢ ((((𝐴 ∈ On ∧ 𝐴 ≠ ∅) ∧ (𝐵 ∈ On ∧ 𝐶 ∈ 𝐴) ∧ (𝐷 ∈ On ∧ 𝐸 ∈ 𝐴)) ∧ ((𝐴 ·o 𝐵) +o 𝐶) = ((𝐴 ·o 𝐷) +o 𝐸)) → 𝐶 = 𝐸) |
| 63 | 39, 62 | jca 511 |
. . 3
⊢ ((((𝐴 ∈ On ∧ 𝐴 ≠ ∅) ∧ (𝐵 ∈ On ∧ 𝐶 ∈ 𝐴) ∧ (𝐷 ∈ On ∧ 𝐸 ∈ 𝐴)) ∧ ((𝐴 ·o 𝐵) +o 𝐶) = ((𝐴 ·o 𝐷) +o 𝐸)) → (𝐵 = 𝐷 ∧ 𝐶 = 𝐸)) |
| 64 | 63 | ex 412 |
. 2
⊢ (((𝐴 ∈ On ∧ 𝐴 ≠ ∅) ∧ (𝐵 ∈ On ∧ 𝐶 ∈ 𝐴) ∧ (𝐷 ∈ On ∧ 𝐸 ∈ 𝐴)) → (((𝐴 ·o 𝐵) +o 𝐶) = ((𝐴 ·o 𝐷) +o 𝐸) → (𝐵 = 𝐷 ∧ 𝐶 = 𝐸))) |
| 65 | | oveq2 7413 |
. . 3
⊢ (𝐵 = 𝐷 → (𝐴 ·o 𝐵) = (𝐴 ·o 𝐷)) |
| 66 | | id 22 |
. . 3
⊢ (𝐶 = 𝐸 → 𝐶 = 𝐸) |
| 67 | 65, 66 | oveqan12d 7424 |
. 2
⊢ ((𝐵 = 𝐷 ∧ 𝐶 = 𝐸) → ((𝐴 ·o 𝐵) +o 𝐶) = ((𝐴 ·o 𝐷) +o 𝐸)) |
| 68 | 64, 67 | impbid1 225 |
1
⊢ (((𝐴 ∈ On ∧ 𝐴 ≠ ∅) ∧ (𝐵 ∈ On ∧ 𝐶 ∈ 𝐴) ∧ (𝐷 ∈ On ∧ 𝐸 ∈ 𝐴)) → (((𝐴 ·o 𝐵) +o 𝐶) = ((𝐴 ·o 𝐷) +o 𝐸) ↔ (𝐵 = 𝐷 ∧ 𝐶 = 𝐸))) |