Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  omopth2 Structured version   Visualization version   GIF version

Theorem omopth2 8204
 Description: An ordered pair-like theorem for ordinal multiplication. (Contributed by Mario Carneiro, 29-May-2015.)
Assertion
Ref Expression
omopth2 (((𝐴 ∈ On ∧ 𝐴 ≠ ∅) ∧ (𝐵 ∈ On ∧ 𝐶𝐴) ∧ (𝐷 ∈ On ∧ 𝐸𝐴)) → (((𝐴 ·o 𝐵) +o 𝐶) = ((𝐴 ·o 𝐷) +o 𝐸) ↔ (𝐵 = 𝐷𝐶 = 𝐸)))

Proof of Theorem omopth2
StepHypRef Expression
1 simpl2l 1222 . . . . . . 7 ((((𝐴 ∈ On ∧ 𝐴 ≠ ∅) ∧ (𝐵 ∈ On ∧ 𝐶𝐴) ∧ (𝐷 ∈ On ∧ 𝐸𝐴)) ∧ ((𝐴 ·o 𝐵) +o 𝐶) = ((𝐴 ·o 𝐷) +o 𝐸)) → 𝐵 ∈ On)
2 eloni 6196 . . . . . . 7 (𝐵 ∈ On → Ord 𝐵)
31, 2syl 17 . . . . . 6 ((((𝐴 ∈ On ∧ 𝐴 ≠ ∅) ∧ (𝐵 ∈ On ∧ 𝐶𝐴) ∧ (𝐷 ∈ On ∧ 𝐸𝐴)) ∧ ((𝐴 ·o 𝐵) +o 𝐶) = ((𝐴 ·o 𝐷) +o 𝐸)) → Ord 𝐵)
4 simpl3l 1224 . . . . . . 7 ((((𝐴 ∈ On ∧ 𝐴 ≠ ∅) ∧ (𝐵 ∈ On ∧ 𝐶𝐴) ∧ (𝐷 ∈ On ∧ 𝐸𝐴)) ∧ ((𝐴 ·o 𝐵) +o 𝐶) = ((𝐴 ·o 𝐷) +o 𝐸)) → 𝐷 ∈ On)
5 eloni 6196 . . . . . . 7 (𝐷 ∈ On → Ord 𝐷)
64, 5syl 17 . . . . . 6 ((((𝐴 ∈ On ∧ 𝐴 ≠ ∅) ∧ (𝐵 ∈ On ∧ 𝐶𝐴) ∧ (𝐷 ∈ On ∧ 𝐸𝐴)) ∧ ((𝐴 ·o 𝐵) +o 𝐶) = ((𝐴 ·o 𝐷) +o 𝐸)) → Ord 𝐷)
7 ordtri3or 6218 . . . . . 6 ((Ord 𝐵 ∧ Ord 𝐷) → (𝐵𝐷𝐵 = 𝐷𝐷𝐵))
83, 6, 7syl2anc 586 . . . . 5 ((((𝐴 ∈ On ∧ 𝐴 ≠ ∅) ∧ (𝐵 ∈ On ∧ 𝐶𝐴) ∧ (𝐷 ∈ On ∧ 𝐸𝐴)) ∧ ((𝐴 ·o 𝐵) +o 𝐶) = ((𝐴 ·o 𝐷) +o 𝐸)) → (𝐵𝐷𝐵 = 𝐷𝐷𝐵))
9 simpr 487 . . . . . . . . 9 ((((𝐴 ∈ On ∧ 𝐴 ≠ ∅) ∧ (𝐵 ∈ On ∧ 𝐶𝐴) ∧ (𝐷 ∈ On ∧ 𝐸𝐴)) ∧ ((𝐴 ·o 𝐵) +o 𝐶) = ((𝐴 ·o 𝐷) +o 𝐸)) → ((𝐴 ·o 𝐵) +o 𝐶) = ((𝐴 ·o 𝐷) +o 𝐸))
10 simpl1l 1220 . . . . . . . . . . . 12 ((((𝐴 ∈ On ∧ 𝐴 ≠ ∅) ∧ (𝐵 ∈ On ∧ 𝐶𝐴) ∧ (𝐷 ∈ On ∧ 𝐸𝐴)) ∧ ((𝐴 ·o 𝐵) +o 𝐶) = ((𝐴 ·o 𝐷) +o 𝐸)) → 𝐴 ∈ On)
11 omcl 8155 . . . . . . . . . . . 12 ((𝐴 ∈ On ∧ 𝐷 ∈ On) → (𝐴 ·o 𝐷) ∈ On)
1210, 4, 11syl2anc 586 . . . . . . . . . . 11 ((((𝐴 ∈ On ∧ 𝐴 ≠ ∅) ∧ (𝐵 ∈ On ∧ 𝐶𝐴) ∧ (𝐷 ∈ On ∧ 𝐸𝐴)) ∧ ((𝐴 ·o 𝐵) +o 𝐶) = ((𝐴 ·o 𝐷) +o 𝐸)) → (𝐴 ·o 𝐷) ∈ On)
13 simpl3r 1225 . . . . . . . . . . . 12 ((((𝐴 ∈ On ∧ 𝐴 ≠ ∅) ∧ (𝐵 ∈ On ∧ 𝐶𝐴) ∧ (𝐷 ∈ On ∧ 𝐸𝐴)) ∧ ((𝐴 ·o 𝐵) +o 𝐶) = ((𝐴 ·o 𝐷) +o 𝐸)) → 𝐸𝐴)
14 onelon 6211 . . . . . . . . . . . 12 ((𝐴 ∈ On ∧ 𝐸𝐴) → 𝐸 ∈ On)
1510, 13, 14syl2anc 586 . . . . . . . . . . 11 ((((𝐴 ∈ On ∧ 𝐴 ≠ ∅) ∧ (𝐵 ∈ On ∧ 𝐶𝐴) ∧ (𝐷 ∈ On ∧ 𝐸𝐴)) ∧ ((𝐴 ·o 𝐵) +o 𝐶) = ((𝐴 ·o 𝐷) +o 𝐸)) → 𝐸 ∈ On)
16 oacl 8154 . . . . . . . . . . 11 (((𝐴 ·o 𝐷) ∈ On ∧ 𝐸 ∈ On) → ((𝐴 ·o 𝐷) +o 𝐸) ∈ On)
1712, 15, 16syl2anc 586 . . . . . . . . . 10 ((((𝐴 ∈ On ∧ 𝐴 ≠ ∅) ∧ (𝐵 ∈ On ∧ 𝐶𝐴) ∧ (𝐷 ∈ On ∧ 𝐸𝐴)) ∧ ((𝐴 ·o 𝐵) +o 𝐶) = ((𝐴 ·o 𝐷) +o 𝐸)) → ((𝐴 ·o 𝐷) +o 𝐸) ∈ On)
18 eloni 6196 . . . . . . . . . 10 (((𝐴 ·o 𝐷) +o 𝐸) ∈ On → Ord ((𝐴 ·o 𝐷) +o 𝐸))
19 ordirr 6204 . . . . . . . . . 10 (Ord ((𝐴 ·o 𝐷) +o 𝐸) → ¬ ((𝐴 ·o 𝐷) +o 𝐸) ∈ ((𝐴 ·o 𝐷) +o 𝐸))
2017, 18, 193syl 18 . . . . . . . . 9 ((((𝐴 ∈ On ∧ 𝐴 ≠ ∅) ∧ (𝐵 ∈ On ∧ 𝐶𝐴) ∧ (𝐷 ∈ On ∧ 𝐸𝐴)) ∧ ((𝐴 ·o 𝐵) +o 𝐶) = ((𝐴 ·o 𝐷) +o 𝐸)) → ¬ ((𝐴 ·o 𝐷) +o 𝐸) ∈ ((𝐴 ·o 𝐷) +o 𝐸))
219, 20eqneltrd 2932 . . . . . . . 8 ((((𝐴 ∈ On ∧ 𝐴 ≠ ∅) ∧ (𝐵 ∈ On ∧ 𝐶𝐴) ∧ (𝐷 ∈ On ∧ 𝐸𝐴)) ∧ ((𝐴 ·o 𝐵) +o 𝐶) = ((𝐴 ·o 𝐷) +o 𝐸)) → ¬ ((𝐴 ·o 𝐵) +o 𝐶) ∈ ((𝐴 ·o 𝐷) +o 𝐸))
22 orc 863 . . . . . . . . 9 (𝐵𝐷 → (𝐵𝐷 ∨ (𝐵 = 𝐷𝐶𝐸)))
23 omeulem2 8203 . . . . . . . . . 10 (((𝐴 ∈ On ∧ 𝐴 ≠ ∅) ∧ (𝐵 ∈ On ∧ 𝐶𝐴) ∧ (𝐷 ∈ On ∧ 𝐸𝐴)) → ((𝐵𝐷 ∨ (𝐵 = 𝐷𝐶𝐸)) → ((𝐴 ·o 𝐵) +o 𝐶) ∈ ((𝐴 ·o 𝐷) +o 𝐸)))
2423adantr 483 . . . . . . . . 9 ((((𝐴 ∈ On ∧ 𝐴 ≠ ∅) ∧ (𝐵 ∈ On ∧ 𝐶𝐴) ∧ (𝐷 ∈ On ∧ 𝐸𝐴)) ∧ ((𝐴 ·o 𝐵) +o 𝐶) = ((𝐴 ·o 𝐷) +o 𝐸)) → ((𝐵𝐷 ∨ (𝐵 = 𝐷𝐶𝐸)) → ((𝐴 ·o 𝐵) +o 𝐶) ∈ ((𝐴 ·o 𝐷) +o 𝐸)))
2522, 24syl5 34 . . . . . . . 8 ((((𝐴 ∈ On ∧ 𝐴 ≠ ∅) ∧ (𝐵 ∈ On ∧ 𝐶𝐴) ∧ (𝐷 ∈ On ∧ 𝐸𝐴)) ∧ ((𝐴 ·o 𝐵) +o 𝐶) = ((𝐴 ·o 𝐷) +o 𝐸)) → (𝐵𝐷 → ((𝐴 ·o 𝐵) +o 𝐶) ∈ ((𝐴 ·o 𝐷) +o 𝐸)))
2621, 25mtod 200 . . . . . . 7 ((((𝐴 ∈ On ∧ 𝐴 ≠ ∅) ∧ (𝐵 ∈ On ∧ 𝐶𝐴) ∧ (𝐷 ∈ On ∧ 𝐸𝐴)) ∧ ((𝐴 ·o 𝐵) +o 𝐶) = ((𝐴 ·o 𝐷) +o 𝐸)) → ¬ 𝐵𝐷)
2726pm2.21d 121 . . . . . 6 ((((𝐴 ∈ On ∧ 𝐴 ≠ ∅) ∧ (𝐵 ∈ On ∧ 𝐶𝐴) ∧ (𝐷 ∈ On ∧ 𝐸𝐴)) ∧ ((𝐴 ·o 𝐵) +o 𝐶) = ((𝐴 ·o 𝐷) +o 𝐸)) → (𝐵𝐷𝐵 = 𝐷))
28 idd 24 . . . . . 6 ((((𝐴 ∈ On ∧ 𝐴 ≠ ∅) ∧ (𝐵 ∈ On ∧ 𝐶𝐴) ∧ (𝐷 ∈ On ∧ 𝐸𝐴)) ∧ ((𝐴 ·o 𝐵) +o 𝐶) = ((𝐴 ·o 𝐷) +o 𝐸)) → (𝐵 = 𝐷𝐵 = 𝐷))
2920, 9neleqtrrd 2935 . . . . . . . 8 ((((𝐴 ∈ On ∧ 𝐴 ≠ ∅) ∧ (𝐵 ∈ On ∧ 𝐶𝐴) ∧ (𝐷 ∈ On ∧ 𝐸𝐴)) ∧ ((𝐴 ·o 𝐵) +o 𝐶) = ((𝐴 ·o 𝐷) +o 𝐸)) → ¬ ((𝐴 ·o 𝐷) +o 𝐸) ∈ ((𝐴 ·o 𝐵) +o 𝐶))
30 orc 863 . . . . . . . . 9 (𝐷𝐵 → (𝐷𝐵 ∨ (𝐷 = 𝐵𝐸𝐶)))
31 simpl1r 1221 . . . . . . . . . 10 ((((𝐴 ∈ On ∧ 𝐴 ≠ ∅) ∧ (𝐵 ∈ On ∧ 𝐶𝐴) ∧ (𝐷 ∈ On ∧ 𝐸𝐴)) ∧ ((𝐴 ·o 𝐵) +o 𝐶) = ((𝐴 ·o 𝐷) +o 𝐸)) → 𝐴 ≠ ∅)
32 simpl2r 1223 . . . . . . . . . 10 ((((𝐴 ∈ On ∧ 𝐴 ≠ ∅) ∧ (𝐵 ∈ On ∧ 𝐶𝐴) ∧ (𝐷 ∈ On ∧ 𝐸𝐴)) ∧ ((𝐴 ·o 𝐵) +o 𝐶) = ((𝐴 ·o 𝐷) +o 𝐸)) → 𝐶𝐴)
33 omeulem2 8203 . . . . . . . . . 10 (((𝐴 ∈ On ∧ 𝐴 ≠ ∅) ∧ (𝐷 ∈ On ∧ 𝐸𝐴) ∧ (𝐵 ∈ On ∧ 𝐶𝐴)) → ((𝐷𝐵 ∨ (𝐷 = 𝐵𝐸𝐶)) → ((𝐴 ·o 𝐷) +o 𝐸) ∈ ((𝐴 ·o 𝐵) +o 𝐶)))
3410, 31, 4, 13, 1, 32, 33syl222anc 1382 . . . . . . . . 9 ((((𝐴 ∈ On ∧ 𝐴 ≠ ∅) ∧ (𝐵 ∈ On ∧ 𝐶𝐴) ∧ (𝐷 ∈ On ∧ 𝐸𝐴)) ∧ ((𝐴 ·o 𝐵) +o 𝐶) = ((𝐴 ·o 𝐷) +o 𝐸)) → ((𝐷𝐵 ∨ (𝐷 = 𝐵𝐸𝐶)) → ((𝐴 ·o 𝐷) +o 𝐸) ∈ ((𝐴 ·o 𝐵) +o 𝐶)))
3530, 34syl5 34 . . . . . . . 8 ((((𝐴 ∈ On ∧ 𝐴 ≠ ∅) ∧ (𝐵 ∈ On ∧ 𝐶𝐴) ∧ (𝐷 ∈ On ∧ 𝐸𝐴)) ∧ ((𝐴 ·o 𝐵) +o 𝐶) = ((𝐴 ·o 𝐷) +o 𝐸)) → (𝐷𝐵 → ((𝐴 ·o 𝐷) +o 𝐸) ∈ ((𝐴 ·o 𝐵) +o 𝐶)))
3629, 35mtod 200 . . . . . . 7 ((((𝐴 ∈ On ∧ 𝐴 ≠ ∅) ∧ (𝐵 ∈ On ∧ 𝐶𝐴) ∧ (𝐷 ∈ On ∧ 𝐸𝐴)) ∧ ((𝐴 ·o 𝐵) +o 𝐶) = ((𝐴 ·o 𝐷) +o 𝐸)) → ¬ 𝐷𝐵)
3736pm2.21d 121 . . . . . 6 ((((𝐴 ∈ On ∧ 𝐴 ≠ ∅) ∧ (𝐵 ∈ On ∧ 𝐶𝐴) ∧ (𝐷 ∈ On ∧ 𝐸𝐴)) ∧ ((𝐴 ·o 𝐵) +o 𝐶) = ((𝐴 ·o 𝐷) +o 𝐸)) → (𝐷𝐵𝐵 = 𝐷))
3827, 28, 373jaod 1424 . . . . 5 ((((𝐴 ∈ On ∧ 𝐴 ≠ ∅) ∧ (𝐵 ∈ On ∧ 𝐶𝐴) ∧ (𝐷 ∈ On ∧ 𝐸𝐴)) ∧ ((𝐴 ·o 𝐵) +o 𝐶) = ((𝐴 ·o 𝐷) +o 𝐸)) → ((𝐵𝐷𝐵 = 𝐷𝐷𝐵) → 𝐵 = 𝐷))
398, 38mpd 15 . . . 4 ((((𝐴 ∈ On ∧ 𝐴 ≠ ∅) ∧ (𝐵 ∈ On ∧ 𝐶𝐴) ∧ (𝐷 ∈ On ∧ 𝐸𝐴)) ∧ ((𝐴 ·o 𝐵) +o 𝐶) = ((𝐴 ·o 𝐷) +o 𝐸)) → 𝐵 = 𝐷)
40 onelon 6211 . . . . . . . 8 ((𝐴 ∈ On ∧ 𝐶𝐴) → 𝐶 ∈ On)
41 eloni 6196 . . . . . . . 8 (𝐶 ∈ On → Ord 𝐶)
4240, 41syl 17 . . . . . . 7 ((𝐴 ∈ On ∧ 𝐶𝐴) → Ord 𝐶)
4310, 32, 42syl2anc 586 . . . . . 6 ((((𝐴 ∈ On ∧ 𝐴 ≠ ∅) ∧ (𝐵 ∈ On ∧ 𝐶𝐴) ∧ (𝐷 ∈ On ∧ 𝐸𝐴)) ∧ ((𝐴 ·o 𝐵) +o 𝐶) = ((𝐴 ·o 𝐷) +o 𝐸)) → Ord 𝐶)
44 eloni 6196 . . . . . . . 8 (𝐸 ∈ On → Ord 𝐸)
4514, 44syl 17 . . . . . . 7 ((𝐴 ∈ On ∧ 𝐸𝐴) → Ord 𝐸)
4610, 13, 45syl2anc 586 . . . . . 6 ((((𝐴 ∈ On ∧ 𝐴 ≠ ∅) ∧ (𝐵 ∈ On ∧ 𝐶𝐴) ∧ (𝐷 ∈ On ∧ 𝐸𝐴)) ∧ ((𝐴 ·o 𝐵) +o 𝐶) = ((𝐴 ·o 𝐷) +o 𝐸)) → Ord 𝐸)
47 ordtri3or 6218 . . . . . 6 ((Ord 𝐶 ∧ Ord 𝐸) → (𝐶𝐸𝐶 = 𝐸𝐸𝐶))
4843, 46, 47syl2anc 586 . . . . 5 ((((𝐴 ∈ On ∧ 𝐴 ≠ ∅) ∧ (𝐵 ∈ On ∧ 𝐶𝐴) ∧ (𝐷 ∈ On ∧ 𝐸𝐴)) ∧ ((𝐴 ·o 𝐵) +o 𝐶) = ((𝐴 ·o 𝐷) +o 𝐸)) → (𝐶𝐸𝐶 = 𝐸𝐸𝐶))
49 olc 864 . . . . . . . . . 10 ((𝐵 = 𝐷𝐶𝐸) → (𝐵𝐷 ∨ (𝐵 = 𝐷𝐶𝐸)))
5049, 24syl5 34 . . . . . . . . 9 ((((𝐴 ∈ On ∧ 𝐴 ≠ ∅) ∧ (𝐵 ∈ On ∧ 𝐶𝐴) ∧ (𝐷 ∈ On ∧ 𝐸𝐴)) ∧ ((𝐴 ·o 𝐵) +o 𝐶) = ((𝐴 ·o 𝐷) +o 𝐸)) → ((𝐵 = 𝐷𝐶𝐸) → ((𝐴 ·o 𝐵) +o 𝐶) ∈ ((𝐴 ·o 𝐷) +o 𝐸)))
5139, 50mpand 693 . . . . . . . 8 ((((𝐴 ∈ On ∧ 𝐴 ≠ ∅) ∧ (𝐵 ∈ On ∧ 𝐶𝐴) ∧ (𝐷 ∈ On ∧ 𝐸𝐴)) ∧ ((𝐴 ·o 𝐵) +o 𝐶) = ((𝐴 ·o 𝐷) +o 𝐸)) → (𝐶𝐸 → ((𝐴 ·o 𝐵) +o 𝐶) ∈ ((𝐴 ·o 𝐷) +o 𝐸)))
5221, 51mtod 200 . . . . . . 7 ((((𝐴 ∈ On ∧ 𝐴 ≠ ∅) ∧ (𝐵 ∈ On ∧ 𝐶𝐴) ∧ (𝐷 ∈ On ∧ 𝐸𝐴)) ∧ ((𝐴 ·o 𝐵) +o 𝐶) = ((𝐴 ·o 𝐷) +o 𝐸)) → ¬ 𝐶𝐸)
5352pm2.21d 121 . . . . . 6 ((((𝐴 ∈ On ∧ 𝐴 ≠ ∅) ∧ (𝐵 ∈ On ∧ 𝐶𝐴) ∧ (𝐷 ∈ On ∧ 𝐸𝐴)) ∧ ((𝐴 ·o 𝐵) +o 𝐶) = ((𝐴 ·o 𝐷) +o 𝐸)) → (𝐶𝐸𝐶 = 𝐸))
54 idd 24 . . . . . 6 ((((𝐴 ∈ On ∧ 𝐴 ≠ ∅) ∧ (𝐵 ∈ On ∧ 𝐶𝐴) ∧ (𝐷 ∈ On ∧ 𝐸𝐴)) ∧ ((𝐴 ·o 𝐵) +o 𝐶) = ((𝐴 ·o 𝐷) +o 𝐸)) → (𝐶 = 𝐸𝐶 = 𝐸))
5539eqcomd 2827 . . . . . . . . 9 ((((𝐴 ∈ On ∧ 𝐴 ≠ ∅) ∧ (𝐵 ∈ On ∧ 𝐶𝐴) ∧ (𝐷 ∈ On ∧ 𝐸𝐴)) ∧ ((𝐴 ·o 𝐵) +o 𝐶) = ((𝐴 ·o 𝐷) +o 𝐸)) → 𝐷 = 𝐵)
56 olc 864 . . . . . . . . . 10 ((𝐷 = 𝐵𝐸𝐶) → (𝐷𝐵 ∨ (𝐷 = 𝐵𝐸𝐶)))
5756, 34syl5 34 . . . . . . . . 9 ((((𝐴 ∈ On ∧ 𝐴 ≠ ∅) ∧ (𝐵 ∈ On ∧ 𝐶𝐴) ∧ (𝐷 ∈ On ∧ 𝐸𝐴)) ∧ ((𝐴 ·o 𝐵) +o 𝐶) = ((𝐴 ·o 𝐷) +o 𝐸)) → ((𝐷 = 𝐵𝐸𝐶) → ((𝐴 ·o 𝐷) +o 𝐸) ∈ ((𝐴 ·o 𝐵) +o 𝐶)))
5855, 57mpand 693 . . . . . . . 8 ((((𝐴 ∈ On ∧ 𝐴 ≠ ∅) ∧ (𝐵 ∈ On ∧ 𝐶𝐴) ∧ (𝐷 ∈ On ∧ 𝐸𝐴)) ∧ ((𝐴 ·o 𝐵) +o 𝐶) = ((𝐴 ·o 𝐷) +o 𝐸)) → (𝐸𝐶 → ((𝐴 ·o 𝐷) +o 𝐸) ∈ ((𝐴 ·o 𝐵) +o 𝐶)))
5929, 58mtod 200 . . . . . . 7 ((((𝐴 ∈ On ∧ 𝐴 ≠ ∅) ∧ (𝐵 ∈ On ∧ 𝐶𝐴) ∧ (𝐷 ∈ On ∧ 𝐸𝐴)) ∧ ((𝐴 ·o 𝐵) +o 𝐶) = ((𝐴 ·o 𝐷) +o 𝐸)) → ¬ 𝐸𝐶)
6059pm2.21d 121 . . . . . 6 ((((𝐴 ∈ On ∧ 𝐴 ≠ ∅) ∧ (𝐵 ∈ On ∧ 𝐶𝐴) ∧ (𝐷 ∈ On ∧ 𝐸𝐴)) ∧ ((𝐴 ·o 𝐵) +o 𝐶) = ((𝐴 ·o 𝐷) +o 𝐸)) → (𝐸𝐶𝐶 = 𝐸))
6153, 54, 603jaod 1424 . . . . 5 ((((𝐴 ∈ On ∧ 𝐴 ≠ ∅) ∧ (𝐵 ∈ On ∧ 𝐶𝐴) ∧ (𝐷 ∈ On ∧ 𝐸𝐴)) ∧ ((𝐴 ·o 𝐵) +o 𝐶) = ((𝐴 ·o 𝐷) +o 𝐸)) → ((𝐶𝐸𝐶 = 𝐸𝐸𝐶) → 𝐶 = 𝐸))
6248, 61mpd 15 . . . 4 ((((𝐴 ∈ On ∧ 𝐴 ≠ ∅) ∧ (𝐵 ∈ On ∧ 𝐶𝐴) ∧ (𝐷 ∈ On ∧ 𝐸𝐴)) ∧ ((𝐴 ·o 𝐵) +o 𝐶) = ((𝐴 ·o 𝐷) +o 𝐸)) → 𝐶 = 𝐸)
6339, 62jca 514 . . 3 ((((𝐴 ∈ On ∧ 𝐴 ≠ ∅) ∧ (𝐵 ∈ On ∧ 𝐶𝐴) ∧ (𝐷 ∈ On ∧ 𝐸𝐴)) ∧ ((𝐴 ·o 𝐵) +o 𝐶) = ((𝐴 ·o 𝐷) +o 𝐸)) → (𝐵 = 𝐷𝐶 = 𝐸))
6463ex 415 . 2 (((𝐴 ∈ On ∧ 𝐴 ≠ ∅) ∧ (𝐵 ∈ On ∧ 𝐶𝐴) ∧ (𝐷 ∈ On ∧ 𝐸𝐴)) → (((𝐴 ·o 𝐵) +o 𝐶) = ((𝐴 ·o 𝐷) +o 𝐸) → (𝐵 = 𝐷𝐶 = 𝐸)))
65 oveq2 7158 . . 3 (𝐵 = 𝐷 → (𝐴 ·o 𝐵) = (𝐴 ·o 𝐷))
66 id 22 . . 3 (𝐶 = 𝐸𝐶 = 𝐸)
6765, 66oveqan12d 7169 . 2 ((𝐵 = 𝐷𝐶 = 𝐸) → ((𝐴 ·o 𝐵) +o 𝐶) = ((𝐴 ·o 𝐷) +o 𝐸))
6864, 67impbid1 227 1 (((𝐴 ∈ On ∧ 𝐴 ≠ ∅) ∧ (𝐵 ∈ On ∧ 𝐶𝐴) ∧ (𝐷 ∈ On ∧ 𝐸𝐴)) → (((𝐴 ·o 𝐵) +o 𝐶) = ((𝐴 ·o 𝐷) +o 𝐸) ↔ (𝐵 = 𝐷𝐶 = 𝐸)))
 Colors of variables: wff setvar class Syntax hints:  ¬ wn 3   → wi 4   ↔ wb 208   ∧ wa 398   ∨ wo 843   ∨ w3o 1082   ∧ w3a 1083   = wceq 1533   ∈ wcel 2110   ≠ wne 3016  ∅c0 4291  Ord word 6185  Oncon0 6186  (class class class)co 7150   +o coa 8093   ·o comu 8094 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2156  ax-12 2172  ax-ext 2793  ax-rep 5183  ax-sep 5196  ax-nul 5203  ax-pow 5259  ax-pr 5322  ax-un 7455 This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-ral 3143  df-rex 3144  df-reu 3145  df-rab 3147  df-v 3497  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-pss 3954  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4562  df-pr 4564  df-tp 4566  df-op 4568  df-uni 4833  df-iun 4914  df-br 5060  df-opab 5122  df-mpt 5140  df-tr 5166  df-id 5455  df-eprel 5460  df-po 5469  df-so 5470  df-fr 5509  df-we 5511  df-xp 5556  df-rel 5557  df-cnv 5558  df-co 5559  df-dm 5560  df-rn 5561  df-res 5562  df-ima 5563  df-pred 6143  df-ord 6189  df-on 6190  df-lim 6191  df-suc 6192  df-iota 6309  df-fun 6352  df-fn 6353  df-f 6354  df-f1 6355  df-fo 6356  df-f1o 6357  df-fv 6358  df-ov 7153  df-oprab 7154  df-mpo 7155  df-om 7575  df-wrecs 7941  df-recs 8002  df-rdg 8040  df-oadd 8100  df-omul 8101 This theorem is referenced by:  omeu  8205  dfac12lem2  9564
 Copyright terms: Public domain W3C validator