Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mapdindp2 Structured version   Visualization version   GIF version

Theorem mapdindp2 41745
Description: Vector independence lemma. (Contributed by NM, 1-May-2015.)
Hypotheses
Ref Expression
mapdindp1.v 𝑉 = (Base‘𝑊)
mapdindp1.p + = (+g𝑊)
mapdindp1.o 0 = (0g𝑊)
mapdindp1.n 𝑁 = (LSpan‘𝑊)
mapdindp1.w (𝜑𝑊 ∈ LVec)
mapdindp1.x (𝜑𝑋 ∈ (𝑉 ∖ { 0 }))
mapdindp1.y (𝜑𝑌 ∈ (𝑉 ∖ { 0 }))
mapdindp1.z (𝜑𝑍 ∈ (𝑉 ∖ { 0 }))
mapdindp1.W (𝜑𝑤 ∈ (𝑉 ∖ { 0 }))
mapdindp1.e (𝜑 → (𝑁‘{𝑌}) = (𝑁‘{𝑍}))
mapdindp1.ne (𝜑 → (𝑁‘{𝑋}) ≠ (𝑁‘{𝑌}))
mapdindp1.f (𝜑 → ¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑌}))
Assertion
Ref Expression
mapdindp2 (𝜑 → ¬ 𝑤 ∈ (𝑁‘{𝑋, (𝑌 + 𝑍)}))

Proof of Theorem mapdindp2
StepHypRef Expression
1 preq2 4715 . . . . . 6 ((𝑌 + 𝑍) = 0 → {𝑋, (𝑌 + 𝑍)} = {𝑋, 0 })
21fveq2d 6885 . . . . 5 ((𝑌 + 𝑍) = 0 → (𝑁‘{𝑋, (𝑌 + 𝑍)}) = (𝑁‘{𝑋, 0 }))
3 mapdindp1.v . . . . . 6 𝑉 = (Base‘𝑊)
4 mapdindp1.o . . . . . 6 0 = (0g𝑊)
5 mapdindp1.n . . . . . 6 𝑁 = (LSpan‘𝑊)
6 mapdindp1.w . . . . . . 7 (𝜑𝑊 ∈ LVec)
7 lveclmod 21069 . . . . . . 7 (𝑊 ∈ LVec → 𝑊 ∈ LMod)
86, 7syl 17 . . . . . 6 (𝜑𝑊 ∈ LMod)
9 mapdindp1.x . . . . . . 7 (𝜑𝑋 ∈ (𝑉 ∖ { 0 }))
109eldifad 3943 . . . . . 6 (𝜑𝑋𝑉)
113, 4, 5, 8, 10lsppr0 21055 . . . . 5 (𝜑 → (𝑁‘{𝑋, 0 }) = (𝑁‘{𝑋}))
122, 11sylan9eqr 2793 . . . 4 ((𝜑 ∧ (𝑌 + 𝑍) = 0 ) → (𝑁‘{𝑋, (𝑌 + 𝑍)}) = (𝑁‘{𝑋}))
13 mapdindp1.y . . . . . . . 8 (𝜑𝑌 ∈ (𝑉 ∖ { 0 }))
1413eldifad 3943 . . . . . . 7 (𝜑𝑌𝑉)
15 prssi 4802 . . . . . . 7 ((𝑋𝑉𝑌𝑉) → {𝑋, 𝑌} ⊆ 𝑉)
1610, 14, 15syl2anc 584 . . . . . 6 (𝜑 → {𝑋, 𝑌} ⊆ 𝑉)
17 snsspr1 4795 . . . . . . 7 {𝑋} ⊆ {𝑋, 𝑌}
1817a1i 11 . . . . . 6 (𝜑 → {𝑋} ⊆ {𝑋, 𝑌})
193, 5lspss 20946 . . . . . 6 ((𝑊 ∈ LMod ∧ {𝑋, 𝑌} ⊆ 𝑉 ∧ {𝑋} ⊆ {𝑋, 𝑌}) → (𝑁‘{𝑋}) ⊆ (𝑁‘{𝑋, 𝑌}))
208, 16, 18, 19syl3anc 1373 . . . . 5 (𝜑 → (𝑁‘{𝑋}) ⊆ (𝑁‘{𝑋, 𝑌}))
2120adantr 480 . . . 4 ((𝜑 ∧ (𝑌 + 𝑍) = 0 ) → (𝑁‘{𝑋}) ⊆ (𝑁‘{𝑋, 𝑌}))
2212, 21eqsstrd 3998 . . 3 ((𝜑 ∧ (𝑌 + 𝑍) = 0 ) → (𝑁‘{𝑋, (𝑌 + 𝑍)}) ⊆ (𝑁‘{𝑋, 𝑌}))
23 mapdindp1.f . . . 4 (𝜑 → ¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑌}))
2423adantr 480 . . 3 ((𝜑 ∧ (𝑌 + 𝑍) = 0 ) → ¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑌}))
2522, 24ssneldd 3966 . 2 ((𝜑 ∧ (𝑌 + 𝑍) = 0 ) → ¬ 𝑤 ∈ (𝑁‘{𝑋, (𝑌 + 𝑍)}))
2623adantr 480 . . 3 ((𝜑 ∧ (𝑌 + 𝑍) ≠ 0 ) → ¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑌}))
27 mapdindp1.p . . . . . 6 + = (+g𝑊)
286adantr 480 . . . . . 6 ((𝜑 ∧ (𝑌 + 𝑍) ≠ 0 ) → 𝑊 ∈ LVec)
299adantr 480 . . . . . 6 ((𝜑 ∧ (𝑌 + 𝑍) ≠ 0 ) → 𝑋 ∈ (𝑉 ∖ { 0 }))
3013adantr 480 . . . . . 6 ((𝜑 ∧ (𝑌 + 𝑍) ≠ 0 ) → 𝑌 ∈ (𝑉 ∖ { 0 }))
31 mapdindp1.z . . . . . . 7 (𝜑𝑍 ∈ (𝑉 ∖ { 0 }))
3231adantr 480 . . . . . 6 ((𝜑 ∧ (𝑌 + 𝑍) ≠ 0 ) → 𝑍 ∈ (𝑉 ∖ { 0 }))
33 mapdindp1.W . . . . . . 7 (𝜑𝑤 ∈ (𝑉 ∖ { 0 }))
3433adantr 480 . . . . . 6 ((𝜑 ∧ (𝑌 + 𝑍) ≠ 0 ) → 𝑤 ∈ (𝑉 ∖ { 0 }))
35 mapdindp1.e . . . . . . 7 (𝜑 → (𝑁‘{𝑌}) = (𝑁‘{𝑍}))
3635adantr 480 . . . . . 6 ((𝜑 ∧ (𝑌 + 𝑍) ≠ 0 ) → (𝑁‘{𝑌}) = (𝑁‘{𝑍}))
37 mapdindp1.ne . . . . . . 7 (𝜑 → (𝑁‘{𝑋}) ≠ (𝑁‘{𝑌}))
3837adantr 480 . . . . . 6 ((𝜑 ∧ (𝑌 + 𝑍) ≠ 0 ) → (𝑁‘{𝑋}) ≠ (𝑁‘{𝑌}))
39 simpr 484 . . . . . 6 ((𝜑 ∧ (𝑌 + 𝑍) ≠ 0 ) → (𝑌 + 𝑍) ≠ 0 )
403, 27, 4, 5, 28, 29, 30, 32, 34, 36, 38, 26, 39mapdindp0 41743 . . . . 5 ((𝜑 ∧ (𝑌 + 𝑍) ≠ 0 ) → (𝑁‘{(𝑌 + 𝑍)}) = (𝑁‘{𝑌}))
4140oveq2d 7426 . . . 4 ((𝜑 ∧ (𝑌 + 𝑍) ≠ 0 ) → ((𝑁‘{𝑋})(LSSum‘𝑊)(𝑁‘{(𝑌 + 𝑍)})) = ((𝑁‘{𝑋})(LSSum‘𝑊)(𝑁‘{𝑌})))
42 eqid 2736 . . . . . 6 (LSSum‘𝑊) = (LSSum‘𝑊)
4331eldifad 3943 . . . . . . 7 (𝜑𝑍𝑉)
443, 27lmodvacl 20837 . . . . . . 7 ((𝑊 ∈ LMod ∧ 𝑌𝑉𝑍𝑉) → (𝑌 + 𝑍) ∈ 𝑉)
458, 14, 43, 44syl3anc 1373 . . . . . 6 (𝜑 → (𝑌 + 𝑍) ∈ 𝑉)
463, 5, 42, 8, 10, 45lsmpr 21052 . . . . 5 (𝜑 → (𝑁‘{𝑋, (𝑌 + 𝑍)}) = ((𝑁‘{𝑋})(LSSum‘𝑊)(𝑁‘{(𝑌 + 𝑍)})))
4746adantr 480 . . . 4 ((𝜑 ∧ (𝑌 + 𝑍) ≠ 0 ) → (𝑁‘{𝑋, (𝑌 + 𝑍)}) = ((𝑁‘{𝑋})(LSSum‘𝑊)(𝑁‘{(𝑌 + 𝑍)})))
483, 5, 42, 8, 10, 14lsmpr 21052 . . . . 5 (𝜑 → (𝑁‘{𝑋, 𝑌}) = ((𝑁‘{𝑋})(LSSum‘𝑊)(𝑁‘{𝑌})))
4948adantr 480 . . . 4 ((𝜑 ∧ (𝑌 + 𝑍) ≠ 0 ) → (𝑁‘{𝑋, 𝑌}) = ((𝑁‘{𝑋})(LSSum‘𝑊)(𝑁‘{𝑌})))
5041, 47, 493eqtr4d 2781 . . 3 ((𝜑 ∧ (𝑌 + 𝑍) ≠ 0 ) → (𝑁‘{𝑋, (𝑌 + 𝑍)}) = (𝑁‘{𝑋, 𝑌}))
5126, 50neleqtrrd 2858 . 2 ((𝜑 ∧ (𝑌 + 𝑍) ≠ 0 ) → ¬ 𝑤 ∈ (𝑁‘{𝑋, (𝑌 + 𝑍)}))
5225, 51pm2.61dane 3020 1 (𝜑 → ¬ 𝑤 ∈ (𝑁‘{𝑋, (𝑌 + 𝑍)}))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1540  wcel 2109  wne 2933  cdif 3928  wss 3931  {csn 4606  {cpr 4608  cfv 6536  (class class class)co 7410  Basecbs 17233  +gcplusg 17276  0gc0g 17458  LSSumclsm 19620  LModclmod 20822  LSpanclspn 20933  LVecclvec 21065
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-rep 5254  ax-sep 5271  ax-nul 5281  ax-pow 5340  ax-pr 5407  ax-un 7734  ax-cnex 11190  ax-resscn 11191  ax-1cn 11192  ax-icn 11193  ax-addcl 11194  ax-addrcl 11195  ax-mulcl 11196  ax-mulrcl 11197  ax-mulcom 11198  ax-addass 11199  ax-mulass 11200  ax-distr 11201  ax-i2m1 11202  ax-1ne0 11203  ax-1rid 11204  ax-rnegex 11205  ax-rrecex 11206  ax-cnre 11207  ax-pre-lttri 11208  ax-pre-lttrn 11209  ax-pre-ltadd 11210  ax-pre-mulgt0 11211
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-nel 3038  df-ral 3053  df-rex 3062  df-rmo 3364  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-int 4928  df-iun 4974  df-br 5125  df-opab 5187  df-mpt 5207  df-tr 5235  df-id 5553  df-eprel 5558  df-po 5566  df-so 5567  df-fr 5611  df-we 5613  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-pred 6295  df-ord 6360  df-on 6361  df-lim 6362  df-suc 6363  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-riota 7367  df-ov 7413  df-oprab 7414  df-mpo 7415  df-om 7867  df-1st 7993  df-2nd 7994  df-tpos 8230  df-frecs 8285  df-wrecs 8316  df-recs 8390  df-rdg 8429  df-er 8724  df-en 8965  df-dom 8966  df-sdom 8967  df-pnf 11276  df-mnf 11277  df-xr 11278  df-ltxr 11279  df-le 11280  df-sub 11473  df-neg 11474  df-nn 12246  df-2 12308  df-3 12309  df-sets 17188  df-slot 17206  df-ndx 17218  df-base 17234  df-ress 17257  df-plusg 17289  df-mulr 17290  df-0g 17460  df-mgm 18623  df-sgrp 18702  df-mnd 18718  df-submnd 18767  df-grp 18924  df-minusg 18925  df-sbg 18926  df-subg 19111  df-cntz 19305  df-lsm 19622  df-cmn 19768  df-abl 19769  df-mgp 20106  df-rng 20118  df-ur 20147  df-ring 20200  df-oppr 20302  df-dvdsr 20322  df-unit 20323  df-invr 20353  df-drng 20696  df-lmod 20824  df-lss 20894  df-lsp 20934  df-lvec 21066
This theorem is referenced by:  mapdh6dN  41763  hdmap1l6d  41837
  Copyright terms: Public domain W3C validator