Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mapdindp2 Structured version   Visualization version   GIF version

Theorem mapdindp2 41722
Description: Vector independence lemma. (Contributed by NM, 1-May-2015.)
Hypotheses
Ref Expression
mapdindp1.v 𝑉 = (Base‘𝑊)
mapdindp1.p + = (+g𝑊)
mapdindp1.o 0 = (0g𝑊)
mapdindp1.n 𝑁 = (LSpan‘𝑊)
mapdindp1.w (𝜑𝑊 ∈ LVec)
mapdindp1.x (𝜑𝑋 ∈ (𝑉 ∖ { 0 }))
mapdindp1.y (𝜑𝑌 ∈ (𝑉 ∖ { 0 }))
mapdindp1.z (𝜑𝑍 ∈ (𝑉 ∖ { 0 }))
mapdindp1.W (𝜑𝑤 ∈ (𝑉 ∖ { 0 }))
mapdindp1.e (𝜑 → (𝑁‘{𝑌}) = (𝑁‘{𝑍}))
mapdindp1.ne (𝜑 → (𝑁‘{𝑋}) ≠ (𝑁‘{𝑌}))
mapdindp1.f (𝜑 → ¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑌}))
Assertion
Ref Expression
mapdindp2 (𝜑 → ¬ 𝑤 ∈ (𝑁‘{𝑋, (𝑌 + 𝑍)}))

Proof of Theorem mapdindp2
StepHypRef Expression
1 preq2 4701 . . . . . 6 ((𝑌 + 𝑍) = 0 → {𝑋, (𝑌 + 𝑍)} = {𝑋, 0 })
21fveq2d 6865 . . . . 5 ((𝑌 + 𝑍) = 0 → (𝑁‘{𝑋, (𝑌 + 𝑍)}) = (𝑁‘{𝑋, 0 }))
3 mapdindp1.v . . . . . 6 𝑉 = (Base‘𝑊)
4 mapdindp1.o . . . . . 6 0 = (0g𝑊)
5 mapdindp1.n . . . . . 6 𝑁 = (LSpan‘𝑊)
6 mapdindp1.w . . . . . . 7 (𝜑𝑊 ∈ LVec)
7 lveclmod 21020 . . . . . . 7 (𝑊 ∈ LVec → 𝑊 ∈ LMod)
86, 7syl 17 . . . . . 6 (𝜑𝑊 ∈ LMod)
9 mapdindp1.x . . . . . . 7 (𝜑𝑋 ∈ (𝑉 ∖ { 0 }))
109eldifad 3929 . . . . . 6 (𝜑𝑋𝑉)
113, 4, 5, 8, 10lsppr0 21006 . . . . 5 (𝜑 → (𝑁‘{𝑋, 0 }) = (𝑁‘{𝑋}))
122, 11sylan9eqr 2787 . . . 4 ((𝜑 ∧ (𝑌 + 𝑍) = 0 ) → (𝑁‘{𝑋, (𝑌 + 𝑍)}) = (𝑁‘{𝑋}))
13 mapdindp1.y . . . . . . . 8 (𝜑𝑌 ∈ (𝑉 ∖ { 0 }))
1413eldifad 3929 . . . . . . 7 (𝜑𝑌𝑉)
15 prssi 4788 . . . . . . 7 ((𝑋𝑉𝑌𝑉) → {𝑋, 𝑌} ⊆ 𝑉)
1610, 14, 15syl2anc 584 . . . . . 6 (𝜑 → {𝑋, 𝑌} ⊆ 𝑉)
17 snsspr1 4781 . . . . . . 7 {𝑋} ⊆ {𝑋, 𝑌}
1817a1i 11 . . . . . 6 (𝜑 → {𝑋} ⊆ {𝑋, 𝑌})
193, 5lspss 20897 . . . . . 6 ((𝑊 ∈ LMod ∧ {𝑋, 𝑌} ⊆ 𝑉 ∧ {𝑋} ⊆ {𝑋, 𝑌}) → (𝑁‘{𝑋}) ⊆ (𝑁‘{𝑋, 𝑌}))
208, 16, 18, 19syl3anc 1373 . . . . 5 (𝜑 → (𝑁‘{𝑋}) ⊆ (𝑁‘{𝑋, 𝑌}))
2120adantr 480 . . . 4 ((𝜑 ∧ (𝑌 + 𝑍) = 0 ) → (𝑁‘{𝑋}) ⊆ (𝑁‘{𝑋, 𝑌}))
2212, 21eqsstrd 3984 . . 3 ((𝜑 ∧ (𝑌 + 𝑍) = 0 ) → (𝑁‘{𝑋, (𝑌 + 𝑍)}) ⊆ (𝑁‘{𝑋, 𝑌}))
23 mapdindp1.f . . . 4 (𝜑 → ¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑌}))
2423adantr 480 . . 3 ((𝜑 ∧ (𝑌 + 𝑍) = 0 ) → ¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑌}))
2522, 24ssneldd 3952 . 2 ((𝜑 ∧ (𝑌 + 𝑍) = 0 ) → ¬ 𝑤 ∈ (𝑁‘{𝑋, (𝑌 + 𝑍)}))
2623adantr 480 . . 3 ((𝜑 ∧ (𝑌 + 𝑍) ≠ 0 ) → ¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑌}))
27 mapdindp1.p . . . . . 6 + = (+g𝑊)
286adantr 480 . . . . . 6 ((𝜑 ∧ (𝑌 + 𝑍) ≠ 0 ) → 𝑊 ∈ LVec)
299adantr 480 . . . . . 6 ((𝜑 ∧ (𝑌 + 𝑍) ≠ 0 ) → 𝑋 ∈ (𝑉 ∖ { 0 }))
3013adantr 480 . . . . . 6 ((𝜑 ∧ (𝑌 + 𝑍) ≠ 0 ) → 𝑌 ∈ (𝑉 ∖ { 0 }))
31 mapdindp1.z . . . . . . 7 (𝜑𝑍 ∈ (𝑉 ∖ { 0 }))
3231adantr 480 . . . . . 6 ((𝜑 ∧ (𝑌 + 𝑍) ≠ 0 ) → 𝑍 ∈ (𝑉 ∖ { 0 }))
33 mapdindp1.W . . . . . . 7 (𝜑𝑤 ∈ (𝑉 ∖ { 0 }))
3433adantr 480 . . . . . 6 ((𝜑 ∧ (𝑌 + 𝑍) ≠ 0 ) → 𝑤 ∈ (𝑉 ∖ { 0 }))
35 mapdindp1.e . . . . . . 7 (𝜑 → (𝑁‘{𝑌}) = (𝑁‘{𝑍}))
3635adantr 480 . . . . . 6 ((𝜑 ∧ (𝑌 + 𝑍) ≠ 0 ) → (𝑁‘{𝑌}) = (𝑁‘{𝑍}))
37 mapdindp1.ne . . . . . . 7 (𝜑 → (𝑁‘{𝑋}) ≠ (𝑁‘{𝑌}))
3837adantr 480 . . . . . 6 ((𝜑 ∧ (𝑌 + 𝑍) ≠ 0 ) → (𝑁‘{𝑋}) ≠ (𝑁‘{𝑌}))
39 simpr 484 . . . . . 6 ((𝜑 ∧ (𝑌 + 𝑍) ≠ 0 ) → (𝑌 + 𝑍) ≠ 0 )
403, 27, 4, 5, 28, 29, 30, 32, 34, 36, 38, 26, 39mapdindp0 41720 . . . . 5 ((𝜑 ∧ (𝑌 + 𝑍) ≠ 0 ) → (𝑁‘{(𝑌 + 𝑍)}) = (𝑁‘{𝑌}))
4140oveq2d 7406 . . . 4 ((𝜑 ∧ (𝑌 + 𝑍) ≠ 0 ) → ((𝑁‘{𝑋})(LSSum‘𝑊)(𝑁‘{(𝑌 + 𝑍)})) = ((𝑁‘{𝑋})(LSSum‘𝑊)(𝑁‘{𝑌})))
42 eqid 2730 . . . . . 6 (LSSum‘𝑊) = (LSSum‘𝑊)
4331eldifad 3929 . . . . . . 7 (𝜑𝑍𝑉)
443, 27lmodvacl 20788 . . . . . . 7 ((𝑊 ∈ LMod ∧ 𝑌𝑉𝑍𝑉) → (𝑌 + 𝑍) ∈ 𝑉)
458, 14, 43, 44syl3anc 1373 . . . . . 6 (𝜑 → (𝑌 + 𝑍) ∈ 𝑉)
463, 5, 42, 8, 10, 45lsmpr 21003 . . . . 5 (𝜑 → (𝑁‘{𝑋, (𝑌 + 𝑍)}) = ((𝑁‘{𝑋})(LSSum‘𝑊)(𝑁‘{(𝑌 + 𝑍)})))
4746adantr 480 . . . 4 ((𝜑 ∧ (𝑌 + 𝑍) ≠ 0 ) → (𝑁‘{𝑋, (𝑌 + 𝑍)}) = ((𝑁‘{𝑋})(LSSum‘𝑊)(𝑁‘{(𝑌 + 𝑍)})))
483, 5, 42, 8, 10, 14lsmpr 21003 . . . . 5 (𝜑 → (𝑁‘{𝑋, 𝑌}) = ((𝑁‘{𝑋})(LSSum‘𝑊)(𝑁‘{𝑌})))
4948adantr 480 . . . 4 ((𝜑 ∧ (𝑌 + 𝑍) ≠ 0 ) → (𝑁‘{𝑋, 𝑌}) = ((𝑁‘{𝑋})(LSSum‘𝑊)(𝑁‘{𝑌})))
5041, 47, 493eqtr4d 2775 . . 3 ((𝜑 ∧ (𝑌 + 𝑍) ≠ 0 ) → (𝑁‘{𝑋, (𝑌 + 𝑍)}) = (𝑁‘{𝑋, 𝑌}))
5126, 50neleqtrrd 2852 . 2 ((𝜑 ∧ (𝑌 + 𝑍) ≠ 0 ) → ¬ 𝑤 ∈ (𝑁‘{𝑋, (𝑌 + 𝑍)}))
5225, 51pm2.61dane 3013 1 (𝜑 → ¬ 𝑤 ∈ (𝑁‘{𝑋, (𝑌 + 𝑍)}))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1540  wcel 2109  wne 2926  cdif 3914  wss 3917  {csn 4592  {cpr 4594  cfv 6514  (class class class)co 7390  Basecbs 17186  +gcplusg 17227  0gc0g 17409  LSSumclsm 19571  LModclmod 20773  LSpanclspn 20884  LVecclvec 21016
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-cnex 11131  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-int 4914  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-om 7846  df-1st 7971  df-2nd 7972  df-tpos 8208  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-er 8674  df-en 8922  df-dom 8923  df-sdom 8924  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415  df-nn 12194  df-2 12256  df-3 12257  df-sets 17141  df-slot 17159  df-ndx 17171  df-base 17187  df-ress 17208  df-plusg 17240  df-mulr 17241  df-0g 17411  df-mgm 18574  df-sgrp 18653  df-mnd 18669  df-submnd 18718  df-grp 18875  df-minusg 18876  df-sbg 18877  df-subg 19062  df-cntz 19256  df-lsm 19573  df-cmn 19719  df-abl 19720  df-mgp 20057  df-rng 20069  df-ur 20098  df-ring 20151  df-oppr 20253  df-dvdsr 20273  df-unit 20274  df-invr 20304  df-drng 20647  df-lmod 20775  df-lss 20845  df-lsp 20885  df-lvec 21017
This theorem is referenced by:  mapdh6dN  41740  hdmap1l6d  41814
  Copyright terms: Public domain W3C validator