| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > mapdindp2 | Structured version Visualization version GIF version | ||
| Description: Vector independence lemma. (Contributed by NM, 1-May-2015.) |
| Ref | Expression |
|---|---|
| mapdindp1.v | ⊢ 𝑉 = (Base‘𝑊) |
| mapdindp1.p | ⊢ + = (+g‘𝑊) |
| mapdindp1.o | ⊢ 0 = (0g‘𝑊) |
| mapdindp1.n | ⊢ 𝑁 = (LSpan‘𝑊) |
| mapdindp1.w | ⊢ (𝜑 → 𝑊 ∈ LVec) |
| mapdindp1.x | ⊢ (𝜑 → 𝑋 ∈ (𝑉 ∖ { 0 })) |
| mapdindp1.y | ⊢ (𝜑 → 𝑌 ∈ (𝑉 ∖ { 0 })) |
| mapdindp1.z | ⊢ (𝜑 → 𝑍 ∈ (𝑉 ∖ { 0 })) |
| mapdindp1.W | ⊢ (𝜑 → 𝑤 ∈ (𝑉 ∖ { 0 })) |
| mapdindp1.e | ⊢ (𝜑 → (𝑁‘{𝑌}) = (𝑁‘{𝑍})) |
| mapdindp1.ne | ⊢ (𝜑 → (𝑁‘{𝑋}) ≠ (𝑁‘{𝑌})) |
| mapdindp1.f | ⊢ (𝜑 → ¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑌})) |
| Ref | Expression |
|---|---|
| mapdindp2 | ⊢ (𝜑 → ¬ 𝑤 ∈ (𝑁‘{𝑋, (𝑌 + 𝑍)})) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | preq2 4694 | . . . . . 6 ⊢ ((𝑌 + 𝑍) = 0 → {𝑋, (𝑌 + 𝑍)} = {𝑋, 0 }) | |
| 2 | 1 | fveq2d 6844 | . . . . 5 ⊢ ((𝑌 + 𝑍) = 0 → (𝑁‘{𝑋, (𝑌 + 𝑍)}) = (𝑁‘{𝑋, 0 })) |
| 3 | mapdindp1.v | . . . . . 6 ⊢ 𝑉 = (Base‘𝑊) | |
| 4 | mapdindp1.o | . . . . . 6 ⊢ 0 = (0g‘𝑊) | |
| 5 | mapdindp1.n | . . . . . 6 ⊢ 𝑁 = (LSpan‘𝑊) | |
| 6 | mapdindp1.w | . . . . . . 7 ⊢ (𝜑 → 𝑊 ∈ LVec) | |
| 7 | lveclmod 20989 | . . . . . . 7 ⊢ (𝑊 ∈ LVec → 𝑊 ∈ LMod) | |
| 8 | 6, 7 | syl 17 | . . . . . 6 ⊢ (𝜑 → 𝑊 ∈ LMod) |
| 9 | mapdindp1.x | . . . . . . 7 ⊢ (𝜑 → 𝑋 ∈ (𝑉 ∖ { 0 })) | |
| 10 | 9 | eldifad 3923 | . . . . . 6 ⊢ (𝜑 → 𝑋 ∈ 𝑉) |
| 11 | 3, 4, 5, 8, 10 | lsppr0 20975 | . . . . 5 ⊢ (𝜑 → (𝑁‘{𝑋, 0 }) = (𝑁‘{𝑋})) |
| 12 | 2, 11 | sylan9eqr 2786 | . . . 4 ⊢ ((𝜑 ∧ (𝑌 + 𝑍) = 0 ) → (𝑁‘{𝑋, (𝑌 + 𝑍)}) = (𝑁‘{𝑋})) |
| 13 | mapdindp1.y | . . . . . . . 8 ⊢ (𝜑 → 𝑌 ∈ (𝑉 ∖ { 0 })) | |
| 14 | 13 | eldifad 3923 | . . . . . . 7 ⊢ (𝜑 → 𝑌 ∈ 𝑉) |
| 15 | prssi 4781 | . . . . . . 7 ⊢ ((𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉) → {𝑋, 𝑌} ⊆ 𝑉) | |
| 16 | 10, 14, 15 | syl2anc 584 | . . . . . 6 ⊢ (𝜑 → {𝑋, 𝑌} ⊆ 𝑉) |
| 17 | snsspr1 4774 | . . . . . . 7 ⊢ {𝑋} ⊆ {𝑋, 𝑌} | |
| 18 | 17 | a1i 11 | . . . . . 6 ⊢ (𝜑 → {𝑋} ⊆ {𝑋, 𝑌}) |
| 19 | 3, 5 | lspss 20866 | . . . . . 6 ⊢ ((𝑊 ∈ LMod ∧ {𝑋, 𝑌} ⊆ 𝑉 ∧ {𝑋} ⊆ {𝑋, 𝑌}) → (𝑁‘{𝑋}) ⊆ (𝑁‘{𝑋, 𝑌})) |
| 20 | 8, 16, 18, 19 | syl3anc 1373 | . . . . 5 ⊢ (𝜑 → (𝑁‘{𝑋}) ⊆ (𝑁‘{𝑋, 𝑌})) |
| 21 | 20 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ (𝑌 + 𝑍) = 0 ) → (𝑁‘{𝑋}) ⊆ (𝑁‘{𝑋, 𝑌})) |
| 22 | 12, 21 | eqsstrd 3978 | . . 3 ⊢ ((𝜑 ∧ (𝑌 + 𝑍) = 0 ) → (𝑁‘{𝑋, (𝑌 + 𝑍)}) ⊆ (𝑁‘{𝑋, 𝑌})) |
| 23 | mapdindp1.f | . . . 4 ⊢ (𝜑 → ¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑌})) | |
| 24 | 23 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ (𝑌 + 𝑍) = 0 ) → ¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑌})) |
| 25 | 22, 24 | ssneldd 3946 | . 2 ⊢ ((𝜑 ∧ (𝑌 + 𝑍) = 0 ) → ¬ 𝑤 ∈ (𝑁‘{𝑋, (𝑌 + 𝑍)})) |
| 26 | 23 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ (𝑌 + 𝑍) ≠ 0 ) → ¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑌})) |
| 27 | mapdindp1.p | . . . . . 6 ⊢ + = (+g‘𝑊) | |
| 28 | 6 | adantr 480 | . . . . . 6 ⊢ ((𝜑 ∧ (𝑌 + 𝑍) ≠ 0 ) → 𝑊 ∈ LVec) |
| 29 | 9 | adantr 480 | . . . . . 6 ⊢ ((𝜑 ∧ (𝑌 + 𝑍) ≠ 0 ) → 𝑋 ∈ (𝑉 ∖ { 0 })) |
| 30 | 13 | adantr 480 | . . . . . 6 ⊢ ((𝜑 ∧ (𝑌 + 𝑍) ≠ 0 ) → 𝑌 ∈ (𝑉 ∖ { 0 })) |
| 31 | mapdindp1.z | . . . . . . 7 ⊢ (𝜑 → 𝑍 ∈ (𝑉 ∖ { 0 })) | |
| 32 | 31 | adantr 480 | . . . . . 6 ⊢ ((𝜑 ∧ (𝑌 + 𝑍) ≠ 0 ) → 𝑍 ∈ (𝑉 ∖ { 0 })) |
| 33 | mapdindp1.W | . . . . . . 7 ⊢ (𝜑 → 𝑤 ∈ (𝑉 ∖ { 0 })) | |
| 34 | 33 | adantr 480 | . . . . . 6 ⊢ ((𝜑 ∧ (𝑌 + 𝑍) ≠ 0 ) → 𝑤 ∈ (𝑉 ∖ { 0 })) |
| 35 | mapdindp1.e | . . . . . . 7 ⊢ (𝜑 → (𝑁‘{𝑌}) = (𝑁‘{𝑍})) | |
| 36 | 35 | adantr 480 | . . . . . 6 ⊢ ((𝜑 ∧ (𝑌 + 𝑍) ≠ 0 ) → (𝑁‘{𝑌}) = (𝑁‘{𝑍})) |
| 37 | mapdindp1.ne | . . . . . . 7 ⊢ (𝜑 → (𝑁‘{𝑋}) ≠ (𝑁‘{𝑌})) | |
| 38 | 37 | adantr 480 | . . . . . 6 ⊢ ((𝜑 ∧ (𝑌 + 𝑍) ≠ 0 ) → (𝑁‘{𝑋}) ≠ (𝑁‘{𝑌})) |
| 39 | simpr 484 | . . . . . 6 ⊢ ((𝜑 ∧ (𝑌 + 𝑍) ≠ 0 ) → (𝑌 + 𝑍) ≠ 0 ) | |
| 40 | 3, 27, 4, 5, 28, 29, 30, 32, 34, 36, 38, 26, 39 | mapdindp0 41686 | . . . . 5 ⊢ ((𝜑 ∧ (𝑌 + 𝑍) ≠ 0 ) → (𝑁‘{(𝑌 + 𝑍)}) = (𝑁‘{𝑌})) |
| 41 | 40 | oveq2d 7385 | . . . 4 ⊢ ((𝜑 ∧ (𝑌 + 𝑍) ≠ 0 ) → ((𝑁‘{𝑋})(LSSum‘𝑊)(𝑁‘{(𝑌 + 𝑍)})) = ((𝑁‘{𝑋})(LSSum‘𝑊)(𝑁‘{𝑌}))) |
| 42 | eqid 2729 | . . . . . 6 ⊢ (LSSum‘𝑊) = (LSSum‘𝑊) | |
| 43 | 31 | eldifad 3923 | . . . . . . 7 ⊢ (𝜑 → 𝑍 ∈ 𝑉) |
| 44 | 3, 27 | lmodvacl 20757 | . . . . . . 7 ⊢ ((𝑊 ∈ LMod ∧ 𝑌 ∈ 𝑉 ∧ 𝑍 ∈ 𝑉) → (𝑌 + 𝑍) ∈ 𝑉) |
| 45 | 8, 14, 43, 44 | syl3anc 1373 | . . . . . 6 ⊢ (𝜑 → (𝑌 + 𝑍) ∈ 𝑉) |
| 46 | 3, 5, 42, 8, 10, 45 | lsmpr 20972 | . . . . 5 ⊢ (𝜑 → (𝑁‘{𝑋, (𝑌 + 𝑍)}) = ((𝑁‘{𝑋})(LSSum‘𝑊)(𝑁‘{(𝑌 + 𝑍)}))) |
| 47 | 46 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ (𝑌 + 𝑍) ≠ 0 ) → (𝑁‘{𝑋, (𝑌 + 𝑍)}) = ((𝑁‘{𝑋})(LSSum‘𝑊)(𝑁‘{(𝑌 + 𝑍)}))) |
| 48 | 3, 5, 42, 8, 10, 14 | lsmpr 20972 | . . . . 5 ⊢ (𝜑 → (𝑁‘{𝑋, 𝑌}) = ((𝑁‘{𝑋})(LSSum‘𝑊)(𝑁‘{𝑌}))) |
| 49 | 48 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ (𝑌 + 𝑍) ≠ 0 ) → (𝑁‘{𝑋, 𝑌}) = ((𝑁‘{𝑋})(LSSum‘𝑊)(𝑁‘{𝑌}))) |
| 50 | 41, 47, 49 | 3eqtr4d 2774 | . . 3 ⊢ ((𝜑 ∧ (𝑌 + 𝑍) ≠ 0 ) → (𝑁‘{𝑋, (𝑌 + 𝑍)}) = (𝑁‘{𝑋, 𝑌})) |
| 51 | 26, 50 | neleqtrrd 2851 | . 2 ⊢ ((𝜑 ∧ (𝑌 + 𝑍) ≠ 0 ) → ¬ 𝑤 ∈ (𝑁‘{𝑋, (𝑌 + 𝑍)})) |
| 52 | 25, 51 | pm2.61dane 3012 | 1 ⊢ (𝜑 → ¬ 𝑤 ∈ (𝑁‘{𝑋, (𝑌 + 𝑍)})) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ≠ wne 2925 ∖ cdif 3908 ⊆ wss 3911 {csn 4585 {cpr 4587 ‘cfv 6499 (class class class)co 7369 Basecbs 17155 +gcplusg 17196 0gc0g 17378 LSSumclsm 19540 LModclmod 20742 LSpanclspn 20853 LVecclvec 20985 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5229 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 ax-cnex 11100 ax-resscn 11101 ax-1cn 11102 ax-icn 11103 ax-addcl 11104 ax-addrcl 11105 ax-mulcl 11106 ax-mulrcl 11107 ax-mulcom 11108 ax-addass 11109 ax-mulass 11110 ax-distr 11111 ax-i2m1 11112 ax-1ne0 11113 ax-1rid 11114 ax-rnegex 11115 ax-rrecex 11116 ax-cnre 11117 ax-pre-lttri 11118 ax-pre-lttrn 11119 ax-pre-ltadd 11120 ax-pre-mulgt0 11121 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3351 df-reu 3352 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-pss 3931 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-int 4907 df-iun 4953 df-br 5103 df-opab 5165 df-mpt 5184 df-tr 5210 df-id 5526 df-eprel 5531 df-po 5539 df-so 5540 df-fr 5584 df-we 5586 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-pred 6262 df-ord 6323 df-on 6324 df-lim 6325 df-suc 6326 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-riota 7326 df-ov 7372 df-oprab 7373 df-mpo 7374 df-om 7823 df-1st 7947 df-2nd 7948 df-tpos 8182 df-frecs 8237 df-wrecs 8268 df-recs 8317 df-rdg 8355 df-er 8648 df-en 8896 df-dom 8897 df-sdom 8898 df-pnf 11186 df-mnf 11187 df-xr 11188 df-ltxr 11189 df-le 11190 df-sub 11383 df-neg 11384 df-nn 12163 df-2 12225 df-3 12226 df-sets 17110 df-slot 17128 df-ndx 17140 df-base 17156 df-ress 17177 df-plusg 17209 df-mulr 17210 df-0g 17380 df-mgm 18543 df-sgrp 18622 df-mnd 18638 df-submnd 18687 df-grp 18844 df-minusg 18845 df-sbg 18846 df-subg 19031 df-cntz 19225 df-lsm 19542 df-cmn 19688 df-abl 19689 df-mgp 20026 df-rng 20038 df-ur 20067 df-ring 20120 df-oppr 20222 df-dvdsr 20242 df-unit 20243 df-invr 20273 df-drng 20616 df-lmod 20744 df-lss 20814 df-lsp 20854 df-lvec 20986 |
| This theorem is referenced by: mapdh6dN 41706 hdmap1l6d 41780 |
| Copyright terms: Public domain | W3C validator |