![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > mapdindp4 | Structured version Visualization version GIF version |
Description: Vector independence lemma. (Contributed by NM, 29-Apr-2015.) |
Ref | Expression |
---|---|
mapdindp1.v | ⊢ 𝑉 = (Base‘𝑊) |
mapdindp1.p | ⊢ + = (+g‘𝑊) |
mapdindp1.o | ⊢ 0 = (0g‘𝑊) |
mapdindp1.n | ⊢ 𝑁 = (LSpan‘𝑊) |
mapdindp1.w | ⊢ (𝜑 → 𝑊 ∈ LVec) |
mapdindp1.x | ⊢ (𝜑 → 𝑋 ∈ (𝑉 ∖ { 0 })) |
mapdindp1.y | ⊢ (𝜑 → 𝑌 ∈ (𝑉 ∖ { 0 })) |
mapdindp1.z | ⊢ (𝜑 → 𝑍 ∈ (𝑉 ∖ { 0 })) |
mapdindp1.W | ⊢ (𝜑 → 𝑤 ∈ (𝑉 ∖ { 0 })) |
mapdindp1.e | ⊢ (𝜑 → (𝑁‘{𝑌}) = (𝑁‘{𝑍})) |
mapdindp1.ne | ⊢ (𝜑 → (𝑁‘{𝑋}) ≠ (𝑁‘{𝑌})) |
mapdindp1.f | ⊢ (𝜑 → ¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑌})) |
Ref | Expression |
---|---|
mapdindp4 | ⊢ (𝜑 → ¬ 𝑍 ∈ (𝑁‘{𝑋, (𝑤 + 𝑌)})) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mapdindp1.v | . . 3 ⊢ 𝑉 = (Base‘𝑊) | |
2 | mapdindp1.o | . . 3 ⊢ 0 = (0g‘𝑊) | |
3 | mapdindp1.n | . . 3 ⊢ 𝑁 = (LSpan‘𝑊) | |
4 | mapdindp1.w | . . 3 ⊢ (𝜑 → 𝑊 ∈ LVec) | |
5 | mapdindp1.z | . . 3 ⊢ (𝜑 → 𝑍 ∈ (𝑉 ∖ { 0 })) | |
6 | lveclmod 20705 | . . . . 5 ⊢ (𝑊 ∈ LVec → 𝑊 ∈ LMod) | |
7 | 4, 6 | syl 17 | . . . 4 ⊢ (𝜑 → 𝑊 ∈ LMod) |
8 | mapdindp1.W | . . . . 5 ⊢ (𝜑 → 𝑤 ∈ (𝑉 ∖ { 0 })) | |
9 | 8 | eldifad 3959 | . . . 4 ⊢ (𝜑 → 𝑤 ∈ 𝑉) |
10 | mapdindp1.y | . . . . 5 ⊢ (𝜑 → 𝑌 ∈ (𝑉 ∖ { 0 })) | |
11 | 10 | eldifad 3959 | . . . 4 ⊢ (𝜑 → 𝑌 ∈ 𝑉) |
12 | mapdindp1.p | . . . . 5 ⊢ + = (+g‘𝑊) | |
13 | 1, 12 | lmodvacl 20474 | . . . 4 ⊢ ((𝑊 ∈ LMod ∧ 𝑤 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉) → (𝑤 + 𝑌) ∈ 𝑉) |
14 | 7, 9, 11, 13 | syl3anc 1372 | . . 3 ⊢ (𝜑 → (𝑤 + 𝑌) ∈ 𝑉) |
15 | mapdindp1.x | . . . 4 ⊢ (𝜑 → 𝑋 ∈ (𝑉 ∖ { 0 })) | |
16 | 15 | eldifad 3959 | . . 3 ⊢ (𝜑 → 𝑋 ∈ 𝑉) |
17 | mapdindp1.e | . . . 4 ⊢ (𝜑 → (𝑁‘{𝑌}) = (𝑁‘{𝑍})) | |
18 | mapdindp1.f | . . . . . . . . 9 ⊢ (𝜑 → ¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑌})) | |
19 | 1, 3, 4, 9, 16, 11, 18 | lspindpi 20733 | . . . . . . . 8 ⊢ (𝜑 → ((𝑁‘{𝑤}) ≠ (𝑁‘{𝑋}) ∧ (𝑁‘{𝑤}) ≠ (𝑁‘{𝑌}))) |
20 | 19 | simprd 497 | . . . . . . 7 ⊢ (𝜑 → (𝑁‘{𝑤}) ≠ (𝑁‘{𝑌})) |
21 | 20 | necomd 2997 | . . . . . 6 ⊢ (𝜑 → (𝑁‘{𝑌}) ≠ (𝑁‘{𝑤})) |
22 | 1, 12, 2, 3, 4, 11, 8, 21 | lspindp3 20737 | . . . . 5 ⊢ (𝜑 → (𝑁‘{𝑌}) ≠ (𝑁‘{(𝑌 + 𝑤)})) |
23 | 1, 12 | lmodcom 20506 | . . . . . . . 8 ⊢ ((𝑊 ∈ LMod ∧ 𝑤 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉) → (𝑤 + 𝑌) = (𝑌 + 𝑤)) |
24 | 7, 9, 11, 23 | syl3anc 1372 | . . . . . . 7 ⊢ (𝜑 → (𝑤 + 𝑌) = (𝑌 + 𝑤)) |
25 | 24 | sneqd 4639 | . . . . . 6 ⊢ (𝜑 → {(𝑤 + 𝑌)} = {(𝑌 + 𝑤)}) |
26 | 25 | fveq2d 6892 | . . . . 5 ⊢ (𝜑 → (𝑁‘{(𝑤 + 𝑌)}) = (𝑁‘{(𝑌 + 𝑤)})) |
27 | 22, 26 | neeqtrrd 3016 | . . . 4 ⊢ (𝜑 → (𝑁‘{𝑌}) ≠ (𝑁‘{(𝑤 + 𝑌)})) |
28 | 17, 27 | eqnetrrd 3010 | . . 3 ⊢ (𝜑 → (𝑁‘{𝑍}) ≠ (𝑁‘{(𝑤 + 𝑌)})) |
29 | mapdindp1.ne | . . . . . 6 ⊢ (𝜑 → (𝑁‘{𝑋}) ≠ (𝑁‘{𝑌})) | |
30 | 1, 2, 3, 4, 15, 11, 9, 29, 18 | lspindp1 20734 | . . . . 5 ⊢ (𝜑 → ((𝑁‘{𝑤}) ≠ (𝑁‘{𝑌}) ∧ ¬ 𝑋 ∈ (𝑁‘{𝑤, 𝑌}))) |
31 | 30 | simprd 497 | . . . 4 ⊢ (𝜑 → ¬ 𝑋 ∈ (𝑁‘{𝑤, 𝑌})) |
32 | eqid 2733 | . . . . . 6 ⊢ (LSSum‘𝑊) = (LSSum‘𝑊) | |
33 | 5 | eldifad 3959 | . . . . . 6 ⊢ (𝜑 → 𝑍 ∈ 𝑉) |
34 | 1, 3, 32, 7, 33, 14 | lsmpr 20688 | . . . . 5 ⊢ (𝜑 → (𝑁‘{𝑍, (𝑤 + 𝑌)}) = ((𝑁‘{𝑍})(LSSum‘𝑊)(𝑁‘{(𝑤 + 𝑌)}))) |
35 | 1, 12 | lmodcom 20506 | . . . . . . . . . 10 ⊢ ((𝑊 ∈ LMod ∧ 𝑌 ∈ 𝑉 ∧ 𝑤 ∈ 𝑉) → (𝑌 + 𝑤) = (𝑤 + 𝑌)) |
36 | 7, 11, 9, 35 | syl3anc 1372 | . . . . . . . . 9 ⊢ (𝜑 → (𝑌 + 𝑤) = (𝑤 + 𝑌)) |
37 | 36 | preq2d 4743 | . . . . . . . 8 ⊢ (𝜑 → {𝑌, (𝑌 + 𝑤)} = {𝑌, (𝑤 + 𝑌)}) |
38 | 37 | fveq2d 6892 | . . . . . . 7 ⊢ (𝜑 → (𝑁‘{𝑌, (𝑌 + 𝑤)}) = (𝑁‘{𝑌, (𝑤 + 𝑌)})) |
39 | 1, 12, 3, 7, 11, 9 | lspprabs 20694 | . . . . . . 7 ⊢ (𝜑 → (𝑁‘{𝑌, (𝑌 + 𝑤)}) = (𝑁‘{𝑌, 𝑤})) |
40 | 1, 3, 32, 7, 11, 14 | lsmpr 20688 | . . . . . . 7 ⊢ (𝜑 → (𝑁‘{𝑌, (𝑤 + 𝑌)}) = ((𝑁‘{𝑌})(LSSum‘𝑊)(𝑁‘{(𝑤 + 𝑌)}))) |
41 | 38, 39, 40 | 3eqtr3rd 2782 | . . . . . 6 ⊢ (𝜑 → ((𝑁‘{𝑌})(LSSum‘𝑊)(𝑁‘{(𝑤 + 𝑌)})) = (𝑁‘{𝑌, 𝑤})) |
42 | 17 | oveq1d 7419 | . . . . . 6 ⊢ (𝜑 → ((𝑁‘{𝑌})(LSSum‘𝑊)(𝑁‘{(𝑤 + 𝑌)})) = ((𝑁‘{𝑍})(LSSum‘𝑊)(𝑁‘{(𝑤 + 𝑌)}))) |
43 | prcom 4735 | . . . . . . . 8 ⊢ {𝑌, 𝑤} = {𝑤, 𝑌} | |
44 | 43 | fveq2i 6891 | . . . . . . 7 ⊢ (𝑁‘{𝑌, 𝑤}) = (𝑁‘{𝑤, 𝑌}) |
45 | 44 | a1i 11 | . . . . . 6 ⊢ (𝜑 → (𝑁‘{𝑌, 𝑤}) = (𝑁‘{𝑤, 𝑌})) |
46 | 41, 42, 45 | 3eqtr3d 2781 | . . . . 5 ⊢ (𝜑 → ((𝑁‘{𝑍})(LSSum‘𝑊)(𝑁‘{(𝑤 + 𝑌)})) = (𝑁‘{𝑤, 𝑌})) |
47 | 34, 46 | eqtrd 2773 | . . . 4 ⊢ (𝜑 → (𝑁‘{𝑍, (𝑤 + 𝑌)}) = (𝑁‘{𝑤, 𝑌})) |
48 | 31, 47 | neleqtrrd 2857 | . . 3 ⊢ (𝜑 → ¬ 𝑋 ∈ (𝑁‘{𝑍, (𝑤 + 𝑌)})) |
49 | 1, 2, 3, 4, 5, 14, 16, 28, 48 | lspindp1 20734 | . 2 ⊢ (𝜑 → ((𝑁‘{𝑋}) ≠ (𝑁‘{(𝑤 + 𝑌)}) ∧ ¬ 𝑍 ∈ (𝑁‘{𝑋, (𝑤 + 𝑌)}))) |
50 | 49 | simprd 497 | 1 ⊢ (𝜑 → ¬ 𝑍 ∈ (𝑁‘{𝑋, (𝑤 + 𝑌)})) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 = wceq 1542 ∈ wcel 2107 ≠ wne 2941 ∖ cdif 3944 {csn 4627 {cpr 4629 ‘cfv 6540 (class class class)co 7404 Basecbs 17140 +gcplusg 17193 0gc0g 17381 LSSumclsm 19495 LModclmod 20459 LSpanclspn 20570 LVecclvec 20701 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-rep 5284 ax-sep 5298 ax-nul 5305 ax-pow 5362 ax-pr 5426 ax-un 7720 ax-cnex 11162 ax-resscn 11163 ax-1cn 11164 ax-icn 11165 ax-addcl 11166 ax-addrcl 11167 ax-mulcl 11168 ax-mulrcl 11169 ax-mulcom 11170 ax-addass 11171 ax-mulass 11172 ax-distr 11173 ax-i2m1 11174 ax-1ne0 11175 ax-1rid 11176 ax-rnegex 11177 ax-rrecex 11178 ax-cnre 11179 ax-pre-lttri 11180 ax-pre-lttrn 11181 ax-pre-ltadd 11182 ax-pre-mulgt0 11183 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ne 2942 df-nel 3048 df-ral 3063 df-rex 3072 df-rmo 3377 df-reu 3378 df-rab 3434 df-v 3477 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-pss 3966 df-nul 4322 df-if 4528 df-pw 4603 df-sn 4628 df-pr 4630 df-op 4634 df-uni 4908 df-int 4950 df-iun 4998 df-br 5148 df-opab 5210 df-mpt 5231 df-tr 5265 df-id 5573 df-eprel 5579 df-po 5587 df-so 5588 df-fr 5630 df-we 5632 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-rn 5686 df-res 5687 df-ima 5688 df-pred 6297 df-ord 6364 df-on 6365 df-lim 6366 df-suc 6367 df-iota 6492 df-fun 6542 df-fn 6543 df-f 6544 df-f1 6545 df-fo 6546 df-f1o 6547 df-fv 6548 df-riota 7360 df-ov 7407 df-oprab 7408 df-mpo 7409 df-om 7851 df-1st 7970 df-2nd 7971 df-tpos 8206 df-frecs 8261 df-wrecs 8292 df-recs 8366 df-rdg 8405 df-er 8699 df-en 8936 df-dom 8937 df-sdom 8938 df-pnf 11246 df-mnf 11247 df-xr 11248 df-ltxr 11249 df-le 11250 df-sub 11442 df-neg 11443 df-nn 12209 df-2 12271 df-3 12272 df-sets 17093 df-slot 17111 df-ndx 17123 df-base 17141 df-ress 17170 df-plusg 17206 df-mulr 17207 df-0g 17383 df-mgm 18557 df-sgrp 18606 df-mnd 18622 df-submnd 18668 df-grp 18818 df-minusg 18819 df-sbg 18820 df-subg 18997 df-cntz 19175 df-lsm 19497 df-cmn 19643 df-abl 19644 df-mgp 19980 df-ur 19997 df-ring 20049 df-oppr 20139 df-dvdsr 20160 df-unit 20161 df-invr 20191 df-drng 20306 df-lmod 20461 df-lss 20531 df-lsp 20571 df-lvec 20702 |
This theorem is referenced by: mapdh6eN 40549 hdmap1l6e 40623 |
Copyright terms: Public domain | W3C validator |