Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mapdindp4 Structured version   Visualization version   GIF version

Theorem mapdindp4 38846
Description: Vector independence lemma. (Contributed by NM, 29-Apr-2015.)
Hypotheses
Ref Expression
mapdindp1.v 𝑉 = (Base‘𝑊)
mapdindp1.p + = (+g𝑊)
mapdindp1.o 0 = (0g𝑊)
mapdindp1.n 𝑁 = (LSpan‘𝑊)
mapdindp1.w (𝜑𝑊 ∈ LVec)
mapdindp1.x (𝜑𝑋 ∈ (𝑉 ∖ { 0 }))
mapdindp1.y (𝜑𝑌 ∈ (𝑉 ∖ { 0 }))
mapdindp1.z (𝜑𝑍 ∈ (𝑉 ∖ { 0 }))
mapdindp1.W (𝜑𝑤 ∈ (𝑉 ∖ { 0 }))
mapdindp1.e (𝜑 → (𝑁‘{𝑌}) = (𝑁‘{𝑍}))
mapdindp1.ne (𝜑 → (𝑁‘{𝑋}) ≠ (𝑁‘{𝑌}))
mapdindp1.f (𝜑 → ¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑌}))
Assertion
Ref Expression
mapdindp4 (𝜑 → ¬ 𝑍 ∈ (𝑁‘{𝑋, (𝑤 + 𝑌)}))

Proof of Theorem mapdindp4
StepHypRef Expression
1 mapdindp1.v . . 3 𝑉 = (Base‘𝑊)
2 mapdindp1.o . . 3 0 = (0g𝑊)
3 mapdindp1.n . . 3 𝑁 = (LSpan‘𝑊)
4 mapdindp1.w . . 3 (𝜑𝑊 ∈ LVec)
5 mapdindp1.z . . 3 (𝜑𝑍 ∈ (𝑉 ∖ { 0 }))
6 lveclmod 19870 . . . . 5 (𝑊 ∈ LVec → 𝑊 ∈ LMod)
74, 6syl 17 . . . 4 (𝜑𝑊 ∈ LMod)
8 mapdindp1.W . . . . 5 (𝜑𝑤 ∈ (𝑉 ∖ { 0 }))
98eldifad 3946 . . . 4 (𝜑𝑤𝑉)
10 mapdindp1.y . . . . 5 (𝜑𝑌 ∈ (𝑉 ∖ { 0 }))
1110eldifad 3946 . . . 4 (𝜑𝑌𝑉)
12 mapdindp1.p . . . . 5 + = (+g𝑊)
131, 12lmodvacl 19640 . . . 4 ((𝑊 ∈ LMod ∧ 𝑤𝑉𝑌𝑉) → (𝑤 + 𝑌) ∈ 𝑉)
147, 9, 11, 13syl3anc 1365 . . 3 (𝜑 → (𝑤 + 𝑌) ∈ 𝑉)
15 mapdindp1.x . . . 4 (𝜑𝑋 ∈ (𝑉 ∖ { 0 }))
1615eldifad 3946 . . 3 (𝜑𝑋𝑉)
17 mapdindp1.e . . . 4 (𝜑 → (𝑁‘{𝑌}) = (𝑁‘{𝑍}))
18 mapdindp1.f . . . . . . . . 9 (𝜑 → ¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑌}))
191, 3, 4, 9, 16, 11, 18lspindpi 19896 . . . . . . . 8 (𝜑 → ((𝑁‘{𝑤}) ≠ (𝑁‘{𝑋}) ∧ (𝑁‘{𝑤}) ≠ (𝑁‘{𝑌})))
2019simprd 498 . . . . . . 7 (𝜑 → (𝑁‘{𝑤}) ≠ (𝑁‘{𝑌}))
2120necomd 3069 . . . . . 6 (𝜑 → (𝑁‘{𝑌}) ≠ (𝑁‘{𝑤}))
221, 12, 2, 3, 4, 11, 8, 21lspindp3 19900 . . . . 5 (𝜑 → (𝑁‘{𝑌}) ≠ (𝑁‘{(𝑌 + 𝑤)}))
231, 12lmodcom 19672 . . . . . . . 8 ((𝑊 ∈ LMod ∧ 𝑤𝑉𝑌𝑉) → (𝑤 + 𝑌) = (𝑌 + 𝑤))
247, 9, 11, 23syl3anc 1365 . . . . . . 7 (𝜑 → (𝑤 + 𝑌) = (𝑌 + 𝑤))
2524sneqd 4571 . . . . . 6 (𝜑 → {(𝑤 + 𝑌)} = {(𝑌 + 𝑤)})
2625fveq2d 6667 . . . . 5 (𝜑 → (𝑁‘{(𝑤 + 𝑌)}) = (𝑁‘{(𝑌 + 𝑤)}))
2722, 26neeqtrrd 3088 . . . 4 (𝜑 → (𝑁‘{𝑌}) ≠ (𝑁‘{(𝑤 + 𝑌)}))
2817, 27eqnetrrd 3082 . . 3 (𝜑 → (𝑁‘{𝑍}) ≠ (𝑁‘{(𝑤 + 𝑌)}))
29 mapdindp1.ne . . . . . 6 (𝜑 → (𝑁‘{𝑋}) ≠ (𝑁‘{𝑌}))
301, 2, 3, 4, 15, 11, 9, 29, 18lspindp1 19897 . . . . 5 (𝜑 → ((𝑁‘{𝑤}) ≠ (𝑁‘{𝑌}) ∧ ¬ 𝑋 ∈ (𝑁‘{𝑤, 𝑌})))
3130simprd 498 . . . 4 (𝜑 → ¬ 𝑋 ∈ (𝑁‘{𝑤, 𝑌}))
32 eqid 2819 . . . . . 6 (LSSum‘𝑊) = (LSSum‘𝑊)
335eldifad 3946 . . . . . 6 (𝜑𝑍𝑉)
341, 3, 32, 7, 33, 14lsmpr 19853 . . . . 5 (𝜑 → (𝑁‘{𝑍, (𝑤 + 𝑌)}) = ((𝑁‘{𝑍})(LSSum‘𝑊)(𝑁‘{(𝑤 + 𝑌)})))
351, 12lmodcom 19672 . . . . . . . . . 10 ((𝑊 ∈ LMod ∧ 𝑌𝑉𝑤𝑉) → (𝑌 + 𝑤) = (𝑤 + 𝑌))
367, 11, 9, 35syl3anc 1365 . . . . . . . . 9 (𝜑 → (𝑌 + 𝑤) = (𝑤 + 𝑌))
3736preq2d 4668 . . . . . . . 8 (𝜑 → {𝑌, (𝑌 + 𝑤)} = {𝑌, (𝑤 + 𝑌)})
3837fveq2d 6667 . . . . . . 7 (𝜑 → (𝑁‘{𝑌, (𝑌 + 𝑤)}) = (𝑁‘{𝑌, (𝑤 + 𝑌)}))
391, 12, 3, 7, 11, 9lspprabs 19859 . . . . . . 7 (𝜑 → (𝑁‘{𝑌, (𝑌 + 𝑤)}) = (𝑁‘{𝑌, 𝑤}))
401, 3, 32, 7, 11, 14lsmpr 19853 . . . . . . 7 (𝜑 → (𝑁‘{𝑌, (𝑤 + 𝑌)}) = ((𝑁‘{𝑌})(LSSum‘𝑊)(𝑁‘{(𝑤 + 𝑌)})))
4138, 39, 403eqtr3rd 2863 . . . . . 6 (𝜑 → ((𝑁‘{𝑌})(LSSum‘𝑊)(𝑁‘{(𝑤 + 𝑌)})) = (𝑁‘{𝑌, 𝑤}))
4217oveq1d 7163 . . . . . 6 (𝜑 → ((𝑁‘{𝑌})(LSSum‘𝑊)(𝑁‘{(𝑤 + 𝑌)})) = ((𝑁‘{𝑍})(LSSum‘𝑊)(𝑁‘{(𝑤 + 𝑌)})))
43 prcom 4660 . . . . . . . 8 {𝑌, 𝑤} = {𝑤, 𝑌}
4443fveq2i 6666 . . . . . . 7 (𝑁‘{𝑌, 𝑤}) = (𝑁‘{𝑤, 𝑌})
4544a1i 11 . . . . . 6 (𝜑 → (𝑁‘{𝑌, 𝑤}) = (𝑁‘{𝑤, 𝑌}))
4641, 42, 453eqtr3d 2862 . . . . 5 (𝜑 → ((𝑁‘{𝑍})(LSSum‘𝑊)(𝑁‘{(𝑤 + 𝑌)})) = (𝑁‘{𝑤, 𝑌}))
4734, 46eqtrd 2854 . . . 4 (𝜑 → (𝑁‘{𝑍, (𝑤 + 𝑌)}) = (𝑁‘{𝑤, 𝑌}))
4831, 47neleqtrrd 2933 . . 3 (𝜑 → ¬ 𝑋 ∈ (𝑁‘{𝑍, (𝑤 + 𝑌)}))
491, 2, 3, 4, 5, 14, 16, 28, 48lspindp1 19897 . 2 (𝜑 → ((𝑁‘{𝑋}) ≠ (𝑁‘{(𝑤 + 𝑌)}) ∧ ¬ 𝑍 ∈ (𝑁‘{𝑋, (𝑤 + 𝑌)})))
5049simprd 498 1 (𝜑 → ¬ 𝑍 ∈ (𝑁‘{𝑋, (𝑤 + 𝑌)}))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4   = wceq 1530  wcel 2107  wne 3014  cdif 3931  {csn 4559  {cpr 4561  cfv 6348  (class class class)co 7148  Basecbs 16475  +gcplusg 16557  0gc0g 16705  LSSumclsm 18751  LModclmod 19626  LSpanclspn 19735  LVecclvec 19866
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1904  ax-6 1963  ax-7 2008  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2153  ax-12 2169  ax-ext 2791  ax-rep 5181  ax-sep 5194  ax-nul 5201  ax-pow 5257  ax-pr 5320  ax-un 7453  ax-cnex 10585  ax-resscn 10586  ax-1cn 10587  ax-icn 10588  ax-addcl 10589  ax-addrcl 10590  ax-mulcl 10591  ax-mulrcl 10592  ax-mulcom 10593  ax-addass 10594  ax-mulass 10595  ax-distr 10596  ax-i2m1 10597  ax-1ne0 10598  ax-1rid 10599  ax-rnegex 10600  ax-rrecex 10601  ax-cnre 10602  ax-pre-lttri 10603  ax-pre-lttrn 10604  ax-pre-ltadd 10605  ax-pre-mulgt0 10606
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1082  df-3an 1083  df-tru 1533  df-ex 1774  df-nf 1778  df-sb 2063  df-mo 2616  df-eu 2648  df-clab 2798  df-cleq 2812  df-clel 2891  df-nfc 2961  df-ne 3015  df-nel 3122  df-ral 3141  df-rex 3142  df-reu 3143  df-rmo 3144  df-rab 3145  df-v 3495  df-sbc 3771  df-csb 3882  df-dif 3937  df-un 3939  df-in 3941  df-ss 3950  df-pss 3952  df-nul 4290  df-if 4466  df-pw 4539  df-sn 4560  df-pr 4562  df-tp 4564  df-op 4566  df-uni 4831  df-int 4868  df-iun 4912  df-br 5058  df-opab 5120  df-mpt 5138  df-tr 5164  df-id 5453  df-eprel 5458  df-po 5467  df-so 5468  df-fr 5507  df-we 5509  df-xp 5554  df-rel 5555  df-cnv 5556  df-co 5557  df-dm 5558  df-rn 5559  df-res 5560  df-ima 5561  df-pred 6141  df-ord 6187  df-on 6188  df-lim 6189  df-suc 6190  df-iota 6307  df-fun 6350  df-fn 6351  df-f 6352  df-f1 6353  df-fo 6354  df-f1o 6355  df-fv 6356  df-riota 7106  df-ov 7151  df-oprab 7152  df-mpo 7153  df-om 7573  df-1st 7681  df-2nd 7682  df-tpos 7884  df-wrecs 7939  df-recs 8000  df-rdg 8038  df-er 8281  df-en 8502  df-dom 8503  df-sdom 8504  df-pnf 10669  df-mnf 10670  df-xr 10671  df-ltxr 10672  df-le 10673  df-sub 10864  df-neg 10865  df-nn 11631  df-2 11692  df-3 11693  df-ndx 16478  df-slot 16479  df-base 16481  df-sets 16482  df-ress 16483  df-plusg 16570  df-mulr 16571  df-0g 16707  df-mgm 17844  df-sgrp 17893  df-mnd 17904  df-submnd 17949  df-grp 18098  df-minusg 18099  df-sbg 18100  df-subg 18268  df-cntz 18439  df-lsm 18753  df-cmn 18900  df-abl 18901  df-mgp 19232  df-ur 19244  df-ring 19291  df-oppr 19365  df-dvdsr 19383  df-unit 19384  df-invr 19414  df-drng 19496  df-lmod 19628  df-lss 19696  df-lsp 19736  df-lvec 19867
This theorem is referenced by:  mapdh6eN  38863  hdmap1l6e  38937
  Copyright terms: Public domain W3C validator