Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mapdindp4 Structured version   Visualization version   GIF version

Theorem mapdindp4 41706
Description: Vector independence lemma. (Contributed by NM, 29-Apr-2015.)
Hypotheses
Ref Expression
mapdindp1.v 𝑉 = (Base‘𝑊)
mapdindp1.p + = (+g𝑊)
mapdindp1.o 0 = (0g𝑊)
mapdindp1.n 𝑁 = (LSpan‘𝑊)
mapdindp1.w (𝜑𝑊 ∈ LVec)
mapdindp1.x (𝜑𝑋 ∈ (𝑉 ∖ { 0 }))
mapdindp1.y (𝜑𝑌 ∈ (𝑉 ∖ { 0 }))
mapdindp1.z (𝜑𝑍 ∈ (𝑉 ∖ { 0 }))
mapdindp1.W (𝜑𝑤 ∈ (𝑉 ∖ { 0 }))
mapdindp1.e (𝜑 → (𝑁‘{𝑌}) = (𝑁‘{𝑍}))
mapdindp1.ne (𝜑 → (𝑁‘{𝑋}) ≠ (𝑁‘{𝑌}))
mapdindp1.f (𝜑 → ¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑌}))
Assertion
Ref Expression
mapdindp4 (𝜑 → ¬ 𝑍 ∈ (𝑁‘{𝑋, (𝑤 + 𝑌)}))

Proof of Theorem mapdindp4
StepHypRef Expression
1 mapdindp1.v . . 3 𝑉 = (Base‘𝑊)
2 mapdindp1.o . . 3 0 = (0g𝑊)
3 mapdindp1.n . . 3 𝑁 = (LSpan‘𝑊)
4 mapdindp1.w . . 3 (𝜑𝑊 ∈ LVec)
5 mapdindp1.z . . 3 (𝜑𝑍 ∈ (𝑉 ∖ { 0 }))
6 lveclmod 21010 . . . . 5 (𝑊 ∈ LVec → 𝑊 ∈ LMod)
74, 6syl 17 . . . 4 (𝜑𝑊 ∈ LMod)
8 mapdindp1.W . . . . 5 (𝜑𝑤 ∈ (𝑉 ∖ { 0 }))
98eldifad 3915 . . . 4 (𝜑𝑤𝑉)
10 mapdindp1.y . . . . 5 (𝜑𝑌 ∈ (𝑉 ∖ { 0 }))
1110eldifad 3915 . . . 4 (𝜑𝑌𝑉)
12 mapdindp1.p . . . . 5 + = (+g𝑊)
131, 12lmodvacl 20778 . . . 4 ((𝑊 ∈ LMod ∧ 𝑤𝑉𝑌𝑉) → (𝑤 + 𝑌) ∈ 𝑉)
147, 9, 11, 13syl3anc 1373 . . 3 (𝜑 → (𝑤 + 𝑌) ∈ 𝑉)
15 mapdindp1.x . . . 4 (𝜑𝑋 ∈ (𝑉 ∖ { 0 }))
1615eldifad 3915 . . 3 (𝜑𝑋𝑉)
17 mapdindp1.e . . . 4 (𝜑 → (𝑁‘{𝑌}) = (𝑁‘{𝑍}))
18 mapdindp1.f . . . . . . . . 9 (𝜑 → ¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑌}))
191, 3, 4, 9, 16, 11, 18lspindpi 21039 . . . . . . . 8 (𝜑 → ((𝑁‘{𝑤}) ≠ (𝑁‘{𝑋}) ∧ (𝑁‘{𝑤}) ≠ (𝑁‘{𝑌})))
2019simprd 495 . . . . . . 7 (𝜑 → (𝑁‘{𝑤}) ≠ (𝑁‘{𝑌}))
2120necomd 2980 . . . . . 6 (𝜑 → (𝑁‘{𝑌}) ≠ (𝑁‘{𝑤}))
221, 12, 2, 3, 4, 11, 8, 21lspindp3 21043 . . . . 5 (𝜑 → (𝑁‘{𝑌}) ≠ (𝑁‘{(𝑌 + 𝑤)}))
231, 12lmodcom 20811 . . . . . . . 8 ((𝑊 ∈ LMod ∧ 𝑤𝑉𝑌𝑉) → (𝑤 + 𝑌) = (𝑌 + 𝑤))
247, 9, 11, 23syl3anc 1373 . . . . . . 7 (𝜑 → (𝑤 + 𝑌) = (𝑌 + 𝑤))
2524sneqd 4589 . . . . . 6 (𝜑 → {(𝑤 + 𝑌)} = {(𝑌 + 𝑤)})
2625fveq2d 6826 . . . . 5 (𝜑 → (𝑁‘{(𝑤 + 𝑌)}) = (𝑁‘{(𝑌 + 𝑤)}))
2722, 26neeqtrrd 2999 . . . 4 (𝜑 → (𝑁‘{𝑌}) ≠ (𝑁‘{(𝑤 + 𝑌)}))
2817, 27eqnetrrd 2993 . . 3 (𝜑 → (𝑁‘{𝑍}) ≠ (𝑁‘{(𝑤 + 𝑌)}))
29 mapdindp1.ne . . . . . 6 (𝜑 → (𝑁‘{𝑋}) ≠ (𝑁‘{𝑌}))
301, 2, 3, 4, 15, 11, 9, 29, 18lspindp1 21040 . . . . 5 (𝜑 → ((𝑁‘{𝑤}) ≠ (𝑁‘{𝑌}) ∧ ¬ 𝑋 ∈ (𝑁‘{𝑤, 𝑌})))
3130simprd 495 . . . 4 (𝜑 → ¬ 𝑋 ∈ (𝑁‘{𝑤, 𝑌}))
32 eqid 2729 . . . . . 6 (LSSum‘𝑊) = (LSSum‘𝑊)
335eldifad 3915 . . . . . 6 (𝜑𝑍𝑉)
341, 3, 32, 7, 33, 14lsmpr 20993 . . . . 5 (𝜑 → (𝑁‘{𝑍, (𝑤 + 𝑌)}) = ((𝑁‘{𝑍})(LSSum‘𝑊)(𝑁‘{(𝑤 + 𝑌)})))
351, 12lmodcom 20811 . . . . . . . . . 10 ((𝑊 ∈ LMod ∧ 𝑌𝑉𝑤𝑉) → (𝑌 + 𝑤) = (𝑤 + 𝑌))
367, 11, 9, 35syl3anc 1373 . . . . . . . . 9 (𝜑 → (𝑌 + 𝑤) = (𝑤 + 𝑌))
3736preq2d 4692 . . . . . . . 8 (𝜑 → {𝑌, (𝑌 + 𝑤)} = {𝑌, (𝑤 + 𝑌)})
3837fveq2d 6826 . . . . . . 7 (𝜑 → (𝑁‘{𝑌, (𝑌 + 𝑤)}) = (𝑁‘{𝑌, (𝑤 + 𝑌)}))
391, 12, 3, 7, 11, 9lspprabs 20999 . . . . . . 7 (𝜑 → (𝑁‘{𝑌, (𝑌 + 𝑤)}) = (𝑁‘{𝑌, 𝑤}))
401, 3, 32, 7, 11, 14lsmpr 20993 . . . . . . 7 (𝜑 → (𝑁‘{𝑌, (𝑤 + 𝑌)}) = ((𝑁‘{𝑌})(LSSum‘𝑊)(𝑁‘{(𝑤 + 𝑌)})))
4138, 39, 403eqtr3rd 2773 . . . . . 6 (𝜑 → ((𝑁‘{𝑌})(LSSum‘𝑊)(𝑁‘{(𝑤 + 𝑌)})) = (𝑁‘{𝑌, 𝑤}))
4217oveq1d 7364 . . . . . 6 (𝜑 → ((𝑁‘{𝑌})(LSSum‘𝑊)(𝑁‘{(𝑤 + 𝑌)})) = ((𝑁‘{𝑍})(LSSum‘𝑊)(𝑁‘{(𝑤 + 𝑌)})))
43 prcom 4684 . . . . . . . 8 {𝑌, 𝑤} = {𝑤, 𝑌}
4443fveq2i 6825 . . . . . . 7 (𝑁‘{𝑌, 𝑤}) = (𝑁‘{𝑤, 𝑌})
4544a1i 11 . . . . . 6 (𝜑 → (𝑁‘{𝑌, 𝑤}) = (𝑁‘{𝑤, 𝑌}))
4641, 42, 453eqtr3d 2772 . . . . 5 (𝜑 → ((𝑁‘{𝑍})(LSSum‘𝑊)(𝑁‘{(𝑤 + 𝑌)})) = (𝑁‘{𝑤, 𝑌}))
4734, 46eqtrd 2764 . . . 4 (𝜑 → (𝑁‘{𝑍, (𝑤 + 𝑌)}) = (𝑁‘{𝑤, 𝑌}))
4831, 47neleqtrrd 2851 . . 3 (𝜑 → ¬ 𝑋 ∈ (𝑁‘{𝑍, (𝑤 + 𝑌)}))
491, 2, 3, 4, 5, 14, 16, 28, 48lspindp1 21040 . 2 (𝜑 → ((𝑁‘{𝑋}) ≠ (𝑁‘{(𝑤 + 𝑌)}) ∧ ¬ 𝑍 ∈ (𝑁‘{𝑋, (𝑤 + 𝑌)})))
5049simprd 495 1 (𝜑 → ¬ 𝑍 ∈ (𝑁‘{𝑋, (𝑤 + 𝑌)}))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4   = wceq 1540  wcel 2109  wne 2925  cdif 3900  {csn 4577  {cpr 4579  cfv 6482  (class class class)co 7349  Basecbs 17120  +gcplusg 17161  0gc0g 17343  LSSumclsm 19513  LModclmod 20763  LSpanclspn 20874  LVecclvec 21006
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5218  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671  ax-cnex 11065  ax-resscn 11066  ax-1cn 11067  ax-icn 11068  ax-addcl 11069  ax-addrcl 11070  ax-mulcl 11071  ax-mulrcl 11072  ax-mulcom 11073  ax-addass 11074  ax-mulass 11075  ax-distr 11076  ax-i2m1 11077  ax-1ne0 11078  ax-1rid 11079  ax-rnegex 11080  ax-rrecex 11081  ax-cnre 11082  ax-pre-lttri 11083  ax-pre-lttrn 11084  ax-pre-ltadd 11085  ax-pre-mulgt0 11086
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3343  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-pss 3923  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-int 4897  df-iun 4943  df-br 5093  df-opab 5155  df-mpt 5174  df-tr 5200  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6249  df-ord 6310  df-on 6311  df-lim 6312  df-suc 6313  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-riota 7306  df-ov 7352  df-oprab 7353  df-mpo 7354  df-om 7800  df-1st 7924  df-2nd 7925  df-tpos 8159  df-frecs 8214  df-wrecs 8245  df-recs 8294  df-rdg 8332  df-er 8625  df-en 8873  df-dom 8874  df-sdom 8875  df-pnf 11151  df-mnf 11152  df-xr 11153  df-ltxr 11154  df-le 11155  df-sub 11349  df-neg 11350  df-nn 12129  df-2 12191  df-3 12192  df-sets 17075  df-slot 17093  df-ndx 17105  df-base 17121  df-ress 17142  df-plusg 17174  df-mulr 17175  df-0g 17345  df-mgm 18514  df-sgrp 18593  df-mnd 18609  df-submnd 18658  df-grp 18815  df-minusg 18816  df-sbg 18817  df-subg 19002  df-cntz 19196  df-lsm 19515  df-cmn 19661  df-abl 19662  df-mgp 20026  df-rng 20038  df-ur 20067  df-ring 20120  df-oppr 20222  df-dvdsr 20242  df-unit 20243  df-invr 20273  df-drng 20616  df-lmod 20765  df-lss 20835  df-lsp 20875  df-lvec 21007
This theorem is referenced by:  mapdh6eN  41723  hdmap1l6e  41797
  Copyright terms: Public domain W3C validator