Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mapdindp4 Structured version   Visualization version   GIF version

Theorem mapdindp4 41706
Description: Vector independence lemma. (Contributed by NM, 29-Apr-2015.)
Hypotheses
Ref Expression
mapdindp1.v 𝑉 = (Base‘𝑊)
mapdindp1.p + = (+g𝑊)
mapdindp1.o 0 = (0g𝑊)
mapdindp1.n 𝑁 = (LSpan‘𝑊)
mapdindp1.w (𝜑𝑊 ∈ LVec)
mapdindp1.x (𝜑𝑋 ∈ (𝑉 ∖ { 0 }))
mapdindp1.y (𝜑𝑌 ∈ (𝑉 ∖ { 0 }))
mapdindp1.z (𝜑𝑍 ∈ (𝑉 ∖ { 0 }))
mapdindp1.W (𝜑𝑤 ∈ (𝑉 ∖ { 0 }))
mapdindp1.e (𝜑 → (𝑁‘{𝑌}) = (𝑁‘{𝑍}))
mapdindp1.ne (𝜑 → (𝑁‘{𝑋}) ≠ (𝑁‘{𝑌}))
mapdindp1.f (𝜑 → ¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑌}))
Assertion
Ref Expression
mapdindp4 (𝜑 → ¬ 𝑍 ∈ (𝑁‘{𝑋, (𝑤 + 𝑌)}))

Proof of Theorem mapdindp4
StepHypRef Expression
1 mapdindp1.v . . 3 𝑉 = (Base‘𝑊)
2 mapdindp1.o . . 3 0 = (0g𝑊)
3 mapdindp1.n . . 3 𝑁 = (LSpan‘𝑊)
4 mapdindp1.w . . 3 (𝜑𝑊 ∈ LVec)
5 mapdindp1.z . . 3 (𝜑𝑍 ∈ (𝑉 ∖ { 0 }))
6 lveclmod 21123 . . . . 5 (𝑊 ∈ LVec → 𝑊 ∈ LMod)
74, 6syl 17 . . . 4 (𝜑𝑊 ∈ LMod)
8 mapdindp1.W . . . . 5 (𝜑𝑤 ∈ (𝑉 ∖ { 0 }))
98eldifad 3975 . . . 4 (𝜑𝑤𝑉)
10 mapdindp1.y . . . . 5 (𝜑𝑌 ∈ (𝑉 ∖ { 0 }))
1110eldifad 3975 . . . 4 (𝜑𝑌𝑉)
12 mapdindp1.p . . . . 5 + = (+g𝑊)
131, 12lmodvacl 20890 . . . 4 ((𝑊 ∈ LMod ∧ 𝑤𝑉𝑌𝑉) → (𝑤 + 𝑌) ∈ 𝑉)
147, 9, 11, 13syl3anc 1370 . . 3 (𝜑 → (𝑤 + 𝑌) ∈ 𝑉)
15 mapdindp1.x . . . 4 (𝜑𝑋 ∈ (𝑉 ∖ { 0 }))
1615eldifad 3975 . . 3 (𝜑𝑋𝑉)
17 mapdindp1.e . . . 4 (𝜑 → (𝑁‘{𝑌}) = (𝑁‘{𝑍}))
18 mapdindp1.f . . . . . . . . 9 (𝜑 → ¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑌}))
191, 3, 4, 9, 16, 11, 18lspindpi 21152 . . . . . . . 8 (𝜑 → ((𝑁‘{𝑤}) ≠ (𝑁‘{𝑋}) ∧ (𝑁‘{𝑤}) ≠ (𝑁‘{𝑌})))
2019simprd 495 . . . . . . 7 (𝜑 → (𝑁‘{𝑤}) ≠ (𝑁‘{𝑌}))
2120necomd 2994 . . . . . 6 (𝜑 → (𝑁‘{𝑌}) ≠ (𝑁‘{𝑤}))
221, 12, 2, 3, 4, 11, 8, 21lspindp3 21156 . . . . 5 (𝜑 → (𝑁‘{𝑌}) ≠ (𝑁‘{(𝑌 + 𝑤)}))
231, 12lmodcom 20923 . . . . . . . 8 ((𝑊 ∈ LMod ∧ 𝑤𝑉𝑌𝑉) → (𝑤 + 𝑌) = (𝑌 + 𝑤))
247, 9, 11, 23syl3anc 1370 . . . . . . 7 (𝜑 → (𝑤 + 𝑌) = (𝑌 + 𝑤))
2524sneqd 4643 . . . . . 6 (𝜑 → {(𝑤 + 𝑌)} = {(𝑌 + 𝑤)})
2625fveq2d 6911 . . . . 5 (𝜑 → (𝑁‘{(𝑤 + 𝑌)}) = (𝑁‘{(𝑌 + 𝑤)}))
2722, 26neeqtrrd 3013 . . . 4 (𝜑 → (𝑁‘{𝑌}) ≠ (𝑁‘{(𝑤 + 𝑌)}))
2817, 27eqnetrrd 3007 . . 3 (𝜑 → (𝑁‘{𝑍}) ≠ (𝑁‘{(𝑤 + 𝑌)}))
29 mapdindp1.ne . . . . . 6 (𝜑 → (𝑁‘{𝑋}) ≠ (𝑁‘{𝑌}))
301, 2, 3, 4, 15, 11, 9, 29, 18lspindp1 21153 . . . . 5 (𝜑 → ((𝑁‘{𝑤}) ≠ (𝑁‘{𝑌}) ∧ ¬ 𝑋 ∈ (𝑁‘{𝑤, 𝑌})))
3130simprd 495 . . . 4 (𝜑 → ¬ 𝑋 ∈ (𝑁‘{𝑤, 𝑌}))
32 eqid 2735 . . . . . 6 (LSSum‘𝑊) = (LSSum‘𝑊)
335eldifad 3975 . . . . . 6 (𝜑𝑍𝑉)
341, 3, 32, 7, 33, 14lsmpr 21106 . . . . 5 (𝜑 → (𝑁‘{𝑍, (𝑤 + 𝑌)}) = ((𝑁‘{𝑍})(LSSum‘𝑊)(𝑁‘{(𝑤 + 𝑌)})))
351, 12lmodcom 20923 . . . . . . . . . 10 ((𝑊 ∈ LMod ∧ 𝑌𝑉𝑤𝑉) → (𝑌 + 𝑤) = (𝑤 + 𝑌))
367, 11, 9, 35syl3anc 1370 . . . . . . . . 9 (𝜑 → (𝑌 + 𝑤) = (𝑤 + 𝑌))
3736preq2d 4745 . . . . . . . 8 (𝜑 → {𝑌, (𝑌 + 𝑤)} = {𝑌, (𝑤 + 𝑌)})
3837fveq2d 6911 . . . . . . 7 (𝜑 → (𝑁‘{𝑌, (𝑌 + 𝑤)}) = (𝑁‘{𝑌, (𝑤 + 𝑌)}))
391, 12, 3, 7, 11, 9lspprabs 21112 . . . . . . 7 (𝜑 → (𝑁‘{𝑌, (𝑌 + 𝑤)}) = (𝑁‘{𝑌, 𝑤}))
401, 3, 32, 7, 11, 14lsmpr 21106 . . . . . . 7 (𝜑 → (𝑁‘{𝑌, (𝑤 + 𝑌)}) = ((𝑁‘{𝑌})(LSSum‘𝑊)(𝑁‘{(𝑤 + 𝑌)})))
4138, 39, 403eqtr3rd 2784 . . . . . 6 (𝜑 → ((𝑁‘{𝑌})(LSSum‘𝑊)(𝑁‘{(𝑤 + 𝑌)})) = (𝑁‘{𝑌, 𝑤}))
4217oveq1d 7446 . . . . . 6 (𝜑 → ((𝑁‘{𝑌})(LSSum‘𝑊)(𝑁‘{(𝑤 + 𝑌)})) = ((𝑁‘{𝑍})(LSSum‘𝑊)(𝑁‘{(𝑤 + 𝑌)})))
43 prcom 4737 . . . . . . . 8 {𝑌, 𝑤} = {𝑤, 𝑌}
4443fveq2i 6910 . . . . . . 7 (𝑁‘{𝑌, 𝑤}) = (𝑁‘{𝑤, 𝑌})
4544a1i 11 . . . . . 6 (𝜑 → (𝑁‘{𝑌, 𝑤}) = (𝑁‘{𝑤, 𝑌}))
4641, 42, 453eqtr3d 2783 . . . . 5 (𝜑 → ((𝑁‘{𝑍})(LSSum‘𝑊)(𝑁‘{(𝑤 + 𝑌)})) = (𝑁‘{𝑤, 𝑌}))
4734, 46eqtrd 2775 . . . 4 (𝜑 → (𝑁‘{𝑍, (𝑤 + 𝑌)}) = (𝑁‘{𝑤, 𝑌}))
4831, 47neleqtrrd 2862 . . 3 (𝜑 → ¬ 𝑋 ∈ (𝑁‘{𝑍, (𝑤 + 𝑌)}))
491, 2, 3, 4, 5, 14, 16, 28, 48lspindp1 21153 . 2 (𝜑 → ((𝑁‘{𝑋}) ≠ (𝑁‘{(𝑤 + 𝑌)}) ∧ ¬ 𝑍 ∈ (𝑁‘{𝑋, (𝑤 + 𝑌)})))
5049simprd 495 1 (𝜑 → ¬ 𝑍 ∈ (𝑁‘{𝑋, (𝑤 + 𝑌)}))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4   = wceq 1537  wcel 2106  wne 2938  cdif 3960  {csn 4631  {cpr 4633  cfv 6563  (class class class)co 7431  Basecbs 17245  +gcplusg 17298  0gc0g 17486  LSSumclsm 19667  LModclmod 20875  LSpanclspn 20987  LVecclvec 21119
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-rep 5285  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754  ax-cnex 11209  ax-resscn 11210  ax-1cn 11211  ax-icn 11212  ax-addcl 11213  ax-addrcl 11214  ax-mulcl 11215  ax-mulrcl 11216  ax-mulcom 11217  ax-addass 11218  ax-mulass 11219  ax-distr 11220  ax-i2m1 11221  ax-1ne0 11222  ax-1rid 11223  ax-rnegex 11224  ax-rrecex 11225  ax-cnre 11226  ax-pre-lttri 11227  ax-pre-lttrn 11228  ax-pre-ltadd 11229  ax-pre-mulgt0 11230
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-rmo 3378  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-int 4952  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5583  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-we 5643  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-pred 6323  df-ord 6389  df-on 6390  df-lim 6391  df-suc 6392  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1st 8013  df-2nd 8014  df-tpos 8250  df-frecs 8305  df-wrecs 8336  df-recs 8410  df-rdg 8449  df-er 8744  df-en 8985  df-dom 8986  df-sdom 8987  df-pnf 11295  df-mnf 11296  df-xr 11297  df-ltxr 11298  df-le 11299  df-sub 11492  df-neg 11493  df-nn 12265  df-2 12327  df-3 12328  df-sets 17198  df-slot 17216  df-ndx 17228  df-base 17246  df-ress 17275  df-plusg 17311  df-mulr 17312  df-0g 17488  df-mgm 18666  df-sgrp 18745  df-mnd 18761  df-submnd 18810  df-grp 18967  df-minusg 18968  df-sbg 18969  df-subg 19154  df-cntz 19348  df-lsm 19669  df-cmn 19815  df-abl 19816  df-mgp 20153  df-rng 20171  df-ur 20200  df-ring 20253  df-oppr 20351  df-dvdsr 20374  df-unit 20375  df-invr 20405  df-drng 20748  df-lmod 20877  df-lss 20948  df-lsp 20988  df-lvec 21120
This theorem is referenced by:  mapdh6eN  41723  hdmap1l6e  41797
  Copyright terms: Public domain W3C validator