MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  trfbas Structured version   Visualization version   GIF version

Theorem trfbas 22903
Description: Conditions for the trace of a filter base 𝐹 to be a filter base. (Contributed by Mario Carneiro, 13-Oct-2015.)
Assertion
Ref Expression
trfbas ((𝐹 ∈ (fBas‘𝑌) ∧ 𝐴𝑌) → ((𝐹t 𝐴) ∈ (fBas‘𝐴) ↔ ∀𝑣𝐹 (𝑣𝐴) ≠ ∅))
Distinct variable groups:   𝑣,𝐴   𝑣,𝐹
Allowed substitution hint:   𝑌(𝑣)

Proof of Theorem trfbas
StepHypRef Expression
1 trfbas2 22902 . 2 ((𝐹 ∈ (fBas‘𝑌) ∧ 𝐴𝑌) → ((𝐹t 𝐴) ∈ (fBas‘𝐴) ↔ ¬ ∅ ∈ (𝐹t 𝐴)))
2 elfvdm 6788 . . . . . 6 (𝐹 ∈ (fBas‘𝑌) → 𝑌 ∈ dom fBas)
3 ssexg 5242 . . . . . . 7 ((𝐴𝑌𝑌 ∈ dom fBas) → 𝐴 ∈ V)
43ancoms 458 . . . . . 6 ((𝑌 ∈ dom fBas ∧ 𝐴𝑌) → 𝐴 ∈ V)
52, 4sylan 579 . . . . 5 ((𝐹 ∈ (fBas‘𝑌) ∧ 𝐴𝑌) → 𝐴 ∈ V)
6 elrest 17055 . . . . 5 ((𝐹 ∈ (fBas‘𝑌) ∧ 𝐴 ∈ V) → (∅ ∈ (𝐹t 𝐴) ↔ ∃𝑣𝐹 ∅ = (𝑣𝐴)))
75, 6syldan 590 . . . 4 ((𝐹 ∈ (fBas‘𝑌) ∧ 𝐴𝑌) → (∅ ∈ (𝐹t 𝐴) ↔ ∃𝑣𝐹 ∅ = (𝑣𝐴)))
87notbid 317 . . 3 ((𝐹 ∈ (fBas‘𝑌) ∧ 𝐴𝑌) → (¬ ∅ ∈ (𝐹t 𝐴) ↔ ¬ ∃𝑣𝐹 ∅ = (𝑣𝐴)))
9 nesym 2999 . . . . 5 ((𝑣𝐴) ≠ ∅ ↔ ¬ ∅ = (𝑣𝐴))
109ralbii 3090 . . . 4 (∀𝑣𝐹 (𝑣𝐴) ≠ ∅ ↔ ∀𝑣𝐹 ¬ ∅ = (𝑣𝐴))
11 ralnex 3163 . . . 4 (∀𝑣𝐹 ¬ ∅ = (𝑣𝐴) ↔ ¬ ∃𝑣𝐹 ∅ = (𝑣𝐴))
1210, 11bitri 274 . . 3 (∀𝑣𝐹 (𝑣𝐴) ≠ ∅ ↔ ¬ ∃𝑣𝐹 ∅ = (𝑣𝐴))
138, 12bitr4di 288 . 2 ((𝐹 ∈ (fBas‘𝑌) ∧ 𝐴𝑌) → (¬ ∅ ∈ (𝐹t 𝐴) ↔ ∀𝑣𝐹 (𝑣𝐴) ≠ ∅))
141, 13bitrd 278 1 ((𝐹 ∈ (fBas‘𝑌) ∧ 𝐴𝑌) → ((𝐹t 𝐴) ∈ (fBas‘𝐴) ↔ ∀𝑣𝐹 (𝑣𝐴) ≠ ∅))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 395   = wceq 1539  wcel 2108  wne 2942  wral 3063  wrex 3064  Vcvv 3422  cin 3882  wss 3883  c0 4253  dom cdm 5580  cfv 6418  (class class class)co 7255  t crest 17048  fBascfbas 20498
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-id 5480  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-ov 7258  df-oprab 7259  df-mpo 7260  df-1st 7804  df-2nd 7805  df-rest 17050  df-fbas 20507
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator