![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > trfbas | Structured version Visualization version GIF version |
Description: Conditions for the trace of a filter base 𝐹 to be a filter base. (Contributed by Mario Carneiro, 13-Oct-2015.) |
Ref | Expression |
---|---|
trfbas | ⊢ ((𝐹 ∈ (fBas‘𝑌) ∧ 𝐴 ⊆ 𝑌) → ((𝐹 ↾t 𝐴) ∈ (fBas‘𝐴) ↔ ∀𝑣 ∈ 𝐹 (𝑣 ∩ 𝐴) ≠ ∅)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | trfbas2 23667 | . 2 ⊢ ((𝐹 ∈ (fBas‘𝑌) ∧ 𝐴 ⊆ 𝑌) → ((𝐹 ↾t 𝐴) ∈ (fBas‘𝐴) ↔ ¬ ∅ ∈ (𝐹 ↾t 𝐴))) | |
2 | elfvdm 6928 | . . . . . 6 ⊢ (𝐹 ∈ (fBas‘𝑌) → 𝑌 ∈ dom fBas) | |
3 | ssexg 5323 | . . . . . . 7 ⊢ ((𝐴 ⊆ 𝑌 ∧ 𝑌 ∈ dom fBas) → 𝐴 ∈ V) | |
4 | 3 | ancoms 458 | . . . . . 6 ⊢ ((𝑌 ∈ dom fBas ∧ 𝐴 ⊆ 𝑌) → 𝐴 ∈ V) |
5 | 2, 4 | sylan 579 | . . . . 5 ⊢ ((𝐹 ∈ (fBas‘𝑌) ∧ 𝐴 ⊆ 𝑌) → 𝐴 ∈ V) |
6 | elrest 17380 | . . . . 5 ⊢ ((𝐹 ∈ (fBas‘𝑌) ∧ 𝐴 ∈ V) → (∅ ∈ (𝐹 ↾t 𝐴) ↔ ∃𝑣 ∈ 𝐹 ∅ = (𝑣 ∩ 𝐴))) | |
7 | 5, 6 | syldan 590 | . . . 4 ⊢ ((𝐹 ∈ (fBas‘𝑌) ∧ 𝐴 ⊆ 𝑌) → (∅ ∈ (𝐹 ↾t 𝐴) ↔ ∃𝑣 ∈ 𝐹 ∅ = (𝑣 ∩ 𝐴))) |
8 | 7 | notbid 318 | . . 3 ⊢ ((𝐹 ∈ (fBas‘𝑌) ∧ 𝐴 ⊆ 𝑌) → (¬ ∅ ∈ (𝐹 ↾t 𝐴) ↔ ¬ ∃𝑣 ∈ 𝐹 ∅ = (𝑣 ∩ 𝐴))) |
9 | nesym 2996 | . . . . 5 ⊢ ((𝑣 ∩ 𝐴) ≠ ∅ ↔ ¬ ∅ = (𝑣 ∩ 𝐴)) | |
10 | 9 | ralbii 3092 | . . . 4 ⊢ (∀𝑣 ∈ 𝐹 (𝑣 ∩ 𝐴) ≠ ∅ ↔ ∀𝑣 ∈ 𝐹 ¬ ∅ = (𝑣 ∩ 𝐴)) |
11 | ralnex 3071 | . . . 4 ⊢ (∀𝑣 ∈ 𝐹 ¬ ∅ = (𝑣 ∩ 𝐴) ↔ ¬ ∃𝑣 ∈ 𝐹 ∅ = (𝑣 ∩ 𝐴)) | |
12 | 10, 11 | bitri 275 | . . 3 ⊢ (∀𝑣 ∈ 𝐹 (𝑣 ∩ 𝐴) ≠ ∅ ↔ ¬ ∃𝑣 ∈ 𝐹 ∅ = (𝑣 ∩ 𝐴)) |
13 | 8, 12 | bitr4di 289 | . 2 ⊢ ((𝐹 ∈ (fBas‘𝑌) ∧ 𝐴 ⊆ 𝑌) → (¬ ∅ ∈ (𝐹 ↾t 𝐴) ↔ ∀𝑣 ∈ 𝐹 (𝑣 ∩ 𝐴) ≠ ∅)) |
14 | 1, 13 | bitrd 279 | 1 ⊢ ((𝐹 ∈ (fBas‘𝑌) ∧ 𝐴 ⊆ 𝑌) → ((𝐹 ↾t 𝐴) ∈ (fBas‘𝐴) ↔ ∀𝑣 ∈ 𝐹 (𝑣 ∩ 𝐴) ≠ ∅)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 ∧ wa 395 = wceq 1540 ∈ wcel 2105 ≠ wne 2939 ∀wral 3060 ∃wrex 3069 Vcvv 3473 ∩ cin 3947 ⊆ wss 3948 ∅c0 4322 dom cdm 5676 ‘cfv 6543 (class class class)co 7412 ↾t crest 17373 fBascfbas 21221 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2702 ax-rep 5285 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7729 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2533 df-eu 2562 df-clab 2709 df-cleq 2723 df-clel 2809 df-nfc 2884 df-ne 2940 df-nel 3046 df-ral 3061 df-rex 3070 df-reu 3376 df-rab 3432 df-v 3475 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-iun 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5574 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-ov 7415 df-oprab 7416 df-mpo 7417 df-1st 7979 df-2nd 7980 df-rest 17375 df-fbas 21230 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |