Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > trfbas | Structured version Visualization version GIF version |
Description: Conditions for the trace of a filter base 𝐹 to be a filter base. (Contributed by Mario Carneiro, 13-Oct-2015.) |
Ref | Expression |
---|---|
trfbas | ⊢ ((𝐹 ∈ (fBas‘𝑌) ∧ 𝐴 ⊆ 𝑌) → ((𝐹 ↾t 𝐴) ∈ (fBas‘𝐴) ↔ ∀𝑣 ∈ 𝐹 (𝑣 ∩ 𝐴) ≠ ∅)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | trfbas2 22994 | . 2 ⊢ ((𝐹 ∈ (fBas‘𝑌) ∧ 𝐴 ⊆ 𝑌) → ((𝐹 ↾t 𝐴) ∈ (fBas‘𝐴) ↔ ¬ ∅ ∈ (𝐹 ↾t 𝐴))) | |
2 | elfvdm 6806 | . . . . . 6 ⊢ (𝐹 ∈ (fBas‘𝑌) → 𝑌 ∈ dom fBas) | |
3 | ssexg 5247 | . . . . . . 7 ⊢ ((𝐴 ⊆ 𝑌 ∧ 𝑌 ∈ dom fBas) → 𝐴 ∈ V) | |
4 | 3 | ancoms 459 | . . . . . 6 ⊢ ((𝑌 ∈ dom fBas ∧ 𝐴 ⊆ 𝑌) → 𝐴 ∈ V) |
5 | 2, 4 | sylan 580 | . . . . 5 ⊢ ((𝐹 ∈ (fBas‘𝑌) ∧ 𝐴 ⊆ 𝑌) → 𝐴 ∈ V) |
6 | elrest 17138 | . . . . 5 ⊢ ((𝐹 ∈ (fBas‘𝑌) ∧ 𝐴 ∈ V) → (∅ ∈ (𝐹 ↾t 𝐴) ↔ ∃𝑣 ∈ 𝐹 ∅ = (𝑣 ∩ 𝐴))) | |
7 | 5, 6 | syldan 591 | . . . 4 ⊢ ((𝐹 ∈ (fBas‘𝑌) ∧ 𝐴 ⊆ 𝑌) → (∅ ∈ (𝐹 ↾t 𝐴) ↔ ∃𝑣 ∈ 𝐹 ∅ = (𝑣 ∩ 𝐴))) |
8 | 7 | notbid 318 | . . 3 ⊢ ((𝐹 ∈ (fBas‘𝑌) ∧ 𝐴 ⊆ 𝑌) → (¬ ∅ ∈ (𝐹 ↾t 𝐴) ↔ ¬ ∃𝑣 ∈ 𝐹 ∅ = (𝑣 ∩ 𝐴))) |
9 | nesym 3000 | . . . . 5 ⊢ ((𝑣 ∩ 𝐴) ≠ ∅ ↔ ¬ ∅ = (𝑣 ∩ 𝐴)) | |
10 | 9 | ralbii 3092 | . . . 4 ⊢ (∀𝑣 ∈ 𝐹 (𝑣 ∩ 𝐴) ≠ ∅ ↔ ∀𝑣 ∈ 𝐹 ¬ ∅ = (𝑣 ∩ 𝐴)) |
11 | ralnex 3167 | . . . 4 ⊢ (∀𝑣 ∈ 𝐹 ¬ ∅ = (𝑣 ∩ 𝐴) ↔ ¬ ∃𝑣 ∈ 𝐹 ∅ = (𝑣 ∩ 𝐴)) | |
12 | 10, 11 | bitri 274 | . . 3 ⊢ (∀𝑣 ∈ 𝐹 (𝑣 ∩ 𝐴) ≠ ∅ ↔ ¬ ∃𝑣 ∈ 𝐹 ∅ = (𝑣 ∩ 𝐴)) |
13 | 8, 12 | bitr4di 289 | . 2 ⊢ ((𝐹 ∈ (fBas‘𝑌) ∧ 𝐴 ⊆ 𝑌) → (¬ ∅ ∈ (𝐹 ↾t 𝐴) ↔ ∀𝑣 ∈ 𝐹 (𝑣 ∩ 𝐴) ≠ ∅)) |
14 | 1, 13 | bitrd 278 | 1 ⊢ ((𝐹 ∈ (fBas‘𝑌) ∧ 𝐴 ⊆ 𝑌) → ((𝐹 ↾t 𝐴) ∈ (fBas‘𝐴) ↔ ∀𝑣 ∈ 𝐹 (𝑣 ∩ 𝐴) ≠ ∅)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 ∧ wa 396 = wceq 1539 ∈ wcel 2106 ≠ wne 2943 ∀wral 3064 ∃wrex 3065 Vcvv 3432 ∩ cin 3886 ⊆ wss 3887 ∅c0 4256 dom cdm 5589 ‘cfv 6433 (class class class)co 7275 ↾t crest 17131 fBascfbas 20585 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-rep 5209 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-nel 3050 df-ral 3069 df-rex 3070 df-reu 3072 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-iun 4926 df-br 5075 df-opab 5137 df-mpt 5158 df-id 5489 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-ov 7278 df-oprab 7279 df-mpo 7280 df-1st 7831 df-2nd 7832 df-rest 17133 df-fbas 20594 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |