| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > trfbas | Structured version Visualization version GIF version | ||
| Description: Conditions for the trace of a filter base 𝐹 to be a filter base. (Contributed by Mario Carneiro, 13-Oct-2015.) |
| Ref | Expression |
|---|---|
| trfbas | ⊢ ((𝐹 ∈ (fBas‘𝑌) ∧ 𝐴 ⊆ 𝑌) → ((𝐹 ↾t 𝐴) ∈ (fBas‘𝐴) ↔ ∀𝑣 ∈ 𝐹 (𝑣 ∩ 𝐴) ≠ ∅)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | trfbas2 23759 | . 2 ⊢ ((𝐹 ∈ (fBas‘𝑌) ∧ 𝐴 ⊆ 𝑌) → ((𝐹 ↾t 𝐴) ∈ (fBas‘𝐴) ↔ ¬ ∅ ∈ (𝐹 ↾t 𝐴))) | |
| 2 | elfvdm 6862 | . . . . . 6 ⊢ (𝐹 ∈ (fBas‘𝑌) → 𝑌 ∈ dom fBas) | |
| 3 | ssexg 5263 | . . . . . . 7 ⊢ ((𝐴 ⊆ 𝑌 ∧ 𝑌 ∈ dom fBas) → 𝐴 ∈ V) | |
| 4 | 3 | ancoms 458 | . . . . . 6 ⊢ ((𝑌 ∈ dom fBas ∧ 𝐴 ⊆ 𝑌) → 𝐴 ∈ V) |
| 5 | 2, 4 | sylan 580 | . . . . 5 ⊢ ((𝐹 ∈ (fBas‘𝑌) ∧ 𝐴 ⊆ 𝑌) → 𝐴 ∈ V) |
| 6 | elrest 17333 | . . . . 5 ⊢ ((𝐹 ∈ (fBas‘𝑌) ∧ 𝐴 ∈ V) → (∅ ∈ (𝐹 ↾t 𝐴) ↔ ∃𝑣 ∈ 𝐹 ∅ = (𝑣 ∩ 𝐴))) | |
| 7 | 5, 6 | syldan 591 | . . . 4 ⊢ ((𝐹 ∈ (fBas‘𝑌) ∧ 𝐴 ⊆ 𝑌) → (∅ ∈ (𝐹 ↾t 𝐴) ↔ ∃𝑣 ∈ 𝐹 ∅ = (𝑣 ∩ 𝐴))) |
| 8 | 7 | notbid 318 | . . 3 ⊢ ((𝐹 ∈ (fBas‘𝑌) ∧ 𝐴 ⊆ 𝑌) → (¬ ∅ ∈ (𝐹 ↾t 𝐴) ↔ ¬ ∃𝑣 ∈ 𝐹 ∅ = (𝑣 ∩ 𝐴))) |
| 9 | nesym 2985 | . . . . 5 ⊢ ((𝑣 ∩ 𝐴) ≠ ∅ ↔ ¬ ∅ = (𝑣 ∩ 𝐴)) | |
| 10 | 9 | ralbii 3079 | . . . 4 ⊢ (∀𝑣 ∈ 𝐹 (𝑣 ∩ 𝐴) ≠ ∅ ↔ ∀𝑣 ∈ 𝐹 ¬ ∅ = (𝑣 ∩ 𝐴)) |
| 11 | ralnex 3059 | . . . 4 ⊢ (∀𝑣 ∈ 𝐹 ¬ ∅ = (𝑣 ∩ 𝐴) ↔ ¬ ∃𝑣 ∈ 𝐹 ∅ = (𝑣 ∩ 𝐴)) | |
| 12 | 10, 11 | bitri 275 | . . 3 ⊢ (∀𝑣 ∈ 𝐹 (𝑣 ∩ 𝐴) ≠ ∅ ↔ ¬ ∃𝑣 ∈ 𝐹 ∅ = (𝑣 ∩ 𝐴)) |
| 13 | 8, 12 | bitr4di 289 | . 2 ⊢ ((𝐹 ∈ (fBas‘𝑌) ∧ 𝐴 ⊆ 𝑌) → (¬ ∅ ∈ (𝐹 ↾t 𝐴) ↔ ∀𝑣 ∈ 𝐹 (𝑣 ∩ 𝐴) ≠ ∅)) |
| 14 | 1, 13 | bitrd 279 | 1 ⊢ ((𝐹 ∈ (fBas‘𝑌) ∧ 𝐴 ⊆ 𝑌) → ((𝐹 ↾t 𝐴) ∈ (fBas‘𝐴) ↔ ∀𝑣 ∈ 𝐹 (𝑣 ∩ 𝐴) ≠ ∅)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1541 ∈ wcel 2113 ≠ wne 2929 ∀wral 3048 ∃wrex 3057 Vcvv 3437 ∩ cin 3897 ⊆ wss 3898 ∅c0 4282 dom cdm 5619 ‘cfv 6486 (class class class)co 7352 ↾t crest 17326 fBascfbas 21281 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-rep 5219 ax-sep 5236 ax-nul 5246 ax-pow 5305 ax-pr 5372 ax-un 7674 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-nel 3034 df-ral 3049 df-rex 3058 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-nul 4283 df-if 4475 df-pw 4551 df-sn 4576 df-pr 4578 df-op 4582 df-uni 4859 df-iun 4943 df-br 5094 df-opab 5156 df-mpt 5175 df-id 5514 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-ov 7355 df-oprab 7356 df-mpo 7357 df-1st 7927 df-2nd 7928 df-rest 17328 df-fbas 21290 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |