| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > trfbas | Structured version Visualization version GIF version | ||
| Description: Conditions for the trace of a filter base 𝐹 to be a filter base. (Contributed by Mario Carneiro, 13-Oct-2015.) |
| Ref | Expression |
|---|---|
| trfbas | ⊢ ((𝐹 ∈ (fBas‘𝑌) ∧ 𝐴 ⊆ 𝑌) → ((𝐹 ↾t 𝐴) ∈ (fBas‘𝐴) ↔ ∀𝑣 ∈ 𝐹 (𝑣 ∩ 𝐴) ≠ ∅)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | trfbas2 23737 | . 2 ⊢ ((𝐹 ∈ (fBas‘𝑌) ∧ 𝐴 ⊆ 𝑌) → ((𝐹 ↾t 𝐴) ∈ (fBas‘𝐴) ↔ ¬ ∅ ∈ (𝐹 ↾t 𝐴))) | |
| 2 | elfvdm 6898 | . . . . . 6 ⊢ (𝐹 ∈ (fBas‘𝑌) → 𝑌 ∈ dom fBas) | |
| 3 | ssexg 5281 | . . . . . . 7 ⊢ ((𝐴 ⊆ 𝑌 ∧ 𝑌 ∈ dom fBas) → 𝐴 ∈ V) | |
| 4 | 3 | ancoms 458 | . . . . . 6 ⊢ ((𝑌 ∈ dom fBas ∧ 𝐴 ⊆ 𝑌) → 𝐴 ∈ V) |
| 5 | 2, 4 | sylan 580 | . . . . 5 ⊢ ((𝐹 ∈ (fBas‘𝑌) ∧ 𝐴 ⊆ 𝑌) → 𝐴 ∈ V) |
| 6 | elrest 17397 | . . . . 5 ⊢ ((𝐹 ∈ (fBas‘𝑌) ∧ 𝐴 ∈ V) → (∅ ∈ (𝐹 ↾t 𝐴) ↔ ∃𝑣 ∈ 𝐹 ∅ = (𝑣 ∩ 𝐴))) | |
| 7 | 5, 6 | syldan 591 | . . . 4 ⊢ ((𝐹 ∈ (fBas‘𝑌) ∧ 𝐴 ⊆ 𝑌) → (∅ ∈ (𝐹 ↾t 𝐴) ↔ ∃𝑣 ∈ 𝐹 ∅ = (𝑣 ∩ 𝐴))) |
| 8 | 7 | notbid 318 | . . 3 ⊢ ((𝐹 ∈ (fBas‘𝑌) ∧ 𝐴 ⊆ 𝑌) → (¬ ∅ ∈ (𝐹 ↾t 𝐴) ↔ ¬ ∃𝑣 ∈ 𝐹 ∅ = (𝑣 ∩ 𝐴))) |
| 9 | nesym 2982 | . . . . 5 ⊢ ((𝑣 ∩ 𝐴) ≠ ∅ ↔ ¬ ∅ = (𝑣 ∩ 𝐴)) | |
| 10 | 9 | ralbii 3076 | . . . 4 ⊢ (∀𝑣 ∈ 𝐹 (𝑣 ∩ 𝐴) ≠ ∅ ↔ ∀𝑣 ∈ 𝐹 ¬ ∅ = (𝑣 ∩ 𝐴)) |
| 11 | ralnex 3056 | . . . 4 ⊢ (∀𝑣 ∈ 𝐹 ¬ ∅ = (𝑣 ∩ 𝐴) ↔ ¬ ∃𝑣 ∈ 𝐹 ∅ = (𝑣 ∩ 𝐴)) | |
| 12 | 10, 11 | bitri 275 | . . 3 ⊢ (∀𝑣 ∈ 𝐹 (𝑣 ∩ 𝐴) ≠ ∅ ↔ ¬ ∃𝑣 ∈ 𝐹 ∅ = (𝑣 ∩ 𝐴)) |
| 13 | 8, 12 | bitr4di 289 | . 2 ⊢ ((𝐹 ∈ (fBas‘𝑌) ∧ 𝐴 ⊆ 𝑌) → (¬ ∅ ∈ (𝐹 ↾t 𝐴) ↔ ∀𝑣 ∈ 𝐹 (𝑣 ∩ 𝐴) ≠ ∅)) |
| 14 | 1, 13 | bitrd 279 | 1 ⊢ ((𝐹 ∈ (fBas‘𝑌) ∧ 𝐴 ⊆ 𝑌) → ((𝐹 ↾t 𝐴) ∈ (fBas‘𝐴) ↔ ∀𝑣 ∈ 𝐹 (𝑣 ∩ 𝐴) ≠ ∅)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ≠ wne 2926 ∀wral 3045 ∃wrex 3054 Vcvv 3450 ∩ cin 3916 ⊆ wss 3917 ∅c0 4299 dom cdm 5641 ‘cfv 6514 (class class class)co 7390 ↾t crest 17390 fBascfbas 21259 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5237 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-iun 4960 df-br 5111 df-opab 5173 df-mpt 5192 df-id 5536 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-ov 7393 df-oprab 7394 df-mpo 7395 df-1st 7971 df-2nd 7972 df-rest 17392 df-fbas 21268 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |