![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > trfbas | Structured version Visualization version GIF version |
Description: Conditions for the trace of a filter base 𝐹 to be a filter base. (Contributed by Mario Carneiro, 13-Oct-2015.) |
Ref | Expression |
---|---|
trfbas | ⊢ ((𝐹 ∈ (fBas‘𝑌) ∧ 𝐴 ⊆ 𝑌) → ((𝐹 ↾t 𝐴) ∈ (fBas‘𝐴) ↔ ∀𝑣 ∈ 𝐹 (𝑣 ∩ 𝐴) ≠ ∅)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | trfbas2 23876 | . 2 ⊢ ((𝐹 ∈ (fBas‘𝑌) ∧ 𝐴 ⊆ 𝑌) → ((𝐹 ↾t 𝐴) ∈ (fBas‘𝐴) ↔ ¬ ∅ ∈ (𝐹 ↾t 𝐴))) | |
2 | elfvdm 6951 | . . . . . 6 ⊢ (𝐹 ∈ (fBas‘𝑌) → 𝑌 ∈ dom fBas) | |
3 | ssexg 5332 | . . . . . . 7 ⊢ ((𝐴 ⊆ 𝑌 ∧ 𝑌 ∈ dom fBas) → 𝐴 ∈ V) | |
4 | 3 | ancoms 458 | . . . . . 6 ⊢ ((𝑌 ∈ dom fBas ∧ 𝐴 ⊆ 𝑌) → 𝐴 ∈ V) |
5 | 2, 4 | sylan 580 | . . . . 5 ⊢ ((𝐹 ∈ (fBas‘𝑌) ∧ 𝐴 ⊆ 𝑌) → 𝐴 ∈ V) |
6 | elrest 17483 | . . . . 5 ⊢ ((𝐹 ∈ (fBas‘𝑌) ∧ 𝐴 ∈ V) → (∅ ∈ (𝐹 ↾t 𝐴) ↔ ∃𝑣 ∈ 𝐹 ∅ = (𝑣 ∩ 𝐴))) | |
7 | 5, 6 | syldan 591 | . . . 4 ⊢ ((𝐹 ∈ (fBas‘𝑌) ∧ 𝐴 ⊆ 𝑌) → (∅ ∈ (𝐹 ↾t 𝐴) ↔ ∃𝑣 ∈ 𝐹 ∅ = (𝑣 ∩ 𝐴))) |
8 | 7 | notbid 318 | . . 3 ⊢ ((𝐹 ∈ (fBas‘𝑌) ∧ 𝐴 ⊆ 𝑌) → (¬ ∅ ∈ (𝐹 ↾t 𝐴) ↔ ¬ ∃𝑣 ∈ 𝐹 ∅ = (𝑣 ∩ 𝐴))) |
9 | nesym 2997 | . . . . 5 ⊢ ((𝑣 ∩ 𝐴) ≠ ∅ ↔ ¬ ∅ = (𝑣 ∩ 𝐴)) | |
10 | 9 | ralbii 3093 | . . . 4 ⊢ (∀𝑣 ∈ 𝐹 (𝑣 ∩ 𝐴) ≠ ∅ ↔ ∀𝑣 ∈ 𝐹 ¬ ∅ = (𝑣 ∩ 𝐴)) |
11 | ralnex 3072 | . . . 4 ⊢ (∀𝑣 ∈ 𝐹 ¬ ∅ = (𝑣 ∩ 𝐴) ↔ ¬ ∃𝑣 ∈ 𝐹 ∅ = (𝑣 ∩ 𝐴)) | |
12 | 10, 11 | bitri 275 | . . 3 ⊢ (∀𝑣 ∈ 𝐹 (𝑣 ∩ 𝐴) ≠ ∅ ↔ ¬ ∃𝑣 ∈ 𝐹 ∅ = (𝑣 ∩ 𝐴)) |
13 | 8, 12 | bitr4di 289 | . 2 ⊢ ((𝐹 ∈ (fBas‘𝑌) ∧ 𝐴 ⊆ 𝑌) → (¬ ∅ ∈ (𝐹 ↾t 𝐴) ↔ ∀𝑣 ∈ 𝐹 (𝑣 ∩ 𝐴) ≠ ∅)) |
14 | 1, 13 | bitrd 279 | 1 ⊢ ((𝐹 ∈ (fBas‘𝑌) ∧ 𝐴 ⊆ 𝑌) → ((𝐹 ↾t 𝐴) ∈ (fBas‘𝐴) ↔ ∀𝑣 ∈ 𝐹 (𝑣 ∩ 𝐴) ≠ ∅)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1539 ∈ wcel 2108 ≠ wne 2940 ∀wral 3061 ∃wrex 3070 Vcvv 3481 ∩ cin 3965 ⊆ wss 3966 ∅c0 4342 dom cdm 5693 ‘cfv 6569 (class class class)co 7438 ↾t crest 17476 fBascfbas 21379 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-rep 5288 ax-sep 5305 ax-nul 5315 ax-pow 5374 ax-pr 5441 ax-un 7761 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3an 1089 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-reu 3381 df-rab 3437 df-v 3483 df-sbc 3795 df-csb 3912 df-dif 3969 df-un 3971 df-in 3973 df-ss 3983 df-nul 4343 df-if 4535 df-pw 4610 df-sn 4635 df-pr 4637 df-op 4641 df-uni 4916 df-iun 5001 df-br 5152 df-opab 5214 df-mpt 5235 df-id 5587 df-xp 5699 df-rel 5700 df-cnv 5701 df-co 5702 df-dm 5703 df-rn 5704 df-res 5705 df-ima 5706 df-iota 6522 df-fun 6571 df-fn 6572 df-f 6573 df-f1 6574 df-fo 6575 df-f1o 6576 df-fv 6577 df-ov 7441 df-oprab 7442 df-mpo 7443 df-1st 8022 df-2nd 8023 df-rest 17478 df-fbas 21388 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |