MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  trfbas Structured version   Visualization version   GIF version

Theorem trfbas 23875
Description: Conditions for the trace of a filter base 𝐹 to be a filter base. (Contributed by Mario Carneiro, 13-Oct-2015.)
Assertion
Ref Expression
trfbas ((𝐹 ∈ (fBas‘𝑌) ∧ 𝐴𝑌) → ((𝐹t 𝐴) ∈ (fBas‘𝐴) ↔ ∀𝑣𝐹 (𝑣𝐴) ≠ ∅))
Distinct variable groups:   𝑣,𝐴   𝑣,𝐹
Allowed substitution hint:   𝑌(𝑣)

Proof of Theorem trfbas
StepHypRef Expression
1 trfbas2 23874 . 2 ((𝐹 ∈ (fBas‘𝑌) ∧ 𝐴𝑌) → ((𝐹t 𝐴) ∈ (fBas‘𝐴) ↔ ¬ ∅ ∈ (𝐹t 𝐴)))
2 elfvdm 6959 . . . . . 6 (𝐹 ∈ (fBas‘𝑌) → 𝑌 ∈ dom fBas)
3 ssexg 5341 . . . . . . 7 ((𝐴𝑌𝑌 ∈ dom fBas) → 𝐴 ∈ V)
43ancoms 458 . . . . . 6 ((𝑌 ∈ dom fBas ∧ 𝐴𝑌) → 𝐴 ∈ V)
52, 4sylan 579 . . . . 5 ((𝐹 ∈ (fBas‘𝑌) ∧ 𝐴𝑌) → 𝐴 ∈ V)
6 elrest 17489 . . . . 5 ((𝐹 ∈ (fBas‘𝑌) ∧ 𝐴 ∈ V) → (∅ ∈ (𝐹t 𝐴) ↔ ∃𝑣𝐹 ∅ = (𝑣𝐴)))
75, 6syldan 590 . . . 4 ((𝐹 ∈ (fBas‘𝑌) ∧ 𝐴𝑌) → (∅ ∈ (𝐹t 𝐴) ↔ ∃𝑣𝐹 ∅ = (𝑣𝐴)))
87notbid 318 . . 3 ((𝐹 ∈ (fBas‘𝑌) ∧ 𝐴𝑌) → (¬ ∅ ∈ (𝐹t 𝐴) ↔ ¬ ∃𝑣𝐹 ∅ = (𝑣𝐴)))
9 nesym 3003 . . . . 5 ((𝑣𝐴) ≠ ∅ ↔ ¬ ∅ = (𝑣𝐴))
109ralbii 3099 . . . 4 (∀𝑣𝐹 (𝑣𝐴) ≠ ∅ ↔ ∀𝑣𝐹 ¬ ∅ = (𝑣𝐴))
11 ralnex 3078 . . . 4 (∀𝑣𝐹 ¬ ∅ = (𝑣𝐴) ↔ ¬ ∃𝑣𝐹 ∅ = (𝑣𝐴))
1210, 11bitri 275 . . 3 (∀𝑣𝐹 (𝑣𝐴) ≠ ∅ ↔ ¬ ∃𝑣𝐹 ∅ = (𝑣𝐴))
138, 12bitr4di 289 . 2 ((𝐹 ∈ (fBas‘𝑌) ∧ 𝐴𝑌) → (¬ ∅ ∈ (𝐹t 𝐴) ↔ ∀𝑣𝐹 (𝑣𝐴) ≠ ∅))
141, 13bitrd 279 1 ((𝐹 ∈ (fBas‘𝑌) ∧ 𝐴𝑌) → ((𝐹t 𝐴) ∈ (fBas‘𝐴) ↔ ∀𝑣𝐹 (𝑣𝐴) ≠ ∅))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395   = wceq 1537  wcel 2108  wne 2946  wral 3067  wrex 3076  Vcvv 3488  cin 3975  wss 3976  c0 4352  dom cdm 5700  cfv 6575  (class class class)co 7450  t crest 17482  fBascfbas 21377
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7772
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-iota 6527  df-fun 6577  df-fn 6578  df-f 6579  df-f1 6580  df-fo 6581  df-f1o 6582  df-fv 6583  df-ov 7453  df-oprab 7454  df-mpo 7455  df-1st 8032  df-2nd 8033  df-rest 17484  df-fbas 21386
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator