MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  trfbas Structured version   Visualization version   GIF version

Theorem trfbas 23760
Description: Conditions for the trace of a filter base 𝐹 to be a filter base. (Contributed by Mario Carneiro, 13-Oct-2015.)
Assertion
Ref Expression
trfbas ((𝐹 ∈ (fBas‘𝑌) ∧ 𝐴𝑌) → ((𝐹t 𝐴) ∈ (fBas‘𝐴) ↔ ∀𝑣𝐹 (𝑣𝐴) ≠ ∅))
Distinct variable groups:   𝑣,𝐴   𝑣,𝐹
Allowed substitution hint:   𝑌(𝑣)

Proof of Theorem trfbas
StepHypRef Expression
1 trfbas2 23759 . 2 ((𝐹 ∈ (fBas‘𝑌) ∧ 𝐴𝑌) → ((𝐹t 𝐴) ∈ (fBas‘𝐴) ↔ ¬ ∅ ∈ (𝐹t 𝐴)))
2 elfvdm 6862 . . . . . 6 (𝐹 ∈ (fBas‘𝑌) → 𝑌 ∈ dom fBas)
3 ssexg 5263 . . . . . . 7 ((𝐴𝑌𝑌 ∈ dom fBas) → 𝐴 ∈ V)
43ancoms 458 . . . . . 6 ((𝑌 ∈ dom fBas ∧ 𝐴𝑌) → 𝐴 ∈ V)
52, 4sylan 580 . . . . 5 ((𝐹 ∈ (fBas‘𝑌) ∧ 𝐴𝑌) → 𝐴 ∈ V)
6 elrest 17333 . . . . 5 ((𝐹 ∈ (fBas‘𝑌) ∧ 𝐴 ∈ V) → (∅ ∈ (𝐹t 𝐴) ↔ ∃𝑣𝐹 ∅ = (𝑣𝐴)))
75, 6syldan 591 . . . 4 ((𝐹 ∈ (fBas‘𝑌) ∧ 𝐴𝑌) → (∅ ∈ (𝐹t 𝐴) ↔ ∃𝑣𝐹 ∅ = (𝑣𝐴)))
87notbid 318 . . 3 ((𝐹 ∈ (fBas‘𝑌) ∧ 𝐴𝑌) → (¬ ∅ ∈ (𝐹t 𝐴) ↔ ¬ ∃𝑣𝐹 ∅ = (𝑣𝐴)))
9 nesym 2985 . . . . 5 ((𝑣𝐴) ≠ ∅ ↔ ¬ ∅ = (𝑣𝐴))
109ralbii 3079 . . . 4 (∀𝑣𝐹 (𝑣𝐴) ≠ ∅ ↔ ∀𝑣𝐹 ¬ ∅ = (𝑣𝐴))
11 ralnex 3059 . . . 4 (∀𝑣𝐹 ¬ ∅ = (𝑣𝐴) ↔ ¬ ∃𝑣𝐹 ∅ = (𝑣𝐴))
1210, 11bitri 275 . . 3 (∀𝑣𝐹 (𝑣𝐴) ≠ ∅ ↔ ¬ ∃𝑣𝐹 ∅ = (𝑣𝐴))
138, 12bitr4di 289 . 2 ((𝐹 ∈ (fBas‘𝑌) ∧ 𝐴𝑌) → (¬ ∅ ∈ (𝐹t 𝐴) ↔ ∀𝑣𝐹 (𝑣𝐴) ≠ ∅))
141, 13bitrd 279 1 ((𝐹 ∈ (fBas‘𝑌) ∧ 𝐴𝑌) → ((𝐹t 𝐴) ∈ (fBas‘𝐴) ↔ ∀𝑣𝐹 (𝑣𝐴) ≠ ∅))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395   = wceq 1541  wcel 2113  wne 2929  wral 3048  wrex 3057  Vcvv 3437  cin 3897  wss 3898  c0 4282  dom cdm 5619  cfv 6486  (class class class)co 7352  t crest 17326  fBascfbas 21281
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-rep 5219  ax-sep 5236  ax-nul 5246  ax-pow 5305  ax-pr 5372  ax-un 7674
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-nel 3034  df-ral 3049  df-rex 3058  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-nul 4283  df-if 4475  df-pw 4551  df-sn 4576  df-pr 4578  df-op 4582  df-uni 4859  df-iun 4943  df-br 5094  df-opab 5156  df-mpt 5175  df-id 5514  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-ov 7355  df-oprab 7356  df-mpo 7357  df-1st 7927  df-2nd 7928  df-rest 17328  df-fbas 21290
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator