MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pthdlem2lem Structured version   Visualization version   GIF version

Theorem pthdlem2lem 29799
Description: Lemma for pthdlem2 29800. (Contributed by AV, 10-Feb-2021.)
Hypotheses
Ref Expression
pthd.p (𝜑𝑃 ∈ Word V)
pthd.r 𝑅 = ((♯‘𝑃) − 1)
pthd.s (𝜑 → ∀𝑖 ∈ (0..^(♯‘𝑃))∀𝑗 ∈ (1..^𝑅)(𝑖𝑗 → (𝑃𝑖) ≠ (𝑃𝑗)))
Assertion
Ref Expression
pthdlem2lem ((𝜑 ∧ (♯‘𝑃) ∈ ℕ ∧ (𝐼 = 0 ∨ 𝐼 = 𝑅)) → (𝑃𝐼) ∉ (𝑃 “ (1..^𝑅)))
Distinct variable groups:   𝑃,𝑖,𝑗   𝑅,𝑖,𝑗   𝜑,𝑖,𝑗   𝑖,𝐼,𝑗

Proof of Theorem pthdlem2lem
StepHypRef Expression
1 pthd.s . . . . . 6 (𝜑 → ∀𝑖 ∈ (0..^(♯‘𝑃))∀𝑗 ∈ (1..^𝑅)(𝑖𝑗 → (𝑃𝑖) ≠ (𝑃𝑗)))
213ad2ant1 1132 . . . . 5 ((𝜑 ∧ (♯‘𝑃) ∈ ℕ ∧ (𝐼 = 0 ∨ 𝐼 = 𝑅)) → ∀𝑖 ∈ (0..^(♯‘𝑃))∀𝑗 ∈ (1..^𝑅)(𝑖𝑗 → (𝑃𝑖) ≠ (𝑃𝑗)))
3 ralcom 3286 . . . . . 6 (∀𝑖 ∈ (0..^(♯‘𝑃))∀𝑗 ∈ (1..^𝑅)(𝑖𝑗 → (𝑃𝑖) ≠ (𝑃𝑗)) ↔ ∀𝑗 ∈ (1..^𝑅)∀𝑖 ∈ (0..^(♯‘𝑃))(𝑖𝑗 → (𝑃𝑖) ≠ (𝑃𝑗)))
4 elfzo1 13748 . . . . . . . . . . . . . . . . 17 (𝑗 ∈ (1..^𝑅) ↔ (𝑗 ∈ ℕ ∧ 𝑅 ∈ ℕ ∧ 𝑗 < 𝑅))
5 nnne0 12297 . . . . . . . . . . . . . . . . . . 19 (𝑗 ∈ ℕ → 𝑗 ≠ 0)
65necomd 2993 . . . . . . . . . . . . . . . . . 18 (𝑗 ∈ ℕ → 0 ≠ 𝑗)
763ad2ant1 1132 . . . . . . . . . . . . . . . . 17 ((𝑗 ∈ ℕ ∧ 𝑅 ∈ ℕ ∧ 𝑗 < 𝑅) → 0 ≠ 𝑗)
84, 7sylbi 217 . . . . . . . . . . . . . . . 16 (𝑗 ∈ (1..^𝑅) → 0 ≠ 𝑗)
98adantl 481 . . . . . . . . . . . . . . 15 (((♯‘𝑃) ∈ ℕ ∧ 𝑗 ∈ (1..^𝑅)) → 0 ≠ 𝑗)
10 neeq1 3000 . . . . . . . . . . . . . . 15 (𝐼 = 0 → (𝐼𝑗 ↔ 0 ≠ 𝑗))
119, 10imbitrrid 246 . . . . . . . . . . . . . 14 (𝐼 = 0 → (((♯‘𝑃) ∈ ℕ ∧ 𝑗 ∈ (1..^𝑅)) → 𝐼𝑗))
1211expd 415 . . . . . . . . . . . . 13 (𝐼 = 0 → ((♯‘𝑃) ∈ ℕ → (𝑗 ∈ (1..^𝑅) → 𝐼𝑗)))
13 nnre 12270 . . . . . . . . . . . . . . . . . . . . 21 (𝑗 ∈ ℕ → 𝑗 ∈ ℝ)
1413adantr 480 . . . . . . . . . . . . . . . . . . . 20 ((𝑗 ∈ ℕ ∧ 𝑅 ∈ ℕ) → 𝑗 ∈ ℝ)
15 nnre 12270 . . . . . . . . . . . . . . . . . . . . 21 (𝑅 ∈ ℕ → 𝑅 ∈ ℝ)
1615adantl 481 . . . . . . . . . . . . . . . . . . . 20 ((𝑗 ∈ ℕ ∧ 𝑅 ∈ ℕ) → 𝑅 ∈ ℝ)
1714, 16ltlend 11403 . . . . . . . . . . . . . . . . . . 19 ((𝑗 ∈ ℕ ∧ 𝑅 ∈ ℕ) → (𝑗 < 𝑅 ↔ (𝑗𝑅𝑅𝑗)))
18 simpr 484 . . . . . . . . . . . . . . . . . . 19 ((𝑗𝑅𝑅𝑗) → 𝑅𝑗)
1917, 18biimtrdi 253 . . . . . . . . . . . . . . . . . 18 ((𝑗 ∈ ℕ ∧ 𝑅 ∈ ℕ) → (𝑗 < 𝑅𝑅𝑗))
20193impia 1116 . . . . . . . . . . . . . . . . 17 ((𝑗 ∈ ℕ ∧ 𝑅 ∈ ℕ ∧ 𝑗 < 𝑅) → 𝑅𝑗)
214, 20sylbi 217 . . . . . . . . . . . . . . . 16 (𝑗 ∈ (1..^𝑅) → 𝑅𝑗)
2221adantl 481 . . . . . . . . . . . . . . 15 (((♯‘𝑃) ∈ ℕ ∧ 𝑗 ∈ (1..^𝑅)) → 𝑅𝑗)
23 neeq1 3000 . . . . . . . . . . . . . . 15 (𝐼 = 𝑅 → (𝐼𝑗𝑅𝑗))
2422, 23imbitrrid 246 . . . . . . . . . . . . . 14 (𝐼 = 𝑅 → (((♯‘𝑃) ∈ ℕ ∧ 𝑗 ∈ (1..^𝑅)) → 𝐼𝑗))
2524expd 415 . . . . . . . . . . . . 13 (𝐼 = 𝑅 → ((♯‘𝑃) ∈ ℕ → (𝑗 ∈ (1..^𝑅) → 𝐼𝑗)))
2612, 25jaoi 857 . . . . . . . . . . . 12 ((𝐼 = 0 ∨ 𝐼 = 𝑅) → ((♯‘𝑃) ∈ ℕ → (𝑗 ∈ (1..^𝑅) → 𝐼𝑗)))
2726impcom 407 . . . . . . . . . . 11 (((♯‘𝑃) ∈ ℕ ∧ (𝐼 = 0 ∨ 𝐼 = 𝑅)) → (𝑗 ∈ (1..^𝑅) → 𝐼𝑗))
28273adant1 1129 . . . . . . . . . 10 ((𝜑 ∧ (♯‘𝑃) ∈ ℕ ∧ (𝐼 = 0 ∨ 𝐼 = 𝑅)) → (𝑗 ∈ (1..^𝑅) → 𝐼𝑗))
2928imp 406 . . . . . . . . 9 (((𝜑 ∧ (♯‘𝑃) ∈ ℕ ∧ (𝐼 = 0 ∨ 𝐼 = 𝑅)) ∧ 𝑗 ∈ (1..^𝑅)) → 𝐼𝑗)
30 lbfzo0 13735 . . . . . . . . . . . . . . . 16 (0 ∈ (0..^(♯‘𝑃)) ↔ (♯‘𝑃) ∈ ℕ)
3130biimpri 228 . . . . . . . . . . . . . . 15 ((♯‘𝑃) ∈ ℕ → 0 ∈ (0..^(♯‘𝑃)))
32 eleq1 2826 . . . . . . . . . . . . . . 15 (𝐼 = 0 → (𝐼 ∈ (0..^(♯‘𝑃)) ↔ 0 ∈ (0..^(♯‘𝑃))))
3331, 32imbitrrid 246 . . . . . . . . . . . . . 14 (𝐼 = 0 → ((♯‘𝑃) ∈ ℕ → 𝐼 ∈ (0..^(♯‘𝑃))))
34 pthd.r . . . . . . . . . . . . . . . 16 𝑅 = ((♯‘𝑃) − 1)
35 fzo0end 13793 . . . . . . . . . . . . . . . 16 ((♯‘𝑃) ∈ ℕ → ((♯‘𝑃) − 1) ∈ (0..^(♯‘𝑃)))
3634, 35eqeltrid 2842 . . . . . . . . . . . . . . 15 ((♯‘𝑃) ∈ ℕ → 𝑅 ∈ (0..^(♯‘𝑃)))
37 eleq1 2826 . . . . . . . . . . . . . . 15 (𝐼 = 𝑅 → (𝐼 ∈ (0..^(♯‘𝑃)) ↔ 𝑅 ∈ (0..^(♯‘𝑃))))
3836, 37imbitrrid 246 . . . . . . . . . . . . . 14 (𝐼 = 𝑅 → ((♯‘𝑃) ∈ ℕ → 𝐼 ∈ (0..^(♯‘𝑃))))
3933, 38jaoi 857 . . . . . . . . . . . . 13 ((𝐼 = 0 ∨ 𝐼 = 𝑅) → ((♯‘𝑃) ∈ ℕ → 𝐼 ∈ (0..^(♯‘𝑃))))
4039impcom 407 . . . . . . . . . . . 12 (((♯‘𝑃) ∈ ℕ ∧ (𝐼 = 0 ∨ 𝐼 = 𝑅)) → 𝐼 ∈ (0..^(♯‘𝑃)))
41403adant1 1129 . . . . . . . . . . 11 ((𝜑 ∧ (♯‘𝑃) ∈ ℕ ∧ (𝐼 = 0 ∨ 𝐼 = 𝑅)) → 𝐼 ∈ (0..^(♯‘𝑃)))
4241adantr 480 . . . . . . . . . 10 (((𝜑 ∧ (♯‘𝑃) ∈ ℕ ∧ (𝐼 = 0 ∨ 𝐼 = 𝑅)) ∧ 𝑗 ∈ (1..^𝑅)) → 𝐼 ∈ (0..^(♯‘𝑃)))
43 neeq1 3000 . . . . . . . . . . . 12 (𝑖 = 𝐼 → (𝑖𝑗𝐼𝑗))
44 fveq2 6906 . . . . . . . . . . . . 13 (𝑖 = 𝐼 → (𝑃𝑖) = (𝑃𝐼))
4544neeq1d 2997 . . . . . . . . . . . 12 (𝑖 = 𝐼 → ((𝑃𝑖) ≠ (𝑃𝑗) ↔ (𝑃𝐼) ≠ (𝑃𝑗)))
4643, 45imbi12d 344 . . . . . . . . . . 11 (𝑖 = 𝐼 → ((𝑖𝑗 → (𝑃𝑖) ≠ (𝑃𝑗)) ↔ (𝐼𝑗 → (𝑃𝐼) ≠ (𝑃𝑗))))
4746rspcv 3617 . . . . . . . . . 10 (𝐼 ∈ (0..^(♯‘𝑃)) → (∀𝑖 ∈ (0..^(♯‘𝑃))(𝑖𝑗 → (𝑃𝑖) ≠ (𝑃𝑗)) → (𝐼𝑗 → (𝑃𝐼) ≠ (𝑃𝑗))))
4842, 47syl 17 . . . . . . . . 9 (((𝜑 ∧ (♯‘𝑃) ∈ ℕ ∧ (𝐼 = 0 ∨ 𝐼 = 𝑅)) ∧ 𝑗 ∈ (1..^𝑅)) → (∀𝑖 ∈ (0..^(♯‘𝑃))(𝑖𝑗 → (𝑃𝑖) ≠ (𝑃𝑗)) → (𝐼𝑗 → (𝑃𝐼) ≠ (𝑃𝑗))))
4929, 48mpid 44 . . . . . . . 8 (((𝜑 ∧ (♯‘𝑃) ∈ ℕ ∧ (𝐼 = 0 ∨ 𝐼 = 𝑅)) ∧ 𝑗 ∈ (1..^𝑅)) → (∀𝑖 ∈ (0..^(♯‘𝑃))(𝑖𝑗 → (𝑃𝑖) ≠ (𝑃𝑗)) → (𝑃𝐼) ≠ (𝑃𝑗)))
50 nesym 2994 . . . . . . . 8 ((𝑃𝐼) ≠ (𝑃𝑗) ↔ ¬ (𝑃𝑗) = (𝑃𝐼))
5149, 50imbitrdi 251 . . . . . . 7 (((𝜑 ∧ (♯‘𝑃) ∈ ℕ ∧ (𝐼 = 0 ∨ 𝐼 = 𝑅)) ∧ 𝑗 ∈ (1..^𝑅)) → (∀𝑖 ∈ (0..^(♯‘𝑃))(𝑖𝑗 → (𝑃𝑖) ≠ (𝑃𝑗)) → ¬ (𝑃𝑗) = (𝑃𝐼)))
5251ralimdva 3164 . . . . . 6 ((𝜑 ∧ (♯‘𝑃) ∈ ℕ ∧ (𝐼 = 0 ∨ 𝐼 = 𝑅)) → (∀𝑗 ∈ (1..^𝑅)∀𝑖 ∈ (0..^(♯‘𝑃))(𝑖𝑗 → (𝑃𝑖) ≠ (𝑃𝑗)) → ∀𝑗 ∈ (1..^𝑅) ¬ (𝑃𝑗) = (𝑃𝐼)))
533, 52biimtrid 242 . . . . 5 ((𝜑 ∧ (♯‘𝑃) ∈ ℕ ∧ (𝐼 = 0 ∨ 𝐼 = 𝑅)) → (∀𝑖 ∈ (0..^(♯‘𝑃))∀𝑗 ∈ (1..^𝑅)(𝑖𝑗 → (𝑃𝑖) ≠ (𝑃𝑗)) → ∀𝑗 ∈ (1..^𝑅) ¬ (𝑃𝑗) = (𝑃𝐼)))
542, 53mpd 15 . . . 4 ((𝜑 ∧ (♯‘𝑃) ∈ ℕ ∧ (𝐼 = 0 ∨ 𝐼 = 𝑅)) → ∀𝑗 ∈ (1..^𝑅) ¬ (𝑃𝑗) = (𝑃𝐼))
55 ralnex 3069 . . . 4 (∀𝑗 ∈ (1..^𝑅) ¬ (𝑃𝑗) = (𝑃𝐼) ↔ ¬ ∃𝑗 ∈ (1..^𝑅)(𝑃𝑗) = (𝑃𝐼))
5654, 55sylib 218 . . 3 ((𝜑 ∧ (♯‘𝑃) ∈ ℕ ∧ (𝐼 = 0 ∨ 𝐼 = 𝑅)) → ¬ ∃𝑗 ∈ (1..^𝑅)(𝑃𝑗) = (𝑃𝐼))
57 pthd.p . . . . . 6 (𝜑𝑃 ∈ Word V)
58 wrdf 14553 . . . . . 6 (𝑃 ∈ Word V → 𝑃:(0..^(♯‘𝑃))⟶V)
59 ffun 6739 . . . . . 6 (𝑃:(0..^(♯‘𝑃))⟶V → Fun 𝑃)
6057, 58, 593syl 18 . . . . 5 (𝜑 → Fun 𝑃)
61603ad2ant1 1132 . . . 4 ((𝜑 ∧ (♯‘𝑃) ∈ ℕ ∧ (𝐼 = 0 ∨ 𝐼 = 𝑅)) → Fun 𝑃)
62 fvelima 6973 . . . . 5 ((Fun 𝑃 ∧ (𝑃𝐼) ∈ (𝑃 “ (1..^𝑅))) → ∃𝑗 ∈ (1..^𝑅)(𝑃𝑗) = (𝑃𝐼))
6362ex 412 . . . 4 (Fun 𝑃 → ((𝑃𝐼) ∈ (𝑃 “ (1..^𝑅)) → ∃𝑗 ∈ (1..^𝑅)(𝑃𝑗) = (𝑃𝐼)))
6461, 63syl 17 . . 3 ((𝜑 ∧ (♯‘𝑃) ∈ ℕ ∧ (𝐼 = 0 ∨ 𝐼 = 𝑅)) → ((𝑃𝐼) ∈ (𝑃 “ (1..^𝑅)) → ∃𝑗 ∈ (1..^𝑅)(𝑃𝑗) = (𝑃𝐼)))
6556, 64mtod 198 . 2 ((𝜑 ∧ (♯‘𝑃) ∈ ℕ ∧ (𝐼 = 0 ∨ 𝐼 = 𝑅)) → ¬ (𝑃𝐼) ∈ (𝑃 “ (1..^𝑅)))
66 df-nel 3044 . 2 ((𝑃𝐼) ∉ (𝑃 “ (1..^𝑅)) ↔ ¬ (𝑃𝐼) ∈ (𝑃 “ (1..^𝑅)))
6765, 66sylibr 234 1 ((𝜑 ∧ (♯‘𝑃) ∈ ℕ ∧ (𝐼 = 0 ∨ 𝐼 = 𝑅)) → (𝑃𝐼) ∉ (𝑃 “ (1..^𝑅)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  wo 847  w3a 1086   = wceq 1536  wcel 2105  wne 2937  wnel 3043  wral 3058  wrex 3067  Vcvv 3477   class class class wbr 5147  cima 5691  Fun wfun 6556  wf 6558  cfv 6562  (class class class)co 7430  cr 11151  0cc0 11152  1c1 11153   < clt 11292  cle 11293  cmin 11489  cn 12263  ..^cfzo 13690  chash 14365  Word cword 14548
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1791  ax-4 1805  ax-5 1907  ax-6 1964  ax-7 2004  ax-8 2107  ax-9 2115  ax-10 2138  ax-11 2154  ax-12 2174  ax-ext 2705  ax-rep 5284  ax-sep 5301  ax-nul 5311  ax-pow 5370  ax-pr 5437  ax-un 7753  ax-cnex 11208  ax-resscn 11209  ax-1cn 11210  ax-icn 11211  ax-addcl 11212  ax-addrcl 11213  ax-mulcl 11214  ax-mulrcl 11215  ax-mulcom 11216  ax-addass 11217  ax-mulass 11218  ax-distr 11219  ax-i2m1 11220  ax-1ne0 11221  ax-1rid 11222  ax-rnegex 11223  ax-rrecex 11224  ax-cnre 11225  ax-pre-lttri 11226  ax-pre-lttrn 11227  ax-pre-ltadd 11228  ax-pre-mulgt0 11229
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1539  df-fal 1549  df-ex 1776  df-nf 1780  df-sb 2062  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2726  df-clel 2813  df-nfc 2889  df-ne 2938  df-nel 3044  df-ral 3059  df-rex 3068  df-reu 3378  df-rab 3433  df-v 3479  df-sbc 3791  df-csb 3908  df-dif 3965  df-un 3967  df-in 3969  df-ss 3979  df-pss 3982  df-nul 4339  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-op 4637  df-uni 4912  df-int 4951  df-iun 4997  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5582  df-eprel 5588  df-po 5596  df-so 5597  df-fr 5640  df-we 5642  df-xp 5694  df-rel 5695  df-cnv 5696  df-co 5697  df-dm 5698  df-rn 5699  df-res 5700  df-ima 5701  df-pred 6322  df-ord 6388  df-on 6389  df-lim 6390  df-suc 6391  df-iota 6515  df-fun 6564  df-fn 6565  df-f 6566  df-f1 6567  df-fo 6568  df-f1o 6569  df-fv 6570  df-riota 7387  df-ov 7433  df-oprab 7434  df-mpo 7435  df-om 7887  df-1st 8012  df-2nd 8013  df-frecs 8304  df-wrecs 8335  df-recs 8409  df-rdg 8448  df-1o 8504  df-er 8743  df-en 8984  df-dom 8985  df-sdom 8986  df-fin 8987  df-card 9976  df-pnf 11294  df-mnf 11295  df-xr 11296  df-ltxr 11297  df-le 11298  df-sub 11491  df-neg 11492  df-nn 12264  df-n0 12524  df-z 12611  df-uz 12876  df-fz 13544  df-fzo 13691  df-hash 14366  df-word 14549
This theorem is referenced by:  pthdlem2  29800
  Copyright terms: Public domain W3C validator