MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pthdlem2lem Structured version   Visualization version   GIF version

Theorem pthdlem2lem 29697
Description: Lemma for pthdlem2 29698. (Contributed by AV, 10-Feb-2021.)
Hypotheses
Ref Expression
pthd.p (𝜑𝑃 ∈ Word V)
pthd.r 𝑅 = ((♯‘𝑃) − 1)
pthd.s (𝜑 → ∀𝑖 ∈ (0..^(♯‘𝑃))∀𝑗 ∈ (1..^𝑅)(𝑖𝑗 → (𝑃𝑖) ≠ (𝑃𝑗)))
Assertion
Ref Expression
pthdlem2lem ((𝜑 ∧ (♯‘𝑃) ∈ ℕ ∧ (𝐼 = 0 ∨ 𝐼 = 𝑅)) → (𝑃𝐼) ∉ (𝑃 “ (1..^𝑅)))
Distinct variable groups:   𝑃,𝑖,𝑗   𝑅,𝑖,𝑗   𝜑,𝑖,𝑗   𝑖,𝐼,𝑗

Proof of Theorem pthdlem2lem
StepHypRef Expression
1 pthd.s . . . . . 6 (𝜑 → ∀𝑖 ∈ (0..^(♯‘𝑃))∀𝑗 ∈ (1..^𝑅)(𝑖𝑗 → (𝑃𝑖) ≠ (𝑃𝑗)))
213ad2ant1 1133 . . . . 5 ((𝜑 ∧ (♯‘𝑃) ∈ ℕ ∧ (𝐼 = 0 ∨ 𝐼 = 𝑅)) → ∀𝑖 ∈ (0..^(♯‘𝑃))∀𝑗 ∈ (1..^𝑅)(𝑖𝑗 → (𝑃𝑖) ≠ (𝑃𝑗)))
3 ralcom 3265 . . . . . 6 (∀𝑖 ∈ (0..^(♯‘𝑃))∀𝑗 ∈ (1..^𝑅)(𝑖𝑗 → (𝑃𝑖) ≠ (𝑃𝑗)) ↔ ∀𝑗 ∈ (1..^𝑅)∀𝑖 ∈ (0..^(♯‘𝑃))(𝑖𝑗 → (𝑃𝑖) ≠ (𝑃𝑗)))
4 elfzo1 13673 . . . . . . . . . . . . . . . . 17 (𝑗 ∈ (1..^𝑅) ↔ (𝑗 ∈ ℕ ∧ 𝑅 ∈ ℕ ∧ 𝑗 < 𝑅))
5 nnne0 12220 . . . . . . . . . . . . . . . . . . 19 (𝑗 ∈ ℕ → 𝑗 ≠ 0)
65necomd 2980 . . . . . . . . . . . . . . . . . 18 (𝑗 ∈ ℕ → 0 ≠ 𝑗)
763ad2ant1 1133 . . . . . . . . . . . . . . . . 17 ((𝑗 ∈ ℕ ∧ 𝑅 ∈ ℕ ∧ 𝑗 < 𝑅) → 0 ≠ 𝑗)
84, 7sylbi 217 . . . . . . . . . . . . . . . 16 (𝑗 ∈ (1..^𝑅) → 0 ≠ 𝑗)
98adantl 481 . . . . . . . . . . . . . . 15 (((♯‘𝑃) ∈ ℕ ∧ 𝑗 ∈ (1..^𝑅)) → 0 ≠ 𝑗)
10 neeq1 2987 . . . . . . . . . . . . . . 15 (𝐼 = 0 → (𝐼𝑗 ↔ 0 ≠ 𝑗))
119, 10imbitrrid 246 . . . . . . . . . . . . . 14 (𝐼 = 0 → (((♯‘𝑃) ∈ ℕ ∧ 𝑗 ∈ (1..^𝑅)) → 𝐼𝑗))
1211expd 415 . . . . . . . . . . . . 13 (𝐼 = 0 → ((♯‘𝑃) ∈ ℕ → (𝑗 ∈ (1..^𝑅) → 𝐼𝑗)))
13 nnre 12193 . . . . . . . . . . . . . . . . . . . . 21 (𝑗 ∈ ℕ → 𝑗 ∈ ℝ)
1413adantr 480 . . . . . . . . . . . . . . . . . . . 20 ((𝑗 ∈ ℕ ∧ 𝑅 ∈ ℕ) → 𝑗 ∈ ℝ)
15 nnre 12193 . . . . . . . . . . . . . . . . . . . . 21 (𝑅 ∈ ℕ → 𝑅 ∈ ℝ)
1615adantl 481 . . . . . . . . . . . . . . . . . . . 20 ((𝑗 ∈ ℕ ∧ 𝑅 ∈ ℕ) → 𝑅 ∈ ℝ)
1714, 16ltlend 11319 . . . . . . . . . . . . . . . . . . 19 ((𝑗 ∈ ℕ ∧ 𝑅 ∈ ℕ) → (𝑗 < 𝑅 ↔ (𝑗𝑅𝑅𝑗)))
18 simpr 484 . . . . . . . . . . . . . . . . . . 19 ((𝑗𝑅𝑅𝑗) → 𝑅𝑗)
1917, 18biimtrdi 253 . . . . . . . . . . . . . . . . . 18 ((𝑗 ∈ ℕ ∧ 𝑅 ∈ ℕ) → (𝑗 < 𝑅𝑅𝑗))
20193impia 1117 . . . . . . . . . . . . . . . . 17 ((𝑗 ∈ ℕ ∧ 𝑅 ∈ ℕ ∧ 𝑗 < 𝑅) → 𝑅𝑗)
214, 20sylbi 217 . . . . . . . . . . . . . . . 16 (𝑗 ∈ (1..^𝑅) → 𝑅𝑗)
2221adantl 481 . . . . . . . . . . . . . . 15 (((♯‘𝑃) ∈ ℕ ∧ 𝑗 ∈ (1..^𝑅)) → 𝑅𝑗)
23 neeq1 2987 . . . . . . . . . . . . . . 15 (𝐼 = 𝑅 → (𝐼𝑗𝑅𝑗))
2422, 23imbitrrid 246 . . . . . . . . . . . . . 14 (𝐼 = 𝑅 → (((♯‘𝑃) ∈ ℕ ∧ 𝑗 ∈ (1..^𝑅)) → 𝐼𝑗))
2524expd 415 . . . . . . . . . . . . 13 (𝐼 = 𝑅 → ((♯‘𝑃) ∈ ℕ → (𝑗 ∈ (1..^𝑅) → 𝐼𝑗)))
2612, 25jaoi 857 . . . . . . . . . . . 12 ((𝐼 = 0 ∨ 𝐼 = 𝑅) → ((♯‘𝑃) ∈ ℕ → (𝑗 ∈ (1..^𝑅) → 𝐼𝑗)))
2726impcom 407 . . . . . . . . . . 11 (((♯‘𝑃) ∈ ℕ ∧ (𝐼 = 0 ∨ 𝐼 = 𝑅)) → (𝑗 ∈ (1..^𝑅) → 𝐼𝑗))
28273adant1 1130 . . . . . . . . . 10 ((𝜑 ∧ (♯‘𝑃) ∈ ℕ ∧ (𝐼 = 0 ∨ 𝐼 = 𝑅)) → (𝑗 ∈ (1..^𝑅) → 𝐼𝑗))
2928imp 406 . . . . . . . . 9 (((𝜑 ∧ (♯‘𝑃) ∈ ℕ ∧ (𝐼 = 0 ∨ 𝐼 = 𝑅)) ∧ 𝑗 ∈ (1..^𝑅)) → 𝐼𝑗)
30 lbfzo0 13660 . . . . . . . . . . . . . . . 16 (0 ∈ (0..^(♯‘𝑃)) ↔ (♯‘𝑃) ∈ ℕ)
3130biimpri 228 . . . . . . . . . . . . . . 15 ((♯‘𝑃) ∈ ℕ → 0 ∈ (0..^(♯‘𝑃)))
32 eleq1 2816 . . . . . . . . . . . . . . 15 (𝐼 = 0 → (𝐼 ∈ (0..^(♯‘𝑃)) ↔ 0 ∈ (0..^(♯‘𝑃))))
3331, 32imbitrrid 246 . . . . . . . . . . . . . 14 (𝐼 = 0 → ((♯‘𝑃) ∈ ℕ → 𝐼 ∈ (0..^(♯‘𝑃))))
34 pthd.r . . . . . . . . . . . . . . . 16 𝑅 = ((♯‘𝑃) − 1)
35 fzo0end 13719 . . . . . . . . . . . . . . . 16 ((♯‘𝑃) ∈ ℕ → ((♯‘𝑃) − 1) ∈ (0..^(♯‘𝑃)))
3634, 35eqeltrid 2832 . . . . . . . . . . . . . . 15 ((♯‘𝑃) ∈ ℕ → 𝑅 ∈ (0..^(♯‘𝑃)))
37 eleq1 2816 . . . . . . . . . . . . . . 15 (𝐼 = 𝑅 → (𝐼 ∈ (0..^(♯‘𝑃)) ↔ 𝑅 ∈ (0..^(♯‘𝑃))))
3836, 37imbitrrid 246 . . . . . . . . . . . . . 14 (𝐼 = 𝑅 → ((♯‘𝑃) ∈ ℕ → 𝐼 ∈ (0..^(♯‘𝑃))))
3933, 38jaoi 857 . . . . . . . . . . . . 13 ((𝐼 = 0 ∨ 𝐼 = 𝑅) → ((♯‘𝑃) ∈ ℕ → 𝐼 ∈ (0..^(♯‘𝑃))))
4039impcom 407 . . . . . . . . . . . 12 (((♯‘𝑃) ∈ ℕ ∧ (𝐼 = 0 ∨ 𝐼 = 𝑅)) → 𝐼 ∈ (0..^(♯‘𝑃)))
41403adant1 1130 . . . . . . . . . . 11 ((𝜑 ∧ (♯‘𝑃) ∈ ℕ ∧ (𝐼 = 0 ∨ 𝐼 = 𝑅)) → 𝐼 ∈ (0..^(♯‘𝑃)))
4241adantr 480 . . . . . . . . . 10 (((𝜑 ∧ (♯‘𝑃) ∈ ℕ ∧ (𝐼 = 0 ∨ 𝐼 = 𝑅)) ∧ 𝑗 ∈ (1..^𝑅)) → 𝐼 ∈ (0..^(♯‘𝑃)))
43 neeq1 2987 . . . . . . . . . . . 12 (𝑖 = 𝐼 → (𝑖𝑗𝐼𝑗))
44 fveq2 6858 . . . . . . . . . . . . 13 (𝑖 = 𝐼 → (𝑃𝑖) = (𝑃𝐼))
4544neeq1d 2984 . . . . . . . . . . . 12 (𝑖 = 𝐼 → ((𝑃𝑖) ≠ (𝑃𝑗) ↔ (𝑃𝐼) ≠ (𝑃𝑗)))
4643, 45imbi12d 344 . . . . . . . . . . 11 (𝑖 = 𝐼 → ((𝑖𝑗 → (𝑃𝑖) ≠ (𝑃𝑗)) ↔ (𝐼𝑗 → (𝑃𝐼) ≠ (𝑃𝑗))))
4746rspcv 3584 . . . . . . . . . 10 (𝐼 ∈ (0..^(♯‘𝑃)) → (∀𝑖 ∈ (0..^(♯‘𝑃))(𝑖𝑗 → (𝑃𝑖) ≠ (𝑃𝑗)) → (𝐼𝑗 → (𝑃𝐼) ≠ (𝑃𝑗))))
4842, 47syl 17 . . . . . . . . 9 (((𝜑 ∧ (♯‘𝑃) ∈ ℕ ∧ (𝐼 = 0 ∨ 𝐼 = 𝑅)) ∧ 𝑗 ∈ (1..^𝑅)) → (∀𝑖 ∈ (0..^(♯‘𝑃))(𝑖𝑗 → (𝑃𝑖) ≠ (𝑃𝑗)) → (𝐼𝑗 → (𝑃𝐼) ≠ (𝑃𝑗))))
4929, 48mpid 44 . . . . . . . 8 (((𝜑 ∧ (♯‘𝑃) ∈ ℕ ∧ (𝐼 = 0 ∨ 𝐼 = 𝑅)) ∧ 𝑗 ∈ (1..^𝑅)) → (∀𝑖 ∈ (0..^(♯‘𝑃))(𝑖𝑗 → (𝑃𝑖) ≠ (𝑃𝑗)) → (𝑃𝐼) ≠ (𝑃𝑗)))
50 nesym 2981 . . . . . . . 8 ((𝑃𝐼) ≠ (𝑃𝑗) ↔ ¬ (𝑃𝑗) = (𝑃𝐼))
5149, 50imbitrdi 251 . . . . . . 7 (((𝜑 ∧ (♯‘𝑃) ∈ ℕ ∧ (𝐼 = 0 ∨ 𝐼 = 𝑅)) ∧ 𝑗 ∈ (1..^𝑅)) → (∀𝑖 ∈ (0..^(♯‘𝑃))(𝑖𝑗 → (𝑃𝑖) ≠ (𝑃𝑗)) → ¬ (𝑃𝑗) = (𝑃𝐼)))
5251ralimdva 3145 . . . . . 6 ((𝜑 ∧ (♯‘𝑃) ∈ ℕ ∧ (𝐼 = 0 ∨ 𝐼 = 𝑅)) → (∀𝑗 ∈ (1..^𝑅)∀𝑖 ∈ (0..^(♯‘𝑃))(𝑖𝑗 → (𝑃𝑖) ≠ (𝑃𝑗)) → ∀𝑗 ∈ (1..^𝑅) ¬ (𝑃𝑗) = (𝑃𝐼)))
533, 52biimtrid 242 . . . . 5 ((𝜑 ∧ (♯‘𝑃) ∈ ℕ ∧ (𝐼 = 0 ∨ 𝐼 = 𝑅)) → (∀𝑖 ∈ (0..^(♯‘𝑃))∀𝑗 ∈ (1..^𝑅)(𝑖𝑗 → (𝑃𝑖) ≠ (𝑃𝑗)) → ∀𝑗 ∈ (1..^𝑅) ¬ (𝑃𝑗) = (𝑃𝐼)))
542, 53mpd 15 . . . 4 ((𝜑 ∧ (♯‘𝑃) ∈ ℕ ∧ (𝐼 = 0 ∨ 𝐼 = 𝑅)) → ∀𝑗 ∈ (1..^𝑅) ¬ (𝑃𝑗) = (𝑃𝐼))
55 ralnex 3055 . . . 4 (∀𝑗 ∈ (1..^𝑅) ¬ (𝑃𝑗) = (𝑃𝐼) ↔ ¬ ∃𝑗 ∈ (1..^𝑅)(𝑃𝑗) = (𝑃𝐼))
5654, 55sylib 218 . . 3 ((𝜑 ∧ (♯‘𝑃) ∈ ℕ ∧ (𝐼 = 0 ∨ 𝐼 = 𝑅)) → ¬ ∃𝑗 ∈ (1..^𝑅)(𝑃𝑗) = (𝑃𝐼))
57 pthd.p . . . . . 6 (𝜑𝑃 ∈ Word V)
58 wrdf 14483 . . . . . 6 (𝑃 ∈ Word V → 𝑃:(0..^(♯‘𝑃))⟶V)
59 ffun 6691 . . . . . 6 (𝑃:(0..^(♯‘𝑃))⟶V → Fun 𝑃)
6057, 58, 593syl 18 . . . . 5 (𝜑 → Fun 𝑃)
61603ad2ant1 1133 . . . 4 ((𝜑 ∧ (♯‘𝑃) ∈ ℕ ∧ (𝐼 = 0 ∨ 𝐼 = 𝑅)) → Fun 𝑃)
62 fvelima 6926 . . . . 5 ((Fun 𝑃 ∧ (𝑃𝐼) ∈ (𝑃 “ (1..^𝑅))) → ∃𝑗 ∈ (1..^𝑅)(𝑃𝑗) = (𝑃𝐼))
6362ex 412 . . . 4 (Fun 𝑃 → ((𝑃𝐼) ∈ (𝑃 “ (1..^𝑅)) → ∃𝑗 ∈ (1..^𝑅)(𝑃𝑗) = (𝑃𝐼)))
6461, 63syl 17 . . 3 ((𝜑 ∧ (♯‘𝑃) ∈ ℕ ∧ (𝐼 = 0 ∨ 𝐼 = 𝑅)) → ((𝑃𝐼) ∈ (𝑃 “ (1..^𝑅)) → ∃𝑗 ∈ (1..^𝑅)(𝑃𝑗) = (𝑃𝐼)))
6556, 64mtod 198 . 2 ((𝜑 ∧ (♯‘𝑃) ∈ ℕ ∧ (𝐼 = 0 ∨ 𝐼 = 𝑅)) → ¬ (𝑃𝐼) ∈ (𝑃 “ (1..^𝑅)))
66 df-nel 3030 . 2 ((𝑃𝐼) ∉ (𝑃 “ (1..^𝑅)) ↔ ¬ (𝑃𝐼) ∈ (𝑃 “ (1..^𝑅)))
6765, 66sylibr 234 1 ((𝜑 ∧ (♯‘𝑃) ∈ ℕ ∧ (𝐼 = 0 ∨ 𝐼 = 𝑅)) → (𝑃𝐼) ∉ (𝑃 “ (1..^𝑅)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  wo 847  w3a 1086   = wceq 1540  wcel 2109  wne 2925  wnel 3029  wral 3044  wrex 3053  Vcvv 3447   class class class wbr 5107  cima 5641  Fun wfun 6505  wf 6507  cfv 6511  (class class class)co 7387  cr 11067  0cc0 11068  1c1 11069   < clt 11208  cle 11209  cmin 11405  cn 12186  ..^cfzo 13615  chash 14295  Word cword 14478
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-cnex 11124  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-int 4911  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-om 7843  df-1st 7968  df-2nd 7969  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-1o 8434  df-er 8671  df-en 8919  df-dom 8920  df-sdom 8921  df-fin 8922  df-card 9892  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-nn 12187  df-n0 12443  df-z 12530  df-uz 12794  df-fz 13469  df-fzo 13616  df-hash 14296  df-word 14479
This theorem is referenced by:  pthdlem2  29698
  Copyright terms: Public domain W3C validator