MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pthdlem2lem Structured version   Visualization version   GIF version

Theorem pthdlem2lem 26975
Description: Lemma for pthdlem2 26976. (Contributed by AV, 10-Feb-2021.)
Hypotheses
Ref Expression
pthd.p (𝜑𝑃 ∈ Word V)
pthd.r 𝑅 = ((♯‘𝑃) − 1)
pthd.s (𝜑 → ∀𝑖 ∈ (0..^(♯‘𝑃))∀𝑗 ∈ (1..^𝑅)(𝑖𝑗 → (𝑃𝑖) ≠ (𝑃𝑗)))
Assertion
Ref Expression
pthdlem2lem ((𝜑 ∧ (♯‘𝑃) ∈ ℕ ∧ (𝐼 = 0 ∨ 𝐼 = 𝑅)) → (𝑃𝐼) ∉ (𝑃 “ (1..^𝑅)))
Distinct variable groups:   𝑃,𝑖,𝑗   𝑅,𝑖,𝑗   𝜑,𝑖,𝑗   𝑖,𝐼,𝑗

Proof of Theorem pthdlem2lem
StepHypRef Expression
1 pthd.s . . . . . 6 (𝜑 → ∀𝑖 ∈ (0..^(♯‘𝑃))∀𝑗 ∈ (1..^𝑅)(𝑖𝑗 → (𝑃𝑖) ≠ (𝑃𝑗)))
213ad2ant1 1163 . . . . 5 ((𝜑 ∧ (♯‘𝑃) ∈ ℕ ∧ (𝐼 = 0 ∨ 𝐼 = 𝑅)) → ∀𝑖 ∈ (0..^(♯‘𝑃))∀𝑗 ∈ (1..^𝑅)(𝑖𝑗 → (𝑃𝑖) ≠ (𝑃𝑗)))
3 ralcom 3245 . . . . . 6 (∀𝑖 ∈ (0..^(♯‘𝑃))∀𝑗 ∈ (1..^𝑅)(𝑖𝑗 → (𝑃𝑖) ≠ (𝑃𝑗)) ↔ ∀𝑗 ∈ (1..^𝑅)∀𝑖 ∈ (0..^(♯‘𝑃))(𝑖𝑗 → (𝑃𝑖) ≠ (𝑃𝑗)))
4 elfzo1 12733 . . . . . . . . . . . . . . . . 17 (𝑗 ∈ (1..^𝑅) ↔ (𝑗 ∈ ℕ ∧ 𝑅 ∈ ℕ ∧ 𝑗 < 𝑅))
5 nnne0 11315 . . . . . . . . . . . . . . . . . . 19 (𝑗 ∈ ℕ → 𝑗 ≠ 0)
65necomd 2992 . . . . . . . . . . . . . . . . . 18 (𝑗 ∈ ℕ → 0 ≠ 𝑗)
763ad2ant1 1163 . . . . . . . . . . . . . . . . 17 ((𝑗 ∈ ℕ ∧ 𝑅 ∈ ℕ ∧ 𝑗 < 𝑅) → 0 ≠ 𝑗)
84, 7sylbi 208 . . . . . . . . . . . . . . . 16 (𝑗 ∈ (1..^𝑅) → 0 ≠ 𝑗)
98adantl 473 . . . . . . . . . . . . . . 15 (((♯‘𝑃) ∈ ℕ ∧ 𝑗 ∈ (1..^𝑅)) → 0 ≠ 𝑗)
10 neeq1 2999 . . . . . . . . . . . . . . 15 (𝐼 = 0 → (𝐼𝑗 ↔ 0 ≠ 𝑗))
119, 10syl5ibr 237 . . . . . . . . . . . . . 14 (𝐼 = 0 → (((♯‘𝑃) ∈ ℕ ∧ 𝑗 ∈ (1..^𝑅)) → 𝐼𝑗))
1211expd 404 . . . . . . . . . . . . 13 (𝐼 = 0 → ((♯‘𝑃) ∈ ℕ → (𝑗 ∈ (1..^𝑅) → 𝐼𝑗)))
13 nnre 11287 . . . . . . . . . . . . . . . . . . . . 21 (𝑗 ∈ ℕ → 𝑗 ∈ ℝ)
1413adantr 472 . . . . . . . . . . . . . . . . . . . 20 ((𝑗 ∈ ℕ ∧ 𝑅 ∈ ℕ) → 𝑗 ∈ ℝ)
15 nnre 11287 . . . . . . . . . . . . . . . . . . . . 21 (𝑅 ∈ ℕ → 𝑅 ∈ ℝ)
1615adantl 473 . . . . . . . . . . . . . . . . . . . 20 ((𝑗 ∈ ℕ ∧ 𝑅 ∈ ℕ) → 𝑅 ∈ ℝ)
1714, 16ltlend 10441 . . . . . . . . . . . . . . . . . . 19 ((𝑗 ∈ ℕ ∧ 𝑅 ∈ ℕ) → (𝑗 < 𝑅 ↔ (𝑗𝑅𝑅𝑗)))
18 simpr 477 . . . . . . . . . . . . . . . . . . 19 ((𝑗𝑅𝑅𝑗) → 𝑅𝑗)
1917, 18syl6bi 244 . . . . . . . . . . . . . . . . . 18 ((𝑗 ∈ ℕ ∧ 𝑅 ∈ ℕ) → (𝑗 < 𝑅𝑅𝑗))
20193impia 1145 . . . . . . . . . . . . . . . . 17 ((𝑗 ∈ ℕ ∧ 𝑅 ∈ ℕ ∧ 𝑗 < 𝑅) → 𝑅𝑗)
214, 20sylbi 208 . . . . . . . . . . . . . . . 16 (𝑗 ∈ (1..^𝑅) → 𝑅𝑗)
2221adantl 473 . . . . . . . . . . . . . . 15 (((♯‘𝑃) ∈ ℕ ∧ 𝑗 ∈ (1..^𝑅)) → 𝑅𝑗)
23 neeq1 2999 . . . . . . . . . . . . . . 15 (𝐼 = 𝑅 → (𝐼𝑗𝑅𝑗))
2422, 23syl5ibr 237 . . . . . . . . . . . . . 14 (𝐼 = 𝑅 → (((♯‘𝑃) ∈ ℕ ∧ 𝑗 ∈ (1..^𝑅)) → 𝐼𝑗))
2524expd 404 . . . . . . . . . . . . 13 (𝐼 = 𝑅 → ((♯‘𝑃) ∈ ℕ → (𝑗 ∈ (1..^𝑅) → 𝐼𝑗)))
2612, 25jaoi 883 . . . . . . . . . . . 12 ((𝐼 = 0 ∨ 𝐼 = 𝑅) → ((♯‘𝑃) ∈ ℕ → (𝑗 ∈ (1..^𝑅) → 𝐼𝑗)))
2726impcom 396 . . . . . . . . . . 11 (((♯‘𝑃) ∈ ℕ ∧ (𝐼 = 0 ∨ 𝐼 = 𝑅)) → (𝑗 ∈ (1..^𝑅) → 𝐼𝑗))
28273adant1 1160 . . . . . . . . . 10 ((𝜑 ∧ (♯‘𝑃) ∈ ℕ ∧ (𝐼 = 0 ∨ 𝐼 = 𝑅)) → (𝑗 ∈ (1..^𝑅) → 𝐼𝑗))
2928imp 395 . . . . . . . . 9 (((𝜑 ∧ (♯‘𝑃) ∈ ℕ ∧ (𝐼 = 0 ∨ 𝐼 = 𝑅)) ∧ 𝑗 ∈ (1..^𝑅)) → 𝐼𝑗)
30 lbfzo0 12723 . . . . . . . . . . . . . . . 16 (0 ∈ (0..^(♯‘𝑃)) ↔ (♯‘𝑃) ∈ ℕ)
3130biimpri 219 . . . . . . . . . . . . . . 15 ((♯‘𝑃) ∈ ℕ → 0 ∈ (0..^(♯‘𝑃)))
32 eleq1 2832 . . . . . . . . . . . . . . 15 (𝐼 = 0 → (𝐼 ∈ (0..^(♯‘𝑃)) ↔ 0 ∈ (0..^(♯‘𝑃))))
3331, 32syl5ibr 237 . . . . . . . . . . . . . 14 (𝐼 = 0 → ((♯‘𝑃) ∈ ℕ → 𝐼 ∈ (0..^(♯‘𝑃))))
34 pthd.r . . . . . . . . . . . . . . . 16 𝑅 = ((♯‘𝑃) − 1)
35 fzo0end 12775 . . . . . . . . . . . . . . . 16 ((♯‘𝑃) ∈ ℕ → ((♯‘𝑃) − 1) ∈ (0..^(♯‘𝑃)))
3634, 35syl5eqel 2848 . . . . . . . . . . . . . . 15 ((♯‘𝑃) ∈ ℕ → 𝑅 ∈ (0..^(♯‘𝑃)))
37 eleq1 2832 . . . . . . . . . . . . . . 15 (𝐼 = 𝑅 → (𝐼 ∈ (0..^(♯‘𝑃)) ↔ 𝑅 ∈ (0..^(♯‘𝑃))))
3836, 37syl5ibr 237 . . . . . . . . . . . . . 14 (𝐼 = 𝑅 → ((♯‘𝑃) ∈ ℕ → 𝐼 ∈ (0..^(♯‘𝑃))))
3933, 38jaoi 883 . . . . . . . . . . . . 13 ((𝐼 = 0 ∨ 𝐼 = 𝑅) → ((♯‘𝑃) ∈ ℕ → 𝐼 ∈ (0..^(♯‘𝑃))))
4039impcom 396 . . . . . . . . . . . 12 (((♯‘𝑃) ∈ ℕ ∧ (𝐼 = 0 ∨ 𝐼 = 𝑅)) → 𝐼 ∈ (0..^(♯‘𝑃)))
41403adant1 1160 . . . . . . . . . . 11 ((𝜑 ∧ (♯‘𝑃) ∈ ℕ ∧ (𝐼 = 0 ∨ 𝐼 = 𝑅)) → 𝐼 ∈ (0..^(♯‘𝑃)))
4241adantr 472 . . . . . . . . . 10 (((𝜑 ∧ (♯‘𝑃) ∈ ℕ ∧ (𝐼 = 0 ∨ 𝐼 = 𝑅)) ∧ 𝑗 ∈ (1..^𝑅)) → 𝐼 ∈ (0..^(♯‘𝑃)))
43 neeq1 2999 . . . . . . . . . . . 12 (𝑖 = 𝐼 → (𝑖𝑗𝐼𝑗))
44 fveq2 6379 . . . . . . . . . . . . 13 (𝑖 = 𝐼 → (𝑃𝑖) = (𝑃𝐼))
4544neeq1d 2996 . . . . . . . . . . . 12 (𝑖 = 𝐼 → ((𝑃𝑖) ≠ (𝑃𝑗) ↔ (𝑃𝐼) ≠ (𝑃𝑗)))
4643, 45imbi12d 335 . . . . . . . . . . 11 (𝑖 = 𝐼 → ((𝑖𝑗 → (𝑃𝑖) ≠ (𝑃𝑗)) ↔ (𝐼𝑗 → (𝑃𝐼) ≠ (𝑃𝑗))))
4746rspcv 3458 . . . . . . . . . 10 (𝐼 ∈ (0..^(♯‘𝑃)) → (∀𝑖 ∈ (0..^(♯‘𝑃))(𝑖𝑗 → (𝑃𝑖) ≠ (𝑃𝑗)) → (𝐼𝑗 → (𝑃𝐼) ≠ (𝑃𝑗))))
4842, 47syl 17 . . . . . . . . 9 (((𝜑 ∧ (♯‘𝑃) ∈ ℕ ∧ (𝐼 = 0 ∨ 𝐼 = 𝑅)) ∧ 𝑗 ∈ (1..^𝑅)) → (∀𝑖 ∈ (0..^(♯‘𝑃))(𝑖𝑗 → (𝑃𝑖) ≠ (𝑃𝑗)) → (𝐼𝑗 → (𝑃𝐼) ≠ (𝑃𝑗))))
4929, 48mpid 44 . . . . . . . 8 (((𝜑 ∧ (♯‘𝑃) ∈ ℕ ∧ (𝐼 = 0 ∨ 𝐼 = 𝑅)) ∧ 𝑗 ∈ (1..^𝑅)) → (∀𝑖 ∈ (0..^(♯‘𝑃))(𝑖𝑗 → (𝑃𝑖) ≠ (𝑃𝑗)) → (𝑃𝐼) ≠ (𝑃𝑗)))
50 nesym 2993 . . . . . . . 8 ((𝑃𝐼) ≠ (𝑃𝑗) ↔ ¬ (𝑃𝑗) = (𝑃𝐼))
5149, 50syl6ib 242 . . . . . . 7 (((𝜑 ∧ (♯‘𝑃) ∈ ℕ ∧ (𝐼 = 0 ∨ 𝐼 = 𝑅)) ∧ 𝑗 ∈ (1..^𝑅)) → (∀𝑖 ∈ (0..^(♯‘𝑃))(𝑖𝑗 → (𝑃𝑖) ≠ (𝑃𝑗)) → ¬ (𝑃𝑗) = (𝑃𝐼)))
5251ralimdva 3109 . . . . . 6 ((𝜑 ∧ (♯‘𝑃) ∈ ℕ ∧ (𝐼 = 0 ∨ 𝐼 = 𝑅)) → (∀𝑗 ∈ (1..^𝑅)∀𝑖 ∈ (0..^(♯‘𝑃))(𝑖𝑗 → (𝑃𝑖) ≠ (𝑃𝑗)) → ∀𝑗 ∈ (1..^𝑅) ¬ (𝑃𝑗) = (𝑃𝐼)))
533, 52syl5bi 233 . . . . 5 ((𝜑 ∧ (♯‘𝑃) ∈ ℕ ∧ (𝐼 = 0 ∨ 𝐼 = 𝑅)) → (∀𝑖 ∈ (0..^(♯‘𝑃))∀𝑗 ∈ (1..^𝑅)(𝑖𝑗 → (𝑃𝑖) ≠ (𝑃𝑗)) → ∀𝑗 ∈ (1..^𝑅) ¬ (𝑃𝑗) = (𝑃𝐼)))
542, 53mpd 15 . . . 4 ((𝜑 ∧ (♯‘𝑃) ∈ ℕ ∧ (𝐼 = 0 ∨ 𝐼 = 𝑅)) → ∀𝑗 ∈ (1..^𝑅) ¬ (𝑃𝑗) = (𝑃𝐼))
55 ralnex 3139 . . . 4 (∀𝑗 ∈ (1..^𝑅) ¬ (𝑃𝑗) = (𝑃𝐼) ↔ ¬ ∃𝑗 ∈ (1..^𝑅)(𝑃𝑗) = (𝑃𝐼))
5654, 55sylib 209 . . 3 ((𝜑 ∧ (♯‘𝑃) ∈ ℕ ∧ (𝐼 = 0 ∨ 𝐼 = 𝑅)) → ¬ ∃𝑗 ∈ (1..^𝑅)(𝑃𝑗) = (𝑃𝐼))
57 pthd.p . . . . . 6 (𝜑𝑃 ∈ Word V)
58 wrdf 13498 . . . . . 6 (𝑃 ∈ Word V → 𝑃:(0..^(♯‘𝑃))⟶V)
59 ffun 6228 . . . . . 6 (𝑃:(0..^(♯‘𝑃))⟶V → Fun 𝑃)
6057, 58, 593syl 18 . . . . 5 (𝜑 → Fun 𝑃)
61603ad2ant1 1163 . . . 4 ((𝜑 ∧ (♯‘𝑃) ∈ ℕ ∧ (𝐼 = 0 ∨ 𝐼 = 𝑅)) → Fun 𝑃)
62 fvelima 6441 . . . . 5 ((Fun 𝑃 ∧ (𝑃𝐼) ∈ (𝑃 “ (1..^𝑅))) → ∃𝑗 ∈ (1..^𝑅)(𝑃𝑗) = (𝑃𝐼))
6362ex 401 . . . 4 (Fun 𝑃 → ((𝑃𝐼) ∈ (𝑃 “ (1..^𝑅)) → ∃𝑗 ∈ (1..^𝑅)(𝑃𝑗) = (𝑃𝐼)))
6461, 63syl 17 . . 3 ((𝜑 ∧ (♯‘𝑃) ∈ ℕ ∧ (𝐼 = 0 ∨ 𝐼 = 𝑅)) → ((𝑃𝐼) ∈ (𝑃 “ (1..^𝑅)) → ∃𝑗 ∈ (1..^𝑅)(𝑃𝑗) = (𝑃𝐼)))
6556, 64mtod 189 . 2 ((𝜑 ∧ (♯‘𝑃) ∈ ℕ ∧ (𝐼 = 0 ∨ 𝐼 = 𝑅)) → ¬ (𝑃𝐼) ∈ (𝑃 “ (1..^𝑅)))
66 df-nel 3041 . 2 ((𝑃𝐼) ∉ (𝑃 “ (1..^𝑅)) ↔ ¬ (𝑃𝐼) ∈ (𝑃 “ (1..^𝑅)))
6765, 66sylibr 225 1 ((𝜑 ∧ (♯‘𝑃) ∈ ℕ ∧ (𝐼 = 0 ∨ 𝐼 = 𝑅)) → (𝑃𝐼) ∉ (𝑃 “ (1..^𝑅)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 384  wo 873  w3a 1107   = wceq 1652  wcel 2155  wne 2937  wnel 3040  wral 3055  wrex 3056  Vcvv 3350   class class class wbr 4811  cima 5282  Fun wfun 6064  wf 6066  cfv 6070  (class class class)co 6846  cr 10192  0cc0 10193  1c1 10194   < clt 10332  cle 10333  cmin 10525  cn 11279  ..^cfzo 12680  chash 13328  Word cword 13493
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1890  ax-4 1904  ax-5 2005  ax-6 2070  ax-7 2105  ax-8 2157  ax-9 2164  ax-10 2183  ax-11 2198  ax-12 2211  ax-13 2352  ax-ext 2743  ax-rep 4932  ax-sep 4943  ax-nul 4951  ax-pow 5003  ax-pr 5064  ax-un 7151  ax-cnex 10249  ax-resscn 10250  ax-1cn 10251  ax-icn 10252  ax-addcl 10253  ax-addrcl 10254  ax-mulcl 10255  ax-mulrcl 10256  ax-mulcom 10257  ax-addass 10258  ax-mulass 10259  ax-distr 10260  ax-i2m1 10261  ax-1ne0 10262  ax-1rid 10263  ax-rnegex 10264  ax-rrecex 10265  ax-cnre 10266  ax-pre-lttri 10267  ax-pre-lttrn 10268  ax-pre-ltadd 10269  ax-pre-mulgt0 10270
This theorem depends on definitions:  df-bi 198  df-an 385  df-or 874  df-3or 1108  df-3an 1109  df-tru 1656  df-ex 1875  df-nf 1879  df-sb 2063  df-mo 2565  df-eu 2582  df-clab 2752  df-cleq 2758  df-clel 2761  df-nfc 2896  df-ne 2938  df-nel 3041  df-ral 3060  df-rex 3061  df-reu 3062  df-rab 3064  df-v 3352  df-sbc 3599  df-csb 3694  df-dif 3737  df-un 3739  df-in 3741  df-ss 3748  df-pss 3750  df-nul 4082  df-if 4246  df-pw 4319  df-sn 4337  df-pr 4339  df-tp 4341  df-op 4343  df-uni 4597  df-int 4636  df-iun 4680  df-br 4812  df-opab 4874  df-mpt 4891  df-tr 4914  df-id 5187  df-eprel 5192  df-po 5200  df-so 5201  df-fr 5238  df-we 5240  df-xp 5285  df-rel 5286  df-cnv 5287  df-co 5288  df-dm 5289  df-rn 5290  df-res 5291  df-ima 5292  df-pred 5867  df-ord 5913  df-on 5914  df-lim 5915  df-suc 5916  df-iota 6033  df-fun 6072  df-fn 6073  df-f 6074  df-f1 6075  df-fo 6076  df-f1o 6077  df-fv 6078  df-riota 6807  df-ov 6849  df-oprab 6850  df-mpt2 6851  df-om 7268  df-1st 7370  df-2nd 7371  df-wrecs 7614  df-recs 7676  df-rdg 7714  df-1o 7768  df-er 7951  df-en 8165  df-dom 8166  df-sdom 8167  df-fin 8168  df-card 9020  df-pnf 10334  df-mnf 10335  df-xr 10336  df-ltxr 10337  df-le 10338  df-sub 10527  df-neg 10528  df-nn 11280  df-n0 11544  df-z 11630  df-uz 11894  df-fz 12541  df-fzo 12681  df-hash 13329  df-word 13494
This theorem is referenced by:  pthdlem2  26976
  Copyright terms: Public domain W3C validator