MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pthdlem2lem Structured version   Visualization version   GIF version

Theorem pthdlem2lem 27542
Description: Lemma for pthdlem2 27543. (Contributed by AV, 10-Feb-2021.)
Hypotheses
Ref Expression
pthd.p (𝜑𝑃 ∈ Word V)
pthd.r 𝑅 = ((♯‘𝑃) − 1)
pthd.s (𝜑 → ∀𝑖 ∈ (0..^(♯‘𝑃))∀𝑗 ∈ (1..^𝑅)(𝑖𝑗 → (𝑃𝑖) ≠ (𝑃𝑗)))
Assertion
Ref Expression
pthdlem2lem ((𝜑 ∧ (♯‘𝑃) ∈ ℕ ∧ (𝐼 = 0 ∨ 𝐼 = 𝑅)) → (𝑃𝐼) ∉ (𝑃 “ (1..^𝑅)))
Distinct variable groups:   𝑃,𝑖,𝑗   𝑅,𝑖,𝑗   𝜑,𝑖,𝑗   𝑖,𝐼,𝑗

Proof of Theorem pthdlem2lem
StepHypRef Expression
1 pthd.s . . . . . 6 (𝜑 → ∀𝑖 ∈ (0..^(♯‘𝑃))∀𝑗 ∈ (1..^𝑅)(𝑖𝑗 → (𝑃𝑖) ≠ (𝑃𝑗)))
213ad2ant1 1129 . . . . 5 ((𝜑 ∧ (♯‘𝑃) ∈ ℕ ∧ (𝐼 = 0 ∨ 𝐼 = 𝑅)) → ∀𝑖 ∈ (0..^(♯‘𝑃))∀𝑗 ∈ (1..^𝑅)(𝑖𝑗 → (𝑃𝑖) ≠ (𝑃𝑗)))
3 ralcom 3354 . . . . . 6 (∀𝑖 ∈ (0..^(♯‘𝑃))∀𝑗 ∈ (1..^𝑅)(𝑖𝑗 → (𝑃𝑖) ≠ (𝑃𝑗)) ↔ ∀𝑗 ∈ (1..^𝑅)∀𝑖 ∈ (0..^(♯‘𝑃))(𝑖𝑗 → (𝑃𝑖) ≠ (𝑃𝑗)))
4 elfzo1 13081 . . . . . . . . . . . . . . . . 17 (𝑗 ∈ (1..^𝑅) ↔ (𝑗 ∈ ℕ ∧ 𝑅 ∈ ℕ ∧ 𝑗 < 𝑅))
5 nnne0 11665 . . . . . . . . . . . . . . . . . . 19 (𝑗 ∈ ℕ → 𝑗 ≠ 0)
65necomd 3071 . . . . . . . . . . . . . . . . . 18 (𝑗 ∈ ℕ → 0 ≠ 𝑗)
763ad2ant1 1129 . . . . . . . . . . . . . . . . 17 ((𝑗 ∈ ℕ ∧ 𝑅 ∈ ℕ ∧ 𝑗 < 𝑅) → 0 ≠ 𝑗)
84, 7sylbi 219 . . . . . . . . . . . . . . . 16 (𝑗 ∈ (1..^𝑅) → 0 ≠ 𝑗)
98adantl 484 . . . . . . . . . . . . . . 15 (((♯‘𝑃) ∈ ℕ ∧ 𝑗 ∈ (1..^𝑅)) → 0 ≠ 𝑗)
10 neeq1 3078 . . . . . . . . . . . . . . 15 (𝐼 = 0 → (𝐼𝑗 ↔ 0 ≠ 𝑗))
119, 10syl5ibr 248 . . . . . . . . . . . . . 14 (𝐼 = 0 → (((♯‘𝑃) ∈ ℕ ∧ 𝑗 ∈ (1..^𝑅)) → 𝐼𝑗))
1211expd 418 . . . . . . . . . . . . 13 (𝐼 = 0 → ((♯‘𝑃) ∈ ℕ → (𝑗 ∈ (1..^𝑅) → 𝐼𝑗)))
13 nnre 11639 . . . . . . . . . . . . . . . . . . . . 21 (𝑗 ∈ ℕ → 𝑗 ∈ ℝ)
1413adantr 483 . . . . . . . . . . . . . . . . . . . 20 ((𝑗 ∈ ℕ ∧ 𝑅 ∈ ℕ) → 𝑗 ∈ ℝ)
15 nnre 11639 . . . . . . . . . . . . . . . . . . . . 21 (𝑅 ∈ ℕ → 𝑅 ∈ ℝ)
1615adantl 484 . . . . . . . . . . . . . . . . . . . 20 ((𝑗 ∈ ℕ ∧ 𝑅 ∈ ℕ) → 𝑅 ∈ ℝ)
1714, 16ltlend 10779 . . . . . . . . . . . . . . . . . . 19 ((𝑗 ∈ ℕ ∧ 𝑅 ∈ ℕ) → (𝑗 < 𝑅 ↔ (𝑗𝑅𝑅𝑗)))
18 simpr 487 . . . . . . . . . . . . . . . . . . 19 ((𝑗𝑅𝑅𝑗) → 𝑅𝑗)
1917, 18syl6bi 255 . . . . . . . . . . . . . . . . . 18 ((𝑗 ∈ ℕ ∧ 𝑅 ∈ ℕ) → (𝑗 < 𝑅𝑅𝑗))
20193impia 1113 . . . . . . . . . . . . . . . . 17 ((𝑗 ∈ ℕ ∧ 𝑅 ∈ ℕ ∧ 𝑗 < 𝑅) → 𝑅𝑗)
214, 20sylbi 219 . . . . . . . . . . . . . . . 16 (𝑗 ∈ (1..^𝑅) → 𝑅𝑗)
2221adantl 484 . . . . . . . . . . . . . . 15 (((♯‘𝑃) ∈ ℕ ∧ 𝑗 ∈ (1..^𝑅)) → 𝑅𝑗)
23 neeq1 3078 . . . . . . . . . . . . . . 15 (𝐼 = 𝑅 → (𝐼𝑗𝑅𝑗))
2422, 23syl5ibr 248 . . . . . . . . . . . . . 14 (𝐼 = 𝑅 → (((♯‘𝑃) ∈ ℕ ∧ 𝑗 ∈ (1..^𝑅)) → 𝐼𝑗))
2524expd 418 . . . . . . . . . . . . 13 (𝐼 = 𝑅 → ((♯‘𝑃) ∈ ℕ → (𝑗 ∈ (1..^𝑅) → 𝐼𝑗)))
2612, 25jaoi 853 . . . . . . . . . . . 12 ((𝐼 = 0 ∨ 𝐼 = 𝑅) → ((♯‘𝑃) ∈ ℕ → (𝑗 ∈ (1..^𝑅) → 𝐼𝑗)))
2726impcom 410 . . . . . . . . . . 11 (((♯‘𝑃) ∈ ℕ ∧ (𝐼 = 0 ∨ 𝐼 = 𝑅)) → (𝑗 ∈ (1..^𝑅) → 𝐼𝑗))
28273adant1 1126 . . . . . . . . . 10 ((𝜑 ∧ (♯‘𝑃) ∈ ℕ ∧ (𝐼 = 0 ∨ 𝐼 = 𝑅)) → (𝑗 ∈ (1..^𝑅) → 𝐼𝑗))
2928imp 409 . . . . . . . . 9 (((𝜑 ∧ (♯‘𝑃) ∈ ℕ ∧ (𝐼 = 0 ∨ 𝐼 = 𝑅)) ∧ 𝑗 ∈ (1..^𝑅)) → 𝐼𝑗)
30 lbfzo0 13071 . . . . . . . . . . . . . . . 16 (0 ∈ (0..^(♯‘𝑃)) ↔ (♯‘𝑃) ∈ ℕ)
3130biimpri 230 . . . . . . . . . . . . . . 15 ((♯‘𝑃) ∈ ℕ → 0 ∈ (0..^(♯‘𝑃)))
32 eleq1 2900 . . . . . . . . . . . . . . 15 (𝐼 = 0 → (𝐼 ∈ (0..^(♯‘𝑃)) ↔ 0 ∈ (0..^(♯‘𝑃))))
3331, 32syl5ibr 248 . . . . . . . . . . . . . 14 (𝐼 = 0 → ((♯‘𝑃) ∈ ℕ → 𝐼 ∈ (0..^(♯‘𝑃))))
34 pthd.r . . . . . . . . . . . . . . . 16 𝑅 = ((♯‘𝑃) − 1)
35 fzo0end 13123 . . . . . . . . . . . . . . . 16 ((♯‘𝑃) ∈ ℕ → ((♯‘𝑃) − 1) ∈ (0..^(♯‘𝑃)))
3634, 35eqeltrid 2917 . . . . . . . . . . . . . . 15 ((♯‘𝑃) ∈ ℕ → 𝑅 ∈ (0..^(♯‘𝑃)))
37 eleq1 2900 . . . . . . . . . . . . . . 15 (𝐼 = 𝑅 → (𝐼 ∈ (0..^(♯‘𝑃)) ↔ 𝑅 ∈ (0..^(♯‘𝑃))))
3836, 37syl5ibr 248 . . . . . . . . . . . . . 14 (𝐼 = 𝑅 → ((♯‘𝑃) ∈ ℕ → 𝐼 ∈ (0..^(♯‘𝑃))))
3933, 38jaoi 853 . . . . . . . . . . . . 13 ((𝐼 = 0 ∨ 𝐼 = 𝑅) → ((♯‘𝑃) ∈ ℕ → 𝐼 ∈ (0..^(♯‘𝑃))))
4039impcom 410 . . . . . . . . . . . 12 (((♯‘𝑃) ∈ ℕ ∧ (𝐼 = 0 ∨ 𝐼 = 𝑅)) → 𝐼 ∈ (0..^(♯‘𝑃)))
41403adant1 1126 . . . . . . . . . . 11 ((𝜑 ∧ (♯‘𝑃) ∈ ℕ ∧ (𝐼 = 0 ∨ 𝐼 = 𝑅)) → 𝐼 ∈ (0..^(♯‘𝑃)))
4241adantr 483 . . . . . . . . . 10 (((𝜑 ∧ (♯‘𝑃) ∈ ℕ ∧ (𝐼 = 0 ∨ 𝐼 = 𝑅)) ∧ 𝑗 ∈ (1..^𝑅)) → 𝐼 ∈ (0..^(♯‘𝑃)))
43 neeq1 3078 . . . . . . . . . . . 12 (𝑖 = 𝐼 → (𝑖𝑗𝐼𝑗))
44 fveq2 6665 . . . . . . . . . . . . 13 (𝑖 = 𝐼 → (𝑃𝑖) = (𝑃𝐼))
4544neeq1d 3075 . . . . . . . . . . . 12 (𝑖 = 𝐼 → ((𝑃𝑖) ≠ (𝑃𝑗) ↔ (𝑃𝐼) ≠ (𝑃𝑗)))
4643, 45imbi12d 347 . . . . . . . . . . 11 (𝑖 = 𝐼 → ((𝑖𝑗 → (𝑃𝑖) ≠ (𝑃𝑗)) ↔ (𝐼𝑗 → (𝑃𝐼) ≠ (𝑃𝑗))))
4746rspcv 3618 . . . . . . . . . 10 (𝐼 ∈ (0..^(♯‘𝑃)) → (∀𝑖 ∈ (0..^(♯‘𝑃))(𝑖𝑗 → (𝑃𝑖) ≠ (𝑃𝑗)) → (𝐼𝑗 → (𝑃𝐼) ≠ (𝑃𝑗))))
4842, 47syl 17 . . . . . . . . 9 (((𝜑 ∧ (♯‘𝑃) ∈ ℕ ∧ (𝐼 = 0 ∨ 𝐼 = 𝑅)) ∧ 𝑗 ∈ (1..^𝑅)) → (∀𝑖 ∈ (0..^(♯‘𝑃))(𝑖𝑗 → (𝑃𝑖) ≠ (𝑃𝑗)) → (𝐼𝑗 → (𝑃𝐼) ≠ (𝑃𝑗))))
4929, 48mpid 44 . . . . . . . 8 (((𝜑 ∧ (♯‘𝑃) ∈ ℕ ∧ (𝐼 = 0 ∨ 𝐼 = 𝑅)) ∧ 𝑗 ∈ (1..^𝑅)) → (∀𝑖 ∈ (0..^(♯‘𝑃))(𝑖𝑗 → (𝑃𝑖) ≠ (𝑃𝑗)) → (𝑃𝐼) ≠ (𝑃𝑗)))
50 nesym 3072 . . . . . . . 8 ((𝑃𝐼) ≠ (𝑃𝑗) ↔ ¬ (𝑃𝑗) = (𝑃𝐼))
5149, 50syl6ib 253 . . . . . . 7 (((𝜑 ∧ (♯‘𝑃) ∈ ℕ ∧ (𝐼 = 0 ∨ 𝐼 = 𝑅)) ∧ 𝑗 ∈ (1..^𝑅)) → (∀𝑖 ∈ (0..^(♯‘𝑃))(𝑖𝑗 → (𝑃𝑖) ≠ (𝑃𝑗)) → ¬ (𝑃𝑗) = (𝑃𝐼)))
5251ralimdva 3177 . . . . . 6 ((𝜑 ∧ (♯‘𝑃) ∈ ℕ ∧ (𝐼 = 0 ∨ 𝐼 = 𝑅)) → (∀𝑗 ∈ (1..^𝑅)∀𝑖 ∈ (0..^(♯‘𝑃))(𝑖𝑗 → (𝑃𝑖) ≠ (𝑃𝑗)) → ∀𝑗 ∈ (1..^𝑅) ¬ (𝑃𝑗) = (𝑃𝐼)))
533, 52syl5bi 244 . . . . 5 ((𝜑 ∧ (♯‘𝑃) ∈ ℕ ∧ (𝐼 = 0 ∨ 𝐼 = 𝑅)) → (∀𝑖 ∈ (0..^(♯‘𝑃))∀𝑗 ∈ (1..^𝑅)(𝑖𝑗 → (𝑃𝑖) ≠ (𝑃𝑗)) → ∀𝑗 ∈ (1..^𝑅) ¬ (𝑃𝑗) = (𝑃𝐼)))
542, 53mpd 15 . . . 4 ((𝜑 ∧ (♯‘𝑃) ∈ ℕ ∧ (𝐼 = 0 ∨ 𝐼 = 𝑅)) → ∀𝑗 ∈ (1..^𝑅) ¬ (𝑃𝑗) = (𝑃𝐼))
55 ralnex 3236 . . . 4 (∀𝑗 ∈ (1..^𝑅) ¬ (𝑃𝑗) = (𝑃𝐼) ↔ ¬ ∃𝑗 ∈ (1..^𝑅)(𝑃𝑗) = (𝑃𝐼))
5654, 55sylib 220 . . 3 ((𝜑 ∧ (♯‘𝑃) ∈ ℕ ∧ (𝐼 = 0 ∨ 𝐼 = 𝑅)) → ¬ ∃𝑗 ∈ (1..^𝑅)(𝑃𝑗) = (𝑃𝐼))
57 pthd.p . . . . . 6 (𝜑𝑃 ∈ Word V)
58 wrdf 13860 . . . . . 6 (𝑃 ∈ Word V → 𝑃:(0..^(♯‘𝑃))⟶V)
59 ffun 6512 . . . . . 6 (𝑃:(0..^(♯‘𝑃))⟶V → Fun 𝑃)
6057, 58, 593syl 18 . . . . 5 (𝜑 → Fun 𝑃)
61603ad2ant1 1129 . . . 4 ((𝜑 ∧ (♯‘𝑃) ∈ ℕ ∧ (𝐼 = 0 ∨ 𝐼 = 𝑅)) → Fun 𝑃)
62 fvelima 6726 . . . . 5 ((Fun 𝑃 ∧ (𝑃𝐼) ∈ (𝑃 “ (1..^𝑅))) → ∃𝑗 ∈ (1..^𝑅)(𝑃𝑗) = (𝑃𝐼))
6362ex 415 . . . 4 (Fun 𝑃 → ((𝑃𝐼) ∈ (𝑃 “ (1..^𝑅)) → ∃𝑗 ∈ (1..^𝑅)(𝑃𝑗) = (𝑃𝐼)))
6461, 63syl 17 . . 3 ((𝜑 ∧ (♯‘𝑃) ∈ ℕ ∧ (𝐼 = 0 ∨ 𝐼 = 𝑅)) → ((𝑃𝐼) ∈ (𝑃 “ (1..^𝑅)) → ∃𝑗 ∈ (1..^𝑅)(𝑃𝑗) = (𝑃𝐼)))
6556, 64mtod 200 . 2 ((𝜑 ∧ (♯‘𝑃) ∈ ℕ ∧ (𝐼 = 0 ∨ 𝐼 = 𝑅)) → ¬ (𝑃𝐼) ∈ (𝑃 “ (1..^𝑅)))
66 df-nel 3124 . 2 ((𝑃𝐼) ∉ (𝑃 “ (1..^𝑅)) ↔ ¬ (𝑃𝐼) ∈ (𝑃 “ (1..^𝑅)))
6765, 66sylibr 236 1 ((𝜑 ∧ (♯‘𝑃) ∈ ℕ ∧ (𝐼 = 0 ∨ 𝐼 = 𝑅)) → (𝑃𝐼) ∉ (𝑃 “ (1..^𝑅)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 398  wo 843  w3a 1083   = wceq 1533  wcel 2110  wne 3016  wnel 3123  wral 3138  wrex 3139  Vcvv 3495   class class class wbr 5059  cima 5553  Fun wfun 6344  wf 6346  cfv 6350  (class class class)co 7150  cr 10530  0cc0 10531  1c1 10532   < clt 10669  cle 10670  cmin 10864  cn 11632  ..^cfzo 13027  chash 13684  Word cword 13855
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2156  ax-12 2172  ax-ext 2793  ax-rep 5183  ax-sep 5196  ax-nul 5203  ax-pow 5259  ax-pr 5322  ax-un 7455  ax-cnex 10587  ax-resscn 10588  ax-1cn 10589  ax-icn 10590  ax-addcl 10591  ax-addrcl 10592  ax-mulcl 10593  ax-mulrcl 10594  ax-mulcom 10595  ax-addass 10596  ax-mulass 10597  ax-distr 10598  ax-i2m1 10599  ax-1ne0 10600  ax-1rid 10601  ax-rnegex 10602  ax-rrecex 10603  ax-cnre 10604  ax-pre-lttri 10605  ax-pre-lttrn 10606  ax-pre-ltadd 10607  ax-pre-mulgt0 10608
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rab 3147  df-v 3497  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-pss 3954  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4562  df-pr 4564  df-tp 4566  df-op 4568  df-uni 4833  df-int 4870  df-iun 4914  df-br 5060  df-opab 5122  df-mpt 5140  df-tr 5166  df-id 5455  df-eprel 5460  df-po 5469  df-so 5470  df-fr 5509  df-we 5511  df-xp 5556  df-rel 5557  df-cnv 5558  df-co 5559  df-dm 5560  df-rn 5561  df-res 5562  df-ima 5563  df-pred 6143  df-ord 6189  df-on 6190  df-lim 6191  df-suc 6192  df-iota 6309  df-fun 6352  df-fn 6353  df-f 6354  df-f1 6355  df-fo 6356  df-f1o 6357  df-fv 6358  df-riota 7108  df-ov 7153  df-oprab 7154  df-mpo 7155  df-om 7575  df-1st 7683  df-2nd 7684  df-wrecs 7941  df-recs 8002  df-rdg 8040  df-1o 8096  df-er 8283  df-en 8504  df-dom 8505  df-sdom 8506  df-fin 8507  df-card 9362  df-pnf 10671  df-mnf 10672  df-xr 10673  df-ltxr 10674  df-le 10675  df-sub 10866  df-neg 10867  df-nn 11633  df-n0 11892  df-z 11976  df-uz 12238  df-fz 12887  df-fzo 13028  df-hash 13685  df-word 13856
This theorem is referenced by:  pthdlem2  27543
  Copyright terms: Public domain W3C validator