Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  iblcncfioo Structured version   Visualization version   GIF version

Theorem iblcncfioo 41113
Description: A continuous function 𝐹 on an open interval (𝐴(,)𝐵) with a finite right limit 𝑅 in 𝐴 and a finite left limit 𝐿 in 𝐵 is integrable. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Hypotheses
Ref Expression
iblcncfioo.a (𝜑𝐴 ∈ ℝ)
iblcncfioo.b (𝜑𝐵 ∈ ℝ)
iblcncfioo.f (𝜑𝐹 ∈ ((𝐴(,)𝐵)–cn→ℂ))
iblcncfioo.l (𝜑𝐿 ∈ (𝐹 lim 𝐵))
iblcncfioo.r (𝜑𝑅 ∈ (𝐹 lim 𝐴))
Assertion
Ref Expression
iblcncfioo (𝜑𝐹 ∈ 𝐿1)

Proof of Theorem iblcncfioo
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 iblcncfioo.f . . . . 5 (𝜑𝐹 ∈ ((𝐴(,)𝐵)–cn→ℂ))
2 cncff 23104 . . . . 5 (𝐹 ∈ ((𝐴(,)𝐵)–cn→ℂ) → 𝐹:(𝐴(,)𝐵)⟶ℂ)
31, 2syl 17 . . . 4 (𝜑𝐹:(𝐴(,)𝐵)⟶ℂ)
43feqmptd 6509 . . 3 (𝜑𝐹 = (𝑥 ∈ (𝐴(,)𝐵) ↦ (𝐹𝑥)))
5 iblcncfioo.a . . . . . . . . . 10 (𝜑𝐴 ∈ ℝ)
65adantr 474 . . . . . . . . 9 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → 𝐴 ∈ ℝ)
7 eliooord 12545 . . . . . . . . . . 11 (𝑥 ∈ (𝐴(,)𝐵) → (𝐴 < 𝑥𝑥 < 𝐵))
87simpld 490 . . . . . . . . . 10 (𝑥 ∈ (𝐴(,)𝐵) → 𝐴 < 𝑥)
98adantl 475 . . . . . . . . 9 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → 𝐴 < 𝑥)
106, 9gtned 10511 . . . . . . . 8 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → 𝑥𝐴)
1110neneqd 2973 . . . . . . 7 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → ¬ 𝑥 = 𝐴)
1211iffalsed 4317 . . . . . 6 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → if(𝑥 = 𝐴, 𝑅, if(𝑥 = 𝐵, 𝐿, (𝐹𝑥))) = if(𝑥 = 𝐵, 𝐿, (𝐹𝑥)))
13 elioore 12517 . . . . . . . . . 10 (𝑥 ∈ (𝐴(,)𝐵) → 𝑥 ∈ ℝ)
1413adantl 475 . . . . . . . . 9 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → 𝑥 ∈ ℝ)
157simprd 491 . . . . . . . . . 10 (𝑥 ∈ (𝐴(,)𝐵) → 𝑥 < 𝐵)
1615adantl 475 . . . . . . . . 9 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → 𝑥 < 𝐵)
1714, 16ltned 10512 . . . . . . . 8 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → 𝑥𝐵)
1817neneqd 2973 . . . . . . 7 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → ¬ 𝑥 = 𝐵)
1918iffalsed 4317 . . . . . 6 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → if(𝑥 = 𝐵, 𝐿, (𝐹𝑥)) = (𝐹𝑥))
2012, 19eqtrd 2813 . . . . 5 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → if(𝑥 = 𝐴, 𝑅, if(𝑥 = 𝐵, 𝐿, (𝐹𝑥))) = (𝐹𝑥))
2120eqcomd 2783 . . . 4 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → (𝐹𝑥) = if(𝑥 = 𝐴, 𝑅, if(𝑥 = 𝐵, 𝐿, (𝐹𝑥))))
2221mpteq2dva 4979 . . 3 (𝜑 → (𝑥 ∈ (𝐴(,)𝐵) ↦ (𝐹𝑥)) = (𝑥 ∈ (𝐴(,)𝐵) ↦ if(𝑥 = 𝐴, 𝑅, if(𝑥 = 𝐵, 𝐿, (𝐹𝑥)))))
234, 22eqtrd 2813 . 2 (𝜑𝐹 = (𝑥 ∈ (𝐴(,)𝐵) ↦ if(𝑥 = 𝐴, 𝑅, if(𝑥 = 𝐵, 𝐿, (𝐹𝑥)))))
24 ioossicc 12571 . . . 4 (𝐴(,)𝐵) ⊆ (𝐴[,]𝐵)
2524a1i 11 . . 3 (𝜑 → (𝐴(,)𝐵) ⊆ (𝐴[,]𝐵))
26 ioombl 23769 . . . 4 (𝐴(,)𝐵) ∈ dom vol
2726a1i 11 . . 3 (𝜑 → (𝐴(,)𝐵) ∈ dom vol)
28 iftrue 4312 . . . . . . 7 (𝑥 = 𝐴 → if(𝑥 = 𝐴, 𝑅, if(𝑥 = 𝐵, 𝐿, (𝐹𝑥))) = 𝑅)
2928adantl 475 . . . . . 6 ((𝜑𝑥 = 𝐴) → if(𝑥 = 𝐴, 𝑅, if(𝑥 = 𝐵, 𝐿, (𝐹𝑥))) = 𝑅)
30 limccl 24076 . . . . . . . 8 (𝐹 lim 𝐴) ⊆ ℂ
31 iblcncfioo.r . . . . . . . 8 (𝜑𝑅 ∈ (𝐹 lim 𝐴))
3230, 31sseldi 3818 . . . . . . 7 (𝜑𝑅 ∈ ℂ)
3332adantr 474 . . . . . 6 ((𝜑𝑥 = 𝐴) → 𝑅 ∈ ℂ)
3429, 33eqeltrd 2858 . . . . 5 ((𝜑𝑥 = 𝐴) → if(𝑥 = 𝐴, 𝑅, if(𝑥 = 𝐵, 𝐿, (𝐹𝑥))) ∈ ℂ)
3534adantlr 705 . . . 4 (((𝜑𝑥 ∈ (𝐴[,]𝐵)) ∧ 𝑥 = 𝐴) → if(𝑥 = 𝐴, 𝑅, if(𝑥 = 𝐵, 𝐿, (𝐹𝑥))) ∈ ℂ)
36 iffalse 4315 . . . . . . . . 9 𝑥 = 𝐴 → if(𝑥 = 𝐴, 𝑅, if(𝑥 = 𝐵, 𝐿, (𝐹𝑥))) = if(𝑥 = 𝐵, 𝐿, (𝐹𝑥)))
3736ad2antlr 717 . . . . . . . 8 (((𝜑 ∧ ¬ 𝑥 = 𝐴) ∧ 𝑥 = 𝐵) → if(𝑥 = 𝐴, 𝑅, if(𝑥 = 𝐵, 𝐿, (𝐹𝑥))) = if(𝑥 = 𝐵, 𝐿, (𝐹𝑥)))
38 iftrue 4312 . . . . . . . . 9 (𝑥 = 𝐵 → if(𝑥 = 𝐵, 𝐿, (𝐹𝑥)) = 𝐿)
3938adantl 475 . . . . . . . 8 (((𝜑 ∧ ¬ 𝑥 = 𝐴) ∧ 𝑥 = 𝐵) → if(𝑥 = 𝐵, 𝐿, (𝐹𝑥)) = 𝐿)
4037, 39eqtrd 2813 . . . . . . 7 (((𝜑 ∧ ¬ 𝑥 = 𝐴) ∧ 𝑥 = 𝐵) → if(𝑥 = 𝐴, 𝑅, if(𝑥 = 𝐵, 𝐿, (𝐹𝑥))) = 𝐿)
41 limccl 24076 . . . . . . . . 9 (𝐹 lim 𝐵) ⊆ ℂ
42 iblcncfioo.l . . . . . . . . 9 (𝜑𝐿 ∈ (𝐹 lim 𝐵))
4341, 42sseldi 3818 . . . . . . . 8 (𝜑𝐿 ∈ ℂ)
4443ad2antrr 716 . . . . . . 7 (((𝜑 ∧ ¬ 𝑥 = 𝐴) ∧ 𝑥 = 𝐵) → 𝐿 ∈ ℂ)
4540, 44eqeltrd 2858 . . . . . 6 (((𝜑 ∧ ¬ 𝑥 = 𝐴) ∧ 𝑥 = 𝐵) → if(𝑥 = 𝐴, 𝑅, if(𝑥 = 𝐵, 𝐿, (𝐹𝑥))) ∈ ℂ)
4645adantllr 709 . . . . 5 ((((𝜑𝑥 ∈ (𝐴[,]𝐵)) ∧ ¬ 𝑥 = 𝐴) ∧ 𝑥 = 𝐵) → if(𝑥 = 𝐴, 𝑅, if(𝑥 = 𝐵, 𝐿, (𝐹𝑥))) ∈ ℂ)
47 simplll 765 . . . . . . 7 ((((𝜑𝑥 ∈ (𝐴[,]𝐵)) ∧ ¬ 𝑥 = 𝐴) ∧ ¬ 𝑥 = 𝐵) → 𝜑)
485rexrd 10426 . . . . . . . . . 10 (𝜑𝐴 ∈ ℝ*)
4947, 48syl 17 . . . . . . . . 9 ((((𝜑𝑥 ∈ (𝐴[,]𝐵)) ∧ ¬ 𝑥 = 𝐴) ∧ ¬ 𝑥 = 𝐵) → 𝐴 ∈ ℝ*)
50 iblcncfioo.b . . . . . . . . . . 11 (𝜑𝐵 ∈ ℝ)
5150rexrd 10426 . . . . . . . . . 10 (𝜑𝐵 ∈ ℝ*)
5247, 51syl 17 . . . . . . . . 9 ((((𝜑𝑥 ∈ (𝐴[,]𝐵)) ∧ ¬ 𝑥 = 𝐴) ∧ ¬ 𝑥 = 𝐵) → 𝐵 ∈ ℝ*)
53 eliccxr 12572 . . . . . . . . . 10 (𝑥 ∈ (𝐴[,]𝐵) → 𝑥 ∈ ℝ*)
5453ad3antlr 721 . . . . . . . . 9 ((((𝜑𝑥 ∈ (𝐴[,]𝐵)) ∧ ¬ 𝑥 = 𝐴) ∧ ¬ 𝑥 = 𝐵) → 𝑥 ∈ ℝ*)
5549, 52, 543jca 1119 . . . . . . . 8 ((((𝜑𝑥 ∈ (𝐴[,]𝐵)) ∧ ¬ 𝑥 = 𝐴) ∧ ¬ 𝑥 = 𝐵) → (𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝑥 ∈ ℝ*))
565ad2antrr 716 . . . . . . . . . . 11 (((𝜑𝑥 ∈ (𝐴[,]𝐵)) ∧ ¬ 𝑥 = 𝐴) → 𝐴 ∈ ℝ)
575adantr 474 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ (𝐴[,]𝐵)) → 𝐴 ∈ ℝ)
5850adantr 474 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ (𝐴[,]𝐵)) → 𝐵 ∈ ℝ)
59 simpr 479 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ (𝐴[,]𝐵)) → 𝑥 ∈ (𝐴[,]𝐵))
60 eliccre 40632 . . . . . . . . . . . . 13 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝑥 ∈ (𝐴[,]𝐵)) → 𝑥 ∈ ℝ)
6157, 58, 59, 60syl3anc 1439 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ (𝐴[,]𝐵)) → 𝑥 ∈ ℝ)
6261adantr 474 . . . . . . . . . . 11 (((𝜑𝑥 ∈ (𝐴[,]𝐵)) ∧ ¬ 𝑥 = 𝐴) → 𝑥 ∈ ℝ)
635, 50jca 507 . . . . . . . . . . . . . . . 16 (𝜑 → (𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ))
6463adantr 474 . . . . . . . . . . . . . . 15 ((𝜑𝑥 ∈ (𝐴[,]𝐵)) → (𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ))
65 elicc2 12550 . . . . . . . . . . . . . . 15 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝑥 ∈ (𝐴[,]𝐵) ↔ (𝑥 ∈ ℝ ∧ 𝐴𝑥𝑥𝐵)))
6664, 65syl 17 . . . . . . . . . . . . . 14 ((𝜑𝑥 ∈ (𝐴[,]𝐵)) → (𝑥 ∈ (𝐴[,]𝐵) ↔ (𝑥 ∈ ℝ ∧ 𝐴𝑥𝑥𝐵)))
6759, 66mpbid 224 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ (𝐴[,]𝐵)) → (𝑥 ∈ ℝ ∧ 𝐴𝑥𝑥𝐵))
6867simp2d 1134 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ (𝐴[,]𝐵)) → 𝐴𝑥)
6968adantr 474 . . . . . . . . . . 11 (((𝜑𝑥 ∈ (𝐴[,]𝐵)) ∧ ¬ 𝑥 = 𝐴) → 𝐴𝑥)
70 df-ne 2969 . . . . . . . . . . . . 13 (𝑥𝐴 ↔ ¬ 𝑥 = 𝐴)
7170biimpri 220 . . . . . . . . . . . 12 𝑥 = 𝐴𝑥𝐴)
7271adantl 475 . . . . . . . . . . 11 (((𝜑𝑥 ∈ (𝐴[,]𝐵)) ∧ ¬ 𝑥 = 𝐴) → 𝑥𝐴)
7356, 62, 69, 72leneltd 10530 . . . . . . . . . 10 (((𝜑𝑥 ∈ (𝐴[,]𝐵)) ∧ ¬ 𝑥 = 𝐴) → 𝐴 < 𝑥)
7473adantr 474 . . . . . . . . 9 ((((𝜑𝑥 ∈ (𝐴[,]𝐵)) ∧ ¬ 𝑥 = 𝐴) ∧ ¬ 𝑥 = 𝐵) → 𝐴 < 𝑥)
75 nesym 3024 . . . . . . . . . . . . 13 (𝐵𝑥 ↔ ¬ 𝑥 = 𝐵)
7675biimpri 220 . . . . . . . . . . . 12 𝑥 = 𝐵𝐵𝑥)
7776adantl 475 . . . . . . . . . . 11 (((𝜑𝑥 ∈ (𝐴[,]𝐵)) ∧ ¬ 𝑥 = 𝐵) → 𝐵𝑥)
7867simp3d 1135 . . . . . . . . . . . . . 14 ((𝜑𝑥 ∈ (𝐴[,]𝐵)) → 𝑥𝐵)
7961, 58, 783jca 1119 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ (𝐴[,]𝐵)) → (𝑥 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝑥𝐵))
8079adantr 474 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ (𝐴[,]𝐵)) ∧ ¬ 𝑥 = 𝐵) → (𝑥 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝑥𝐵))
81 leltne 10466 . . . . . . . . . . . 12 ((𝑥 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝑥𝐵) → (𝑥 < 𝐵𝐵𝑥))
8280, 81syl 17 . . . . . . . . . . 11 (((𝜑𝑥 ∈ (𝐴[,]𝐵)) ∧ ¬ 𝑥 = 𝐵) → (𝑥 < 𝐵𝐵𝑥))
8377, 82mpbird 249 . . . . . . . . . 10 (((𝜑𝑥 ∈ (𝐴[,]𝐵)) ∧ ¬ 𝑥 = 𝐵) → 𝑥 < 𝐵)
8483adantlr 705 . . . . . . . . 9 ((((𝜑𝑥 ∈ (𝐴[,]𝐵)) ∧ ¬ 𝑥 = 𝐴) ∧ ¬ 𝑥 = 𝐵) → 𝑥 < 𝐵)
8574, 84jca 507 . . . . . . . 8 ((((𝜑𝑥 ∈ (𝐴[,]𝐵)) ∧ ¬ 𝑥 = 𝐴) ∧ ¬ 𝑥 = 𝐵) → (𝐴 < 𝑥𝑥 < 𝐵))
86 elioo3g 12516 . . . . . . . 8 (𝑥 ∈ (𝐴(,)𝐵) ↔ ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝑥 ∈ ℝ*) ∧ (𝐴 < 𝑥𝑥 < 𝐵)))
8755, 85, 86sylanbrc 578 . . . . . . 7 ((((𝜑𝑥 ∈ (𝐴[,]𝐵)) ∧ ¬ 𝑥 = 𝐴) ∧ ¬ 𝑥 = 𝐵) → 𝑥 ∈ (𝐴(,)𝐵))
8847, 87jca 507 . . . . . 6 ((((𝜑𝑥 ∈ (𝐴[,]𝐵)) ∧ ¬ 𝑥 = 𝐴) ∧ ¬ 𝑥 = 𝐵) → (𝜑𝑥 ∈ (𝐴(,)𝐵)))
893ffvelrnda 6623 . . . . . . 7 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → (𝐹𝑥) ∈ ℂ)
9020, 89eqeltrd 2858 . . . . . 6 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → if(𝑥 = 𝐴, 𝑅, if(𝑥 = 𝐵, 𝐿, (𝐹𝑥))) ∈ ℂ)
9188, 90syl 17 . . . . 5 ((((𝜑𝑥 ∈ (𝐴[,]𝐵)) ∧ ¬ 𝑥 = 𝐴) ∧ ¬ 𝑥 = 𝐵) → if(𝑥 = 𝐴, 𝑅, if(𝑥 = 𝐵, 𝐿, (𝐹𝑥))) ∈ ℂ)
9246, 91pm2.61dan 803 . . . 4 (((𝜑𝑥 ∈ (𝐴[,]𝐵)) ∧ ¬ 𝑥 = 𝐴) → if(𝑥 = 𝐴, 𝑅, if(𝑥 = 𝐵, 𝐿, (𝐹𝑥))) ∈ ℂ)
9335, 92pm2.61dan 803 . . 3 ((𝜑𝑥 ∈ (𝐴[,]𝐵)) → if(𝑥 = 𝐴, 𝑅, if(𝑥 = 𝐵, 𝐿, (𝐹𝑥))) ∈ ℂ)
94 nfv 1957 . . . . 5 𝑥𝜑
95 eqid 2777 . . . . 5 (𝑥 ∈ (𝐴[,]𝐵) ↦ if(𝑥 = 𝐴, 𝑅, if(𝑥 = 𝐵, 𝐿, (𝐹𝑥)))) = (𝑥 ∈ (𝐴[,]𝐵) ↦ if(𝑥 = 𝐴, 𝑅, if(𝑥 = 𝐵, 𝐿, (𝐹𝑥))))
9694, 95, 5, 50, 1, 42, 31cncfiooicc 41027 . . . 4 (𝜑 → (𝑥 ∈ (𝐴[,]𝐵) ↦ if(𝑥 = 𝐴, 𝑅, if(𝑥 = 𝐵, 𝐿, (𝐹𝑥)))) ∈ ((𝐴[,]𝐵)–cn→ℂ))
97 cniccibl 24044 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ (𝑥 ∈ (𝐴[,]𝐵) ↦ if(𝑥 = 𝐴, 𝑅, if(𝑥 = 𝐵, 𝐿, (𝐹𝑥)))) ∈ ((𝐴[,]𝐵)–cn→ℂ)) → (𝑥 ∈ (𝐴[,]𝐵) ↦ if(𝑥 = 𝐴, 𝑅, if(𝑥 = 𝐵, 𝐿, (𝐹𝑥)))) ∈ 𝐿1)
985, 50, 96, 97syl3anc 1439 . . 3 (𝜑 → (𝑥 ∈ (𝐴[,]𝐵) ↦ if(𝑥 = 𝐴, 𝑅, if(𝑥 = 𝐵, 𝐿, (𝐹𝑥)))) ∈ 𝐿1)
9925, 27, 93, 98iblss 24008 . 2 (𝜑 → (𝑥 ∈ (𝐴(,)𝐵) ↦ if(𝑥 = 𝐴, 𝑅, if(𝑥 = 𝐵, 𝐿, (𝐹𝑥)))) ∈ 𝐿1)
10023, 99eqeltrd 2858 1 (𝜑𝐹 ∈ 𝐿1)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 198  wa 386  w3a 1071   = wceq 1601  wcel 2106  wne 2968  wss 3791  ifcif 4306   class class class wbr 4886  cmpt 4965  dom cdm 5355  wf 6131  cfv 6135  (class class class)co 6922  cc 10270  cr 10271  *cxr 10410   < clt 10411  cle 10412  (,)cioo 12487  [,]cicc 12490  cnccncf 23087  volcvol 23667  𝐿1cibl 23821   lim climc 24063
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1839  ax-4 1853  ax-5 1953  ax-6 2021  ax-7 2054  ax-8 2108  ax-9 2115  ax-10 2134  ax-11 2149  ax-12 2162  ax-13 2333  ax-ext 2753  ax-rep 5006  ax-sep 5017  ax-nul 5025  ax-pow 5077  ax-pr 5138  ax-un 7226  ax-inf2 8835  ax-cc 9592  ax-cnex 10328  ax-resscn 10329  ax-1cn 10330  ax-icn 10331  ax-addcl 10332  ax-addrcl 10333  ax-mulcl 10334  ax-mulrcl 10335  ax-mulcom 10336  ax-addass 10337  ax-mulass 10338  ax-distr 10339  ax-i2m1 10340  ax-1ne0 10341  ax-1rid 10342  ax-rnegex 10343  ax-rrecex 10344  ax-cnre 10345  ax-pre-lttri 10346  ax-pre-lttrn 10347  ax-pre-ltadd 10348  ax-pre-mulgt0 10349  ax-pre-sup 10350  ax-addf 10351  ax-mulf 10352
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 837  df-3or 1072  df-3an 1073  df-tru 1605  df-fal 1615  df-ex 1824  df-nf 1828  df-sb 2012  df-mo 2550  df-eu 2586  df-clab 2763  df-cleq 2769  df-clel 2773  df-nfc 2920  df-ne 2969  df-nel 3075  df-ral 3094  df-rex 3095  df-reu 3096  df-rmo 3097  df-rab 3098  df-v 3399  df-sbc 3652  df-csb 3751  df-dif 3794  df-un 3796  df-in 3798  df-ss 3805  df-pss 3807  df-nul 4141  df-if 4307  df-pw 4380  df-sn 4398  df-pr 4400  df-tp 4402  df-op 4404  df-uni 4672  df-int 4711  df-iun 4755  df-iin 4756  df-disj 4855  df-br 4887  df-opab 4949  df-mpt 4966  df-tr 4988  df-id 5261  df-eprel 5266  df-po 5274  df-so 5275  df-fr 5314  df-se 5315  df-we 5316  df-xp 5361  df-rel 5362  df-cnv 5363  df-co 5364  df-dm 5365  df-rn 5366  df-res 5367  df-ima 5368  df-pred 5933  df-ord 5979  df-on 5980  df-lim 5981  df-suc 5982  df-iota 6099  df-fun 6137  df-fn 6138  df-f 6139  df-f1 6140  df-fo 6141  df-f1o 6142  df-fv 6143  df-isom 6144  df-riota 6883  df-ov 6925  df-oprab 6926  df-mpt2 6927  df-of 7174  df-ofr 7175  df-om 7344  df-1st 7445  df-2nd 7446  df-supp 7577  df-wrecs 7689  df-recs 7751  df-rdg 7789  df-1o 7843  df-2o 7844  df-oadd 7847  df-omul 7848  df-er 8026  df-map 8142  df-pm 8143  df-ixp 8195  df-en 8242  df-dom 8243  df-sdom 8244  df-fin 8245  df-fsupp 8564  df-fi 8605  df-sup 8636  df-inf 8637  df-oi 8704  df-card 9098  df-acn 9101  df-cda 9325  df-pnf 10413  df-mnf 10414  df-xr 10415  df-ltxr 10416  df-le 10417  df-sub 10608  df-neg 10609  df-div 11033  df-nn 11375  df-2 11438  df-3 11439  df-4 11440  df-5 11441  df-6 11442  df-7 11443  df-8 11444  df-9 11445  df-n0 11643  df-z 11729  df-dec 11846  df-uz 11993  df-q 12096  df-rp 12138  df-xneg 12257  df-xadd 12258  df-xmul 12259  df-ioo 12491  df-ioc 12492  df-ico 12493  df-icc 12494  df-fz 12644  df-fzo 12785  df-fl 12912  df-mod 12988  df-seq 13120  df-exp 13179  df-hash 13436  df-cj 14246  df-re 14247  df-im 14248  df-sqrt 14382  df-abs 14383  df-limsup 14610  df-clim 14627  df-rlim 14628  df-sum 14825  df-struct 16257  df-ndx 16258  df-slot 16259  df-base 16261  df-sets 16262  df-ress 16263  df-plusg 16351  df-mulr 16352  df-starv 16353  df-sca 16354  df-vsca 16355  df-ip 16356  df-tset 16357  df-ple 16358  df-ds 16360  df-unif 16361  df-hom 16362  df-cco 16363  df-rest 16469  df-topn 16470  df-0g 16488  df-gsum 16489  df-topgen 16490  df-pt 16491  df-prds 16494  df-xrs 16548  df-qtop 16553  df-imas 16554  df-xps 16556  df-mre 16632  df-mrc 16633  df-acs 16635  df-mgm 17628  df-sgrp 17670  df-mnd 17681  df-submnd 17722  df-mulg 17928  df-cntz 18133  df-cmn 18581  df-psmet 20134  df-xmet 20135  df-met 20136  df-bl 20137  df-mopn 20138  df-cnfld 20143  df-top 21106  df-topon 21123  df-topsp 21145  df-bases 21158  df-cld 21231  df-ntr 21232  df-cls 21233  df-cn 21439  df-cnp 21440  df-cmp 21599  df-tx 21774  df-hmeo 21967  df-xms 22533  df-ms 22534  df-tms 22535  df-cncf 23089  df-ovol 23668  df-vol 23669  df-mbf 23823  df-itg1 23824  df-itg2 23825  df-ibl 23826  df-0p 23874  df-limc 24067
This theorem is referenced by:  fourierdlem69  41311  fourierdlem73  41315  fourierdlem81  41323  fourierdlem93  41335
  Copyright terms: Public domain W3C validator