| Step | Hyp | Ref
| Expression |
| 1 | | iblcncfioo.f |
. . . . 5
⊢ (𝜑 → 𝐹 ∈ ((𝐴(,)𝐵)–cn→ℂ)) |
| 2 | | cncff 24842 |
. . . . 5
⊢ (𝐹 ∈ ((𝐴(,)𝐵)–cn→ℂ) → 𝐹:(𝐴(,)𝐵)⟶ℂ) |
| 3 | 1, 2 | syl 17 |
. . . 4
⊢ (𝜑 → 𝐹:(𝐴(,)𝐵)⟶ℂ) |
| 4 | 3 | feqmptd 6952 |
. . 3
⊢ (𝜑 → 𝐹 = (𝑥 ∈ (𝐴(,)𝐵) ↦ (𝐹‘𝑥))) |
| 5 | | iblcncfioo.a |
. . . . . . . . . 10
⊢ (𝜑 → 𝐴 ∈ ℝ) |
| 6 | 5 | adantr 480 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴(,)𝐵)) → 𝐴 ∈ ℝ) |
| 7 | | eliooord 13427 |
. . . . . . . . . . 11
⊢ (𝑥 ∈ (𝐴(,)𝐵) → (𝐴 < 𝑥 ∧ 𝑥 < 𝐵)) |
| 8 | 7 | simpld 494 |
. . . . . . . . . 10
⊢ (𝑥 ∈ (𝐴(,)𝐵) → 𝐴 < 𝑥) |
| 9 | 8 | adantl 481 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴(,)𝐵)) → 𝐴 < 𝑥) |
| 10 | 6, 9 | gtned 11375 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴(,)𝐵)) → 𝑥 ≠ 𝐴) |
| 11 | 10 | neneqd 2938 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴(,)𝐵)) → ¬ 𝑥 = 𝐴) |
| 12 | 11 | iffalsed 4516 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴(,)𝐵)) → if(𝑥 = 𝐴, 𝑅, if(𝑥 = 𝐵, 𝐿, (𝐹‘𝑥))) = if(𝑥 = 𝐵, 𝐿, (𝐹‘𝑥))) |
| 13 | | elioore 13397 |
. . . . . . . . . 10
⊢ (𝑥 ∈ (𝐴(,)𝐵) → 𝑥 ∈ ℝ) |
| 14 | 13 | adantl 481 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴(,)𝐵)) → 𝑥 ∈ ℝ) |
| 15 | 7 | simprd 495 |
. . . . . . . . . 10
⊢ (𝑥 ∈ (𝐴(,)𝐵) → 𝑥 < 𝐵) |
| 16 | 15 | adantl 481 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴(,)𝐵)) → 𝑥 < 𝐵) |
| 17 | 14, 16 | ltned 11376 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴(,)𝐵)) → 𝑥 ≠ 𝐵) |
| 18 | 17 | neneqd 2938 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴(,)𝐵)) → ¬ 𝑥 = 𝐵) |
| 19 | 18 | iffalsed 4516 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴(,)𝐵)) → if(𝑥 = 𝐵, 𝐿, (𝐹‘𝑥)) = (𝐹‘𝑥)) |
| 20 | 12, 19 | eqtrd 2771 |
. . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴(,)𝐵)) → if(𝑥 = 𝐴, 𝑅, if(𝑥 = 𝐵, 𝐿, (𝐹‘𝑥))) = (𝐹‘𝑥)) |
| 21 | 20 | eqcomd 2742 |
. . . 4
⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴(,)𝐵)) → (𝐹‘𝑥) = if(𝑥 = 𝐴, 𝑅, if(𝑥 = 𝐵, 𝐿, (𝐹‘𝑥)))) |
| 22 | 21 | mpteq2dva 5219 |
. . 3
⊢ (𝜑 → (𝑥 ∈ (𝐴(,)𝐵) ↦ (𝐹‘𝑥)) = (𝑥 ∈ (𝐴(,)𝐵) ↦ if(𝑥 = 𝐴, 𝑅, if(𝑥 = 𝐵, 𝐿, (𝐹‘𝑥))))) |
| 23 | 4, 22 | eqtrd 2771 |
. 2
⊢ (𝜑 → 𝐹 = (𝑥 ∈ (𝐴(,)𝐵) ↦ if(𝑥 = 𝐴, 𝑅, if(𝑥 = 𝐵, 𝐿, (𝐹‘𝑥))))) |
| 24 | | ioossicc 13455 |
. . . 4
⊢ (𝐴(,)𝐵) ⊆ (𝐴[,]𝐵) |
| 25 | 24 | a1i 11 |
. . 3
⊢ (𝜑 → (𝐴(,)𝐵) ⊆ (𝐴[,]𝐵)) |
| 26 | | ioombl 25523 |
. . . 4
⊢ (𝐴(,)𝐵) ∈ dom vol |
| 27 | 26 | a1i 11 |
. . 3
⊢ (𝜑 → (𝐴(,)𝐵) ∈ dom vol) |
| 28 | | iftrue 4511 |
. . . . . . 7
⊢ (𝑥 = 𝐴 → if(𝑥 = 𝐴, 𝑅, if(𝑥 = 𝐵, 𝐿, (𝐹‘𝑥))) = 𝑅) |
| 29 | 28 | adantl 481 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 = 𝐴) → if(𝑥 = 𝐴, 𝑅, if(𝑥 = 𝐵, 𝐿, (𝐹‘𝑥))) = 𝑅) |
| 30 | | limccl 25833 |
. . . . . . . 8
⊢ (𝐹 limℂ 𝐴) ⊆
ℂ |
| 31 | | iblcncfioo.r |
. . . . . . . 8
⊢ (𝜑 → 𝑅 ∈ (𝐹 limℂ 𝐴)) |
| 32 | 30, 31 | sselid 3961 |
. . . . . . 7
⊢ (𝜑 → 𝑅 ∈ ℂ) |
| 33 | 32 | adantr 480 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 = 𝐴) → 𝑅 ∈ ℂ) |
| 34 | 29, 33 | eqeltrd 2835 |
. . . . 5
⊢ ((𝜑 ∧ 𝑥 = 𝐴) → if(𝑥 = 𝐴, 𝑅, if(𝑥 = 𝐵, 𝐿, (𝐹‘𝑥))) ∈ ℂ) |
| 35 | 34 | adantlr 715 |
. . . 4
⊢ (((𝜑 ∧ 𝑥 ∈ (𝐴[,]𝐵)) ∧ 𝑥 = 𝐴) → if(𝑥 = 𝐴, 𝑅, if(𝑥 = 𝐵, 𝐿, (𝐹‘𝑥))) ∈ ℂ) |
| 36 | | iffalse 4514 |
. . . . . . . . 9
⊢ (¬
𝑥 = 𝐴 → if(𝑥 = 𝐴, 𝑅, if(𝑥 = 𝐵, 𝐿, (𝐹‘𝑥))) = if(𝑥 = 𝐵, 𝐿, (𝐹‘𝑥))) |
| 37 | 36 | ad2antlr 727 |
. . . . . . . 8
⊢ (((𝜑 ∧ ¬ 𝑥 = 𝐴) ∧ 𝑥 = 𝐵) → if(𝑥 = 𝐴, 𝑅, if(𝑥 = 𝐵, 𝐿, (𝐹‘𝑥))) = if(𝑥 = 𝐵, 𝐿, (𝐹‘𝑥))) |
| 38 | | iftrue 4511 |
. . . . . . . . 9
⊢ (𝑥 = 𝐵 → if(𝑥 = 𝐵, 𝐿, (𝐹‘𝑥)) = 𝐿) |
| 39 | 38 | adantl 481 |
. . . . . . . 8
⊢ (((𝜑 ∧ ¬ 𝑥 = 𝐴) ∧ 𝑥 = 𝐵) → if(𝑥 = 𝐵, 𝐿, (𝐹‘𝑥)) = 𝐿) |
| 40 | 37, 39 | eqtrd 2771 |
. . . . . . 7
⊢ (((𝜑 ∧ ¬ 𝑥 = 𝐴) ∧ 𝑥 = 𝐵) → if(𝑥 = 𝐴, 𝑅, if(𝑥 = 𝐵, 𝐿, (𝐹‘𝑥))) = 𝐿) |
| 41 | | limccl 25833 |
. . . . . . . . 9
⊢ (𝐹 limℂ 𝐵) ⊆
ℂ |
| 42 | | iblcncfioo.l |
. . . . . . . . 9
⊢ (𝜑 → 𝐿 ∈ (𝐹 limℂ 𝐵)) |
| 43 | 41, 42 | sselid 3961 |
. . . . . . . 8
⊢ (𝜑 → 𝐿 ∈ ℂ) |
| 44 | 43 | ad2antrr 726 |
. . . . . . 7
⊢ (((𝜑 ∧ ¬ 𝑥 = 𝐴) ∧ 𝑥 = 𝐵) → 𝐿 ∈ ℂ) |
| 45 | 40, 44 | eqeltrd 2835 |
. . . . . 6
⊢ (((𝜑 ∧ ¬ 𝑥 = 𝐴) ∧ 𝑥 = 𝐵) → if(𝑥 = 𝐴, 𝑅, if(𝑥 = 𝐵, 𝐿, (𝐹‘𝑥))) ∈ ℂ) |
| 46 | 45 | adantllr 719 |
. . . . 5
⊢ ((((𝜑 ∧ 𝑥 ∈ (𝐴[,]𝐵)) ∧ ¬ 𝑥 = 𝐴) ∧ 𝑥 = 𝐵) → if(𝑥 = 𝐴, 𝑅, if(𝑥 = 𝐵, 𝐿, (𝐹‘𝑥))) ∈ ℂ) |
| 47 | | simplll 774 |
. . . . . . 7
⊢ ((((𝜑 ∧ 𝑥 ∈ (𝐴[,]𝐵)) ∧ ¬ 𝑥 = 𝐴) ∧ ¬ 𝑥 = 𝐵) → 𝜑) |
| 48 | 5 | rexrd 11290 |
. . . . . . . . . 10
⊢ (𝜑 → 𝐴 ∈
ℝ*) |
| 49 | 47, 48 | syl 17 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑥 ∈ (𝐴[,]𝐵)) ∧ ¬ 𝑥 = 𝐴) ∧ ¬ 𝑥 = 𝐵) → 𝐴 ∈
ℝ*) |
| 50 | | iblcncfioo.b |
. . . . . . . . . . 11
⊢ (𝜑 → 𝐵 ∈ ℝ) |
| 51 | 50 | rexrd 11290 |
. . . . . . . . . 10
⊢ (𝜑 → 𝐵 ∈
ℝ*) |
| 52 | 47, 51 | syl 17 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑥 ∈ (𝐴[,]𝐵)) ∧ ¬ 𝑥 = 𝐴) ∧ ¬ 𝑥 = 𝐵) → 𝐵 ∈
ℝ*) |
| 53 | | eliccxr 13457 |
. . . . . . . . . 10
⊢ (𝑥 ∈ (𝐴[,]𝐵) → 𝑥 ∈ ℝ*) |
| 54 | 53 | ad3antlr 731 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑥 ∈ (𝐴[,]𝐵)) ∧ ¬ 𝑥 = 𝐴) ∧ ¬ 𝑥 = 𝐵) → 𝑥 ∈ ℝ*) |
| 55 | 49, 52, 54 | 3jca 1128 |
. . . . . . . 8
⊢ ((((𝜑 ∧ 𝑥 ∈ (𝐴[,]𝐵)) ∧ ¬ 𝑥 = 𝐴) ∧ ¬ 𝑥 = 𝐵) → (𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*
∧ 𝑥 ∈
ℝ*)) |
| 56 | 5 | ad2antrr 726 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑥 ∈ (𝐴[,]𝐵)) ∧ ¬ 𝑥 = 𝐴) → 𝐴 ∈ ℝ) |
| 57 | 5 | adantr 480 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴[,]𝐵)) → 𝐴 ∈ ℝ) |
| 58 | 50 | adantr 480 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴[,]𝐵)) → 𝐵 ∈ ℝ) |
| 59 | | simpr 484 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴[,]𝐵)) → 𝑥 ∈ (𝐴[,]𝐵)) |
| 60 | | eliccre 45501 |
. . . . . . . . . . . . 13
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝑥 ∈ (𝐴[,]𝐵)) → 𝑥 ∈ ℝ) |
| 61 | 57, 58, 59, 60 | syl3anc 1373 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴[,]𝐵)) → 𝑥 ∈ ℝ) |
| 62 | 61 | adantr 480 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑥 ∈ (𝐴[,]𝐵)) ∧ ¬ 𝑥 = 𝐴) → 𝑥 ∈ ℝ) |
| 63 | 5, 50 | jca 511 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → (𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ)) |
| 64 | 63 | adantr 480 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴[,]𝐵)) → (𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ)) |
| 65 | | elicc2 13433 |
. . . . . . . . . . . . . . 15
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝑥 ∈ (𝐴[,]𝐵) ↔ (𝑥 ∈ ℝ ∧ 𝐴 ≤ 𝑥 ∧ 𝑥 ≤ 𝐵))) |
| 66 | 64, 65 | syl 17 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴[,]𝐵)) → (𝑥 ∈ (𝐴[,]𝐵) ↔ (𝑥 ∈ ℝ ∧ 𝐴 ≤ 𝑥 ∧ 𝑥 ≤ 𝐵))) |
| 67 | 59, 66 | mpbid 232 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴[,]𝐵)) → (𝑥 ∈ ℝ ∧ 𝐴 ≤ 𝑥 ∧ 𝑥 ≤ 𝐵)) |
| 68 | 67 | simp2d 1143 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴[,]𝐵)) → 𝐴 ≤ 𝑥) |
| 69 | 68 | adantr 480 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑥 ∈ (𝐴[,]𝐵)) ∧ ¬ 𝑥 = 𝐴) → 𝐴 ≤ 𝑥) |
| 70 | | df-ne 2934 |
. . . . . . . . . . . . 13
⊢ (𝑥 ≠ 𝐴 ↔ ¬ 𝑥 = 𝐴) |
| 71 | 70 | biimpri 228 |
. . . . . . . . . . . 12
⊢ (¬
𝑥 = 𝐴 → 𝑥 ≠ 𝐴) |
| 72 | 71 | adantl 481 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑥 ∈ (𝐴[,]𝐵)) ∧ ¬ 𝑥 = 𝐴) → 𝑥 ≠ 𝐴) |
| 73 | 56, 62, 69, 72 | leneltd 11394 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑥 ∈ (𝐴[,]𝐵)) ∧ ¬ 𝑥 = 𝐴) → 𝐴 < 𝑥) |
| 74 | 73 | adantr 480 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑥 ∈ (𝐴[,]𝐵)) ∧ ¬ 𝑥 = 𝐴) ∧ ¬ 𝑥 = 𝐵) → 𝐴 < 𝑥) |
| 75 | | nesym 2989 |
. . . . . . . . . . . . 13
⊢ (𝐵 ≠ 𝑥 ↔ ¬ 𝑥 = 𝐵) |
| 76 | 75 | biimpri 228 |
. . . . . . . . . . . 12
⊢ (¬
𝑥 = 𝐵 → 𝐵 ≠ 𝑥) |
| 77 | 76 | adantl 481 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑥 ∈ (𝐴[,]𝐵)) ∧ ¬ 𝑥 = 𝐵) → 𝐵 ≠ 𝑥) |
| 78 | 67 | simp3d 1144 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴[,]𝐵)) → 𝑥 ≤ 𝐵) |
| 79 | 61, 58, 78 | 3jca 1128 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴[,]𝐵)) → (𝑥 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝑥 ≤ 𝐵)) |
| 80 | 79 | adantr 480 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑥 ∈ (𝐴[,]𝐵)) ∧ ¬ 𝑥 = 𝐵) → (𝑥 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝑥 ≤ 𝐵)) |
| 81 | | leltne 11329 |
. . . . . . . . . . . 12
⊢ ((𝑥 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝑥 ≤ 𝐵) → (𝑥 < 𝐵 ↔ 𝐵 ≠ 𝑥)) |
| 82 | 80, 81 | syl 17 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑥 ∈ (𝐴[,]𝐵)) ∧ ¬ 𝑥 = 𝐵) → (𝑥 < 𝐵 ↔ 𝐵 ≠ 𝑥)) |
| 83 | 77, 82 | mpbird 257 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑥 ∈ (𝐴[,]𝐵)) ∧ ¬ 𝑥 = 𝐵) → 𝑥 < 𝐵) |
| 84 | 83 | adantlr 715 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑥 ∈ (𝐴[,]𝐵)) ∧ ¬ 𝑥 = 𝐴) ∧ ¬ 𝑥 = 𝐵) → 𝑥 < 𝐵) |
| 85 | 74, 84 | jca 511 |
. . . . . . . 8
⊢ ((((𝜑 ∧ 𝑥 ∈ (𝐴[,]𝐵)) ∧ ¬ 𝑥 = 𝐴) ∧ ¬ 𝑥 = 𝐵) → (𝐴 < 𝑥 ∧ 𝑥 < 𝐵)) |
| 86 | | elioo3g 13396 |
. . . . . . . 8
⊢ (𝑥 ∈ (𝐴(,)𝐵) ↔ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*
∧ 𝑥 ∈
ℝ*) ∧ (𝐴 < 𝑥 ∧ 𝑥 < 𝐵))) |
| 87 | 55, 85, 86 | sylanbrc 583 |
. . . . . . 7
⊢ ((((𝜑 ∧ 𝑥 ∈ (𝐴[,]𝐵)) ∧ ¬ 𝑥 = 𝐴) ∧ ¬ 𝑥 = 𝐵) → 𝑥 ∈ (𝐴(,)𝐵)) |
| 88 | 47, 87 | jca 511 |
. . . . . 6
⊢ ((((𝜑 ∧ 𝑥 ∈ (𝐴[,]𝐵)) ∧ ¬ 𝑥 = 𝐴) ∧ ¬ 𝑥 = 𝐵) → (𝜑 ∧ 𝑥 ∈ (𝐴(,)𝐵))) |
| 89 | 3 | ffvelcdmda 7079 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴(,)𝐵)) → (𝐹‘𝑥) ∈ ℂ) |
| 90 | 20, 89 | eqeltrd 2835 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴(,)𝐵)) → if(𝑥 = 𝐴, 𝑅, if(𝑥 = 𝐵, 𝐿, (𝐹‘𝑥))) ∈ ℂ) |
| 91 | 88, 90 | syl 17 |
. . . . 5
⊢ ((((𝜑 ∧ 𝑥 ∈ (𝐴[,]𝐵)) ∧ ¬ 𝑥 = 𝐴) ∧ ¬ 𝑥 = 𝐵) → if(𝑥 = 𝐴, 𝑅, if(𝑥 = 𝐵, 𝐿, (𝐹‘𝑥))) ∈ ℂ) |
| 92 | 46, 91 | pm2.61dan 812 |
. . . 4
⊢ (((𝜑 ∧ 𝑥 ∈ (𝐴[,]𝐵)) ∧ ¬ 𝑥 = 𝐴) → if(𝑥 = 𝐴, 𝑅, if(𝑥 = 𝐵, 𝐿, (𝐹‘𝑥))) ∈ ℂ) |
| 93 | 35, 92 | pm2.61dan 812 |
. . 3
⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴[,]𝐵)) → if(𝑥 = 𝐴, 𝑅, if(𝑥 = 𝐵, 𝐿, (𝐹‘𝑥))) ∈ ℂ) |
| 94 | | nfv 1914 |
. . . . 5
⊢
Ⅎ𝑥𝜑 |
| 95 | | eqid 2736 |
. . . . 5
⊢ (𝑥 ∈ (𝐴[,]𝐵) ↦ if(𝑥 = 𝐴, 𝑅, if(𝑥 = 𝐵, 𝐿, (𝐹‘𝑥)))) = (𝑥 ∈ (𝐴[,]𝐵) ↦ if(𝑥 = 𝐴, 𝑅, if(𝑥 = 𝐵, 𝐿, (𝐹‘𝑥)))) |
| 96 | 94, 95, 5, 50, 1, 42, 31 | cncfiooicc 45890 |
. . . 4
⊢ (𝜑 → (𝑥 ∈ (𝐴[,]𝐵) ↦ if(𝑥 = 𝐴, 𝑅, if(𝑥 = 𝐵, 𝐿, (𝐹‘𝑥)))) ∈ ((𝐴[,]𝐵)–cn→ℂ)) |
| 97 | | cniccibl 25799 |
. . . 4
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ (𝑥 ∈ (𝐴[,]𝐵) ↦ if(𝑥 = 𝐴, 𝑅, if(𝑥 = 𝐵, 𝐿, (𝐹‘𝑥)))) ∈ ((𝐴[,]𝐵)–cn→ℂ)) → (𝑥 ∈ (𝐴[,]𝐵) ↦ if(𝑥 = 𝐴, 𝑅, if(𝑥 = 𝐵, 𝐿, (𝐹‘𝑥)))) ∈
𝐿1) |
| 98 | 5, 50, 96, 97 | syl3anc 1373 |
. . 3
⊢ (𝜑 → (𝑥 ∈ (𝐴[,]𝐵) ↦ if(𝑥 = 𝐴, 𝑅, if(𝑥 = 𝐵, 𝐿, (𝐹‘𝑥)))) ∈
𝐿1) |
| 99 | 25, 27, 93, 98 | iblss 25763 |
. 2
⊢ (𝜑 → (𝑥 ∈ (𝐴(,)𝐵) ↦ if(𝑥 = 𝐴, 𝑅, if(𝑥 = 𝐵, 𝐿, (𝐹‘𝑥)))) ∈
𝐿1) |
| 100 | 23, 99 | eqeltrd 2835 |
1
⊢ (𝜑 → 𝐹 ∈
𝐿1) |