Step | Hyp | Ref
| Expression |
1 | | iblcncfioo.f |
. . . . 5
⊢ (𝜑 → 𝐹 ∈ ((𝐴(,)𝐵)–cn→ℂ)) |
2 | | cncff 23962 |
. . . . 5
⊢ (𝐹 ∈ ((𝐴(,)𝐵)–cn→ℂ) → 𝐹:(𝐴(,)𝐵)⟶ℂ) |
3 | 1, 2 | syl 17 |
. . . 4
⊢ (𝜑 → 𝐹:(𝐴(,)𝐵)⟶ℂ) |
4 | 3 | feqmptd 6819 |
. . 3
⊢ (𝜑 → 𝐹 = (𝑥 ∈ (𝐴(,)𝐵) ↦ (𝐹‘𝑥))) |
5 | | iblcncfioo.a |
. . . . . . . . . 10
⊢ (𝜑 → 𝐴 ∈ ℝ) |
6 | 5 | adantr 480 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴(,)𝐵)) → 𝐴 ∈ ℝ) |
7 | | eliooord 13067 |
. . . . . . . . . . 11
⊢ (𝑥 ∈ (𝐴(,)𝐵) → (𝐴 < 𝑥 ∧ 𝑥 < 𝐵)) |
8 | 7 | simpld 494 |
. . . . . . . . . 10
⊢ (𝑥 ∈ (𝐴(,)𝐵) → 𝐴 < 𝑥) |
9 | 8 | adantl 481 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴(,)𝐵)) → 𝐴 < 𝑥) |
10 | 6, 9 | gtned 11040 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴(,)𝐵)) → 𝑥 ≠ 𝐴) |
11 | 10 | neneqd 2947 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴(,)𝐵)) → ¬ 𝑥 = 𝐴) |
12 | 11 | iffalsed 4467 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴(,)𝐵)) → if(𝑥 = 𝐴, 𝑅, if(𝑥 = 𝐵, 𝐿, (𝐹‘𝑥))) = if(𝑥 = 𝐵, 𝐿, (𝐹‘𝑥))) |
13 | | elioore 13038 |
. . . . . . . . . 10
⊢ (𝑥 ∈ (𝐴(,)𝐵) → 𝑥 ∈ ℝ) |
14 | 13 | adantl 481 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴(,)𝐵)) → 𝑥 ∈ ℝ) |
15 | 7 | simprd 495 |
. . . . . . . . . 10
⊢ (𝑥 ∈ (𝐴(,)𝐵) → 𝑥 < 𝐵) |
16 | 15 | adantl 481 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴(,)𝐵)) → 𝑥 < 𝐵) |
17 | 14, 16 | ltned 11041 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴(,)𝐵)) → 𝑥 ≠ 𝐵) |
18 | 17 | neneqd 2947 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴(,)𝐵)) → ¬ 𝑥 = 𝐵) |
19 | 18 | iffalsed 4467 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴(,)𝐵)) → if(𝑥 = 𝐵, 𝐿, (𝐹‘𝑥)) = (𝐹‘𝑥)) |
20 | 12, 19 | eqtrd 2778 |
. . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴(,)𝐵)) → if(𝑥 = 𝐴, 𝑅, if(𝑥 = 𝐵, 𝐿, (𝐹‘𝑥))) = (𝐹‘𝑥)) |
21 | 20 | eqcomd 2744 |
. . . 4
⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴(,)𝐵)) → (𝐹‘𝑥) = if(𝑥 = 𝐴, 𝑅, if(𝑥 = 𝐵, 𝐿, (𝐹‘𝑥)))) |
22 | 21 | mpteq2dva 5170 |
. . 3
⊢ (𝜑 → (𝑥 ∈ (𝐴(,)𝐵) ↦ (𝐹‘𝑥)) = (𝑥 ∈ (𝐴(,)𝐵) ↦ if(𝑥 = 𝐴, 𝑅, if(𝑥 = 𝐵, 𝐿, (𝐹‘𝑥))))) |
23 | 4, 22 | eqtrd 2778 |
. 2
⊢ (𝜑 → 𝐹 = (𝑥 ∈ (𝐴(,)𝐵) ↦ if(𝑥 = 𝐴, 𝑅, if(𝑥 = 𝐵, 𝐿, (𝐹‘𝑥))))) |
24 | | ioossicc 13094 |
. . . 4
⊢ (𝐴(,)𝐵) ⊆ (𝐴[,]𝐵) |
25 | 24 | a1i 11 |
. . 3
⊢ (𝜑 → (𝐴(,)𝐵) ⊆ (𝐴[,]𝐵)) |
26 | | ioombl 24634 |
. . . 4
⊢ (𝐴(,)𝐵) ∈ dom vol |
27 | 26 | a1i 11 |
. . 3
⊢ (𝜑 → (𝐴(,)𝐵) ∈ dom vol) |
28 | | iftrue 4462 |
. . . . . . 7
⊢ (𝑥 = 𝐴 → if(𝑥 = 𝐴, 𝑅, if(𝑥 = 𝐵, 𝐿, (𝐹‘𝑥))) = 𝑅) |
29 | 28 | adantl 481 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 = 𝐴) → if(𝑥 = 𝐴, 𝑅, if(𝑥 = 𝐵, 𝐿, (𝐹‘𝑥))) = 𝑅) |
30 | | limccl 24944 |
. . . . . . . 8
⊢ (𝐹 limℂ 𝐴) ⊆
ℂ |
31 | | iblcncfioo.r |
. . . . . . . 8
⊢ (𝜑 → 𝑅 ∈ (𝐹 limℂ 𝐴)) |
32 | 30, 31 | sselid 3915 |
. . . . . . 7
⊢ (𝜑 → 𝑅 ∈ ℂ) |
33 | 32 | adantr 480 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 = 𝐴) → 𝑅 ∈ ℂ) |
34 | 29, 33 | eqeltrd 2839 |
. . . . 5
⊢ ((𝜑 ∧ 𝑥 = 𝐴) → if(𝑥 = 𝐴, 𝑅, if(𝑥 = 𝐵, 𝐿, (𝐹‘𝑥))) ∈ ℂ) |
35 | 34 | adantlr 711 |
. . . 4
⊢ (((𝜑 ∧ 𝑥 ∈ (𝐴[,]𝐵)) ∧ 𝑥 = 𝐴) → if(𝑥 = 𝐴, 𝑅, if(𝑥 = 𝐵, 𝐿, (𝐹‘𝑥))) ∈ ℂ) |
36 | | iffalse 4465 |
. . . . . . . . 9
⊢ (¬
𝑥 = 𝐴 → if(𝑥 = 𝐴, 𝑅, if(𝑥 = 𝐵, 𝐿, (𝐹‘𝑥))) = if(𝑥 = 𝐵, 𝐿, (𝐹‘𝑥))) |
37 | 36 | ad2antlr 723 |
. . . . . . . 8
⊢ (((𝜑 ∧ ¬ 𝑥 = 𝐴) ∧ 𝑥 = 𝐵) → if(𝑥 = 𝐴, 𝑅, if(𝑥 = 𝐵, 𝐿, (𝐹‘𝑥))) = if(𝑥 = 𝐵, 𝐿, (𝐹‘𝑥))) |
38 | | iftrue 4462 |
. . . . . . . . 9
⊢ (𝑥 = 𝐵 → if(𝑥 = 𝐵, 𝐿, (𝐹‘𝑥)) = 𝐿) |
39 | 38 | adantl 481 |
. . . . . . . 8
⊢ (((𝜑 ∧ ¬ 𝑥 = 𝐴) ∧ 𝑥 = 𝐵) → if(𝑥 = 𝐵, 𝐿, (𝐹‘𝑥)) = 𝐿) |
40 | 37, 39 | eqtrd 2778 |
. . . . . . 7
⊢ (((𝜑 ∧ ¬ 𝑥 = 𝐴) ∧ 𝑥 = 𝐵) → if(𝑥 = 𝐴, 𝑅, if(𝑥 = 𝐵, 𝐿, (𝐹‘𝑥))) = 𝐿) |
41 | | limccl 24944 |
. . . . . . . . 9
⊢ (𝐹 limℂ 𝐵) ⊆
ℂ |
42 | | iblcncfioo.l |
. . . . . . . . 9
⊢ (𝜑 → 𝐿 ∈ (𝐹 limℂ 𝐵)) |
43 | 41, 42 | sselid 3915 |
. . . . . . . 8
⊢ (𝜑 → 𝐿 ∈ ℂ) |
44 | 43 | ad2antrr 722 |
. . . . . . 7
⊢ (((𝜑 ∧ ¬ 𝑥 = 𝐴) ∧ 𝑥 = 𝐵) → 𝐿 ∈ ℂ) |
45 | 40, 44 | eqeltrd 2839 |
. . . . . 6
⊢ (((𝜑 ∧ ¬ 𝑥 = 𝐴) ∧ 𝑥 = 𝐵) → if(𝑥 = 𝐴, 𝑅, if(𝑥 = 𝐵, 𝐿, (𝐹‘𝑥))) ∈ ℂ) |
46 | 45 | adantllr 715 |
. . . . 5
⊢ ((((𝜑 ∧ 𝑥 ∈ (𝐴[,]𝐵)) ∧ ¬ 𝑥 = 𝐴) ∧ 𝑥 = 𝐵) → if(𝑥 = 𝐴, 𝑅, if(𝑥 = 𝐵, 𝐿, (𝐹‘𝑥))) ∈ ℂ) |
47 | | simplll 771 |
. . . . . . 7
⊢ ((((𝜑 ∧ 𝑥 ∈ (𝐴[,]𝐵)) ∧ ¬ 𝑥 = 𝐴) ∧ ¬ 𝑥 = 𝐵) → 𝜑) |
48 | 5 | rexrd 10956 |
. . . . . . . . . 10
⊢ (𝜑 → 𝐴 ∈
ℝ*) |
49 | 47, 48 | syl 17 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑥 ∈ (𝐴[,]𝐵)) ∧ ¬ 𝑥 = 𝐴) ∧ ¬ 𝑥 = 𝐵) → 𝐴 ∈
ℝ*) |
50 | | iblcncfioo.b |
. . . . . . . . . . 11
⊢ (𝜑 → 𝐵 ∈ ℝ) |
51 | 50 | rexrd 10956 |
. . . . . . . . . 10
⊢ (𝜑 → 𝐵 ∈
ℝ*) |
52 | 47, 51 | syl 17 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑥 ∈ (𝐴[,]𝐵)) ∧ ¬ 𝑥 = 𝐴) ∧ ¬ 𝑥 = 𝐵) → 𝐵 ∈
ℝ*) |
53 | | eliccxr 13096 |
. . . . . . . . . 10
⊢ (𝑥 ∈ (𝐴[,]𝐵) → 𝑥 ∈ ℝ*) |
54 | 53 | ad3antlr 727 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑥 ∈ (𝐴[,]𝐵)) ∧ ¬ 𝑥 = 𝐴) ∧ ¬ 𝑥 = 𝐵) → 𝑥 ∈ ℝ*) |
55 | 49, 52, 54 | 3jca 1126 |
. . . . . . . 8
⊢ ((((𝜑 ∧ 𝑥 ∈ (𝐴[,]𝐵)) ∧ ¬ 𝑥 = 𝐴) ∧ ¬ 𝑥 = 𝐵) → (𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*
∧ 𝑥 ∈
ℝ*)) |
56 | 5 | ad2antrr 722 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑥 ∈ (𝐴[,]𝐵)) ∧ ¬ 𝑥 = 𝐴) → 𝐴 ∈ ℝ) |
57 | 5 | adantr 480 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴[,]𝐵)) → 𝐴 ∈ ℝ) |
58 | 50 | adantr 480 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴[,]𝐵)) → 𝐵 ∈ ℝ) |
59 | | simpr 484 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴[,]𝐵)) → 𝑥 ∈ (𝐴[,]𝐵)) |
60 | | eliccre 42933 |
. . . . . . . . . . . . 13
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝑥 ∈ (𝐴[,]𝐵)) → 𝑥 ∈ ℝ) |
61 | 57, 58, 59, 60 | syl3anc 1369 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴[,]𝐵)) → 𝑥 ∈ ℝ) |
62 | 61 | adantr 480 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑥 ∈ (𝐴[,]𝐵)) ∧ ¬ 𝑥 = 𝐴) → 𝑥 ∈ ℝ) |
63 | 5, 50 | jca 511 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → (𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ)) |
64 | 63 | adantr 480 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴[,]𝐵)) → (𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ)) |
65 | | elicc2 13073 |
. . . . . . . . . . . . . . 15
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝑥 ∈ (𝐴[,]𝐵) ↔ (𝑥 ∈ ℝ ∧ 𝐴 ≤ 𝑥 ∧ 𝑥 ≤ 𝐵))) |
66 | 64, 65 | syl 17 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴[,]𝐵)) → (𝑥 ∈ (𝐴[,]𝐵) ↔ (𝑥 ∈ ℝ ∧ 𝐴 ≤ 𝑥 ∧ 𝑥 ≤ 𝐵))) |
67 | 59, 66 | mpbid 231 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴[,]𝐵)) → (𝑥 ∈ ℝ ∧ 𝐴 ≤ 𝑥 ∧ 𝑥 ≤ 𝐵)) |
68 | 67 | simp2d 1141 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴[,]𝐵)) → 𝐴 ≤ 𝑥) |
69 | 68 | adantr 480 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑥 ∈ (𝐴[,]𝐵)) ∧ ¬ 𝑥 = 𝐴) → 𝐴 ≤ 𝑥) |
70 | | df-ne 2943 |
. . . . . . . . . . . . 13
⊢ (𝑥 ≠ 𝐴 ↔ ¬ 𝑥 = 𝐴) |
71 | 70 | biimpri 227 |
. . . . . . . . . . . 12
⊢ (¬
𝑥 = 𝐴 → 𝑥 ≠ 𝐴) |
72 | 71 | adantl 481 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑥 ∈ (𝐴[,]𝐵)) ∧ ¬ 𝑥 = 𝐴) → 𝑥 ≠ 𝐴) |
73 | 56, 62, 69, 72 | leneltd 11059 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑥 ∈ (𝐴[,]𝐵)) ∧ ¬ 𝑥 = 𝐴) → 𝐴 < 𝑥) |
74 | 73 | adantr 480 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑥 ∈ (𝐴[,]𝐵)) ∧ ¬ 𝑥 = 𝐴) ∧ ¬ 𝑥 = 𝐵) → 𝐴 < 𝑥) |
75 | | nesym 2999 |
. . . . . . . . . . . . 13
⊢ (𝐵 ≠ 𝑥 ↔ ¬ 𝑥 = 𝐵) |
76 | 75 | biimpri 227 |
. . . . . . . . . . . 12
⊢ (¬
𝑥 = 𝐵 → 𝐵 ≠ 𝑥) |
77 | 76 | adantl 481 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑥 ∈ (𝐴[,]𝐵)) ∧ ¬ 𝑥 = 𝐵) → 𝐵 ≠ 𝑥) |
78 | 67 | simp3d 1142 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴[,]𝐵)) → 𝑥 ≤ 𝐵) |
79 | 61, 58, 78 | 3jca 1126 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴[,]𝐵)) → (𝑥 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝑥 ≤ 𝐵)) |
80 | 79 | adantr 480 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑥 ∈ (𝐴[,]𝐵)) ∧ ¬ 𝑥 = 𝐵) → (𝑥 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝑥 ≤ 𝐵)) |
81 | | leltne 10995 |
. . . . . . . . . . . 12
⊢ ((𝑥 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝑥 ≤ 𝐵) → (𝑥 < 𝐵 ↔ 𝐵 ≠ 𝑥)) |
82 | 80, 81 | syl 17 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑥 ∈ (𝐴[,]𝐵)) ∧ ¬ 𝑥 = 𝐵) → (𝑥 < 𝐵 ↔ 𝐵 ≠ 𝑥)) |
83 | 77, 82 | mpbird 256 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑥 ∈ (𝐴[,]𝐵)) ∧ ¬ 𝑥 = 𝐵) → 𝑥 < 𝐵) |
84 | 83 | adantlr 711 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑥 ∈ (𝐴[,]𝐵)) ∧ ¬ 𝑥 = 𝐴) ∧ ¬ 𝑥 = 𝐵) → 𝑥 < 𝐵) |
85 | 74, 84 | jca 511 |
. . . . . . . 8
⊢ ((((𝜑 ∧ 𝑥 ∈ (𝐴[,]𝐵)) ∧ ¬ 𝑥 = 𝐴) ∧ ¬ 𝑥 = 𝐵) → (𝐴 < 𝑥 ∧ 𝑥 < 𝐵)) |
86 | | elioo3g 13037 |
. . . . . . . 8
⊢ (𝑥 ∈ (𝐴(,)𝐵) ↔ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*
∧ 𝑥 ∈
ℝ*) ∧ (𝐴 < 𝑥 ∧ 𝑥 < 𝐵))) |
87 | 55, 85, 86 | sylanbrc 582 |
. . . . . . 7
⊢ ((((𝜑 ∧ 𝑥 ∈ (𝐴[,]𝐵)) ∧ ¬ 𝑥 = 𝐴) ∧ ¬ 𝑥 = 𝐵) → 𝑥 ∈ (𝐴(,)𝐵)) |
88 | 47, 87 | jca 511 |
. . . . . 6
⊢ ((((𝜑 ∧ 𝑥 ∈ (𝐴[,]𝐵)) ∧ ¬ 𝑥 = 𝐴) ∧ ¬ 𝑥 = 𝐵) → (𝜑 ∧ 𝑥 ∈ (𝐴(,)𝐵))) |
89 | 3 | ffvelrnda 6943 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴(,)𝐵)) → (𝐹‘𝑥) ∈ ℂ) |
90 | 20, 89 | eqeltrd 2839 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴(,)𝐵)) → if(𝑥 = 𝐴, 𝑅, if(𝑥 = 𝐵, 𝐿, (𝐹‘𝑥))) ∈ ℂ) |
91 | 88, 90 | syl 17 |
. . . . 5
⊢ ((((𝜑 ∧ 𝑥 ∈ (𝐴[,]𝐵)) ∧ ¬ 𝑥 = 𝐴) ∧ ¬ 𝑥 = 𝐵) → if(𝑥 = 𝐴, 𝑅, if(𝑥 = 𝐵, 𝐿, (𝐹‘𝑥))) ∈ ℂ) |
92 | 46, 91 | pm2.61dan 809 |
. . . 4
⊢ (((𝜑 ∧ 𝑥 ∈ (𝐴[,]𝐵)) ∧ ¬ 𝑥 = 𝐴) → if(𝑥 = 𝐴, 𝑅, if(𝑥 = 𝐵, 𝐿, (𝐹‘𝑥))) ∈ ℂ) |
93 | 35, 92 | pm2.61dan 809 |
. . 3
⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴[,]𝐵)) → if(𝑥 = 𝐴, 𝑅, if(𝑥 = 𝐵, 𝐿, (𝐹‘𝑥))) ∈ ℂ) |
94 | | nfv 1918 |
. . . . 5
⊢
Ⅎ𝑥𝜑 |
95 | | eqid 2738 |
. . . . 5
⊢ (𝑥 ∈ (𝐴[,]𝐵) ↦ if(𝑥 = 𝐴, 𝑅, if(𝑥 = 𝐵, 𝐿, (𝐹‘𝑥)))) = (𝑥 ∈ (𝐴[,]𝐵) ↦ if(𝑥 = 𝐴, 𝑅, if(𝑥 = 𝐵, 𝐿, (𝐹‘𝑥)))) |
96 | 94, 95, 5, 50, 1, 42, 31 | cncfiooicc 43325 |
. . . 4
⊢ (𝜑 → (𝑥 ∈ (𝐴[,]𝐵) ↦ if(𝑥 = 𝐴, 𝑅, if(𝑥 = 𝐵, 𝐿, (𝐹‘𝑥)))) ∈ ((𝐴[,]𝐵)–cn→ℂ)) |
97 | | cniccibl 24910 |
. . . 4
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ (𝑥 ∈ (𝐴[,]𝐵) ↦ if(𝑥 = 𝐴, 𝑅, if(𝑥 = 𝐵, 𝐿, (𝐹‘𝑥)))) ∈ ((𝐴[,]𝐵)–cn→ℂ)) → (𝑥 ∈ (𝐴[,]𝐵) ↦ if(𝑥 = 𝐴, 𝑅, if(𝑥 = 𝐵, 𝐿, (𝐹‘𝑥)))) ∈
𝐿1) |
98 | 5, 50, 96, 97 | syl3anc 1369 |
. . 3
⊢ (𝜑 → (𝑥 ∈ (𝐴[,]𝐵) ↦ if(𝑥 = 𝐴, 𝑅, if(𝑥 = 𝐵, 𝐿, (𝐹‘𝑥)))) ∈
𝐿1) |
99 | 25, 27, 93, 98 | iblss 24874 |
. 2
⊢ (𝜑 → (𝑥 ∈ (𝐴(,)𝐵) ↦ if(𝑥 = 𝐴, 𝑅, if(𝑥 = 𝐵, 𝐿, (𝐹‘𝑥)))) ∈
𝐿1) |
100 | 23, 99 | eqeltrd 2839 |
1
⊢ (𝜑 → 𝐹 ∈
𝐿1) |