Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  iblcncfioo Structured version   Visualization version   GIF version

Theorem iblcncfioo 43409
Description: A continuous function 𝐹 on an open interval (𝐴(,)𝐵) with a finite right limit 𝑅 in 𝐴 and a finite left limit 𝐿 in 𝐵 is integrable. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Hypotheses
Ref Expression
iblcncfioo.a (𝜑𝐴 ∈ ℝ)
iblcncfioo.b (𝜑𝐵 ∈ ℝ)
iblcncfioo.f (𝜑𝐹 ∈ ((𝐴(,)𝐵)–cn→ℂ))
iblcncfioo.l (𝜑𝐿 ∈ (𝐹 lim 𝐵))
iblcncfioo.r (𝜑𝑅 ∈ (𝐹 lim 𝐴))
Assertion
Ref Expression
iblcncfioo (𝜑𝐹 ∈ 𝐿1)

Proof of Theorem iblcncfioo
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 iblcncfioo.f . . . . 5 (𝜑𝐹 ∈ ((𝐴(,)𝐵)–cn→ℂ))
2 cncff 23962 . . . . 5 (𝐹 ∈ ((𝐴(,)𝐵)–cn→ℂ) → 𝐹:(𝐴(,)𝐵)⟶ℂ)
31, 2syl 17 . . . 4 (𝜑𝐹:(𝐴(,)𝐵)⟶ℂ)
43feqmptd 6819 . . 3 (𝜑𝐹 = (𝑥 ∈ (𝐴(,)𝐵) ↦ (𝐹𝑥)))
5 iblcncfioo.a . . . . . . . . . 10 (𝜑𝐴 ∈ ℝ)
65adantr 480 . . . . . . . . 9 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → 𝐴 ∈ ℝ)
7 eliooord 13067 . . . . . . . . . . 11 (𝑥 ∈ (𝐴(,)𝐵) → (𝐴 < 𝑥𝑥 < 𝐵))
87simpld 494 . . . . . . . . . 10 (𝑥 ∈ (𝐴(,)𝐵) → 𝐴 < 𝑥)
98adantl 481 . . . . . . . . 9 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → 𝐴 < 𝑥)
106, 9gtned 11040 . . . . . . . 8 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → 𝑥𝐴)
1110neneqd 2947 . . . . . . 7 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → ¬ 𝑥 = 𝐴)
1211iffalsed 4467 . . . . . 6 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → if(𝑥 = 𝐴, 𝑅, if(𝑥 = 𝐵, 𝐿, (𝐹𝑥))) = if(𝑥 = 𝐵, 𝐿, (𝐹𝑥)))
13 elioore 13038 . . . . . . . . . 10 (𝑥 ∈ (𝐴(,)𝐵) → 𝑥 ∈ ℝ)
1413adantl 481 . . . . . . . . 9 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → 𝑥 ∈ ℝ)
157simprd 495 . . . . . . . . . 10 (𝑥 ∈ (𝐴(,)𝐵) → 𝑥 < 𝐵)
1615adantl 481 . . . . . . . . 9 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → 𝑥 < 𝐵)
1714, 16ltned 11041 . . . . . . . 8 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → 𝑥𝐵)
1817neneqd 2947 . . . . . . 7 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → ¬ 𝑥 = 𝐵)
1918iffalsed 4467 . . . . . 6 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → if(𝑥 = 𝐵, 𝐿, (𝐹𝑥)) = (𝐹𝑥))
2012, 19eqtrd 2778 . . . . 5 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → if(𝑥 = 𝐴, 𝑅, if(𝑥 = 𝐵, 𝐿, (𝐹𝑥))) = (𝐹𝑥))
2120eqcomd 2744 . . . 4 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → (𝐹𝑥) = if(𝑥 = 𝐴, 𝑅, if(𝑥 = 𝐵, 𝐿, (𝐹𝑥))))
2221mpteq2dva 5170 . . 3 (𝜑 → (𝑥 ∈ (𝐴(,)𝐵) ↦ (𝐹𝑥)) = (𝑥 ∈ (𝐴(,)𝐵) ↦ if(𝑥 = 𝐴, 𝑅, if(𝑥 = 𝐵, 𝐿, (𝐹𝑥)))))
234, 22eqtrd 2778 . 2 (𝜑𝐹 = (𝑥 ∈ (𝐴(,)𝐵) ↦ if(𝑥 = 𝐴, 𝑅, if(𝑥 = 𝐵, 𝐿, (𝐹𝑥)))))
24 ioossicc 13094 . . . 4 (𝐴(,)𝐵) ⊆ (𝐴[,]𝐵)
2524a1i 11 . . 3 (𝜑 → (𝐴(,)𝐵) ⊆ (𝐴[,]𝐵))
26 ioombl 24634 . . . 4 (𝐴(,)𝐵) ∈ dom vol
2726a1i 11 . . 3 (𝜑 → (𝐴(,)𝐵) ∈ dom vol)
28 iftrue 4462 . . . . . . 7 (𝑥 = 𝐴 → if(𝑥 = 𝐴, 𝑅, if(𝑥 = 𝐵, 𝐿, (𝐹𝑥))) = 𝑅)
2928adantl 481 . . . . . 6 ((𝜑𝑥 = 𝐴) → if(𝑥 = 𝐴, 𝑅, if(𝑥 = 𝐵, 𝐿, (𝐹𝑥))) = 𝑅)
30 limccl 24944 . . . . . . . 8 (𝐹 lim 𝐴) ⊆ ℂ
31 iblcncfioo.r . . . . . . . 8 (𝜑𝑅 ∈ (𝐹 lim 𝐴))
3230, 31sselid 3915 . . . . . . 7 (𝜑𝑅 ∈ ℂ)
3332adantr 480 . . . . . 6 ((𝜑𝑥 = 𝐴) → 𝑅 ∈ ℂ)
3429, 33eqeltrd 2839 . . . . 5 ((𝜑𝑥 = 𝐴) → if(𝑥 = 𝐴, 𝑅, if(𝑥 = 𝐵, 𝐿, (𝐹𝑥))) ∈ ℂ)
3534adantlr 711 . . . 4 (((𝜑𝑥 ∈ (𝐴[,]𝐵)) ∧ 𝑥 = 𝐴) → if(𝑥 = 𝐴, 𝑅, if(𝑥 = 𝐵, 𝐿, (𝐹𝑥))) ∈ ℂ)
36 iffalse 4465 . . . . . . . . 9 𝑥 = 𝐴 → if(𝑥 = 𝐴, 𝑅, if(𝑥 = 𝐵, 𝐿, (𝐹𝑥))) = if(𝑥 = 𝐵, 𝐿, (𝐹𝑥)))
3736ad2antlr 723 . . . . . . . 8 (((𝜑 ∧ ¬ 𝑥 = 𝐴) ∧ 𝑥 = 𝐵) → if(𝑥 = 𝐴, 𝑅, if(𝑥 = 𝐵, 𝐿, (𝐹𝑥))) = if(𝑥 = 𝐵, 𝐿, (𝐹𝑥)))
38 iftrue 4462 . . . . . . . . 9 (𝑥 = 𝐵 → if(𝑥 = 𝐵, 𝐿, (𝐹𝑥)) = 𝐿)
3938adantl 481 . . . . . . . 8 (((𝜑 ∧ ¬ 𝑥 = 𝐴) ∧ 𝑥 = 𝐵) → if(𝑥 = 𝐵, 𝐿, (𝐹𝑥)) = 𝐿)
4037, 39eqtrd 2778 . . . . . . 7 (((𝜑 ∧ ¬ 𝑥 = 𝐴) ∧ 𝑥 = 𝐵) → if(𝑥 = 𝐴, 𝑅, if(𝑥 = 𝐵, 𝐿, (𝐹𝑥))) = 𝐿)
41 limccl 24944 . . . . . . . . 9 (𝐹 lim 𝐵) ⊆ ℂ
42 iblcncfioo.l . . . . . . . . 9 (𝜑𝐿 ∈ (𝐹 lim 𝐵))
4341, 42sselid 3915 . . . . . . . 8 (𝜑𝐿 ∈ ℂ)
4443ad2antrr 722 . . . . . . 7 (((𝜑 ∧ ¬ 𝑥 = 𝐴) ∧ 𝑥 = 𝐵) → 𝐿 ∈ ℂ)
4540, 44eqeltrd 2839 . . . . . 6 (((𝜑 ∧ ¬ 𝑥 = 𝐴) ∧ 𝑥 = 𝐵) → if(𝑥 = 𝐴, 𝑅, if(𝑥 = 𝐵, 𝐿, (𝐹𝑥))) ∈ ℂ)
4645adantllr 715 . . . . 5 ((((𝜑𝑥 ∈ (𝐴[,]𝐵)) ∧ ¬ 𝑥 = 𝐴) ∧ 𝑥 = 𝐵) → if(𝑥 = 𝐴, 𝑅, if(𝑥 = 𝐵, 𝐿, (𝐹𝑥))) ∈ ℂ)
47 simplll 771 . . . . . . 7 ((((𝜑𝑥 ∈ (𝐴[,]𝐵)) ∧ ¬ 𝑥 = 𝐴) ∧ ¬ 𝑥 = 𝐵) → 𝜑)
485rexrd 10956 . . . . . . . . . 10 (𝜑𝐴 ∈ ℝ*)
4947, 48syl 17 . . . . . . . . 9 ((((𝜑𝑥 ∈ (𝐴[,]𝐵)) ∧ ¬ 𝑥 = 𝐴) ∧ ¬ 𝑥 = 𝐵) → 𝐴 ∈ ℝ*)
50 iblcncfioo.b . . . . . . . . . . 11 (𝜑𝐵 ∈ ℝ)
5150rexrd 10956 . . . . . . . . . 10 (𝜑𝐵 ∈ ℝ*)
5247, 51syl 17 . . . . . . . . 9 ((((𝜑𝑥 ∈ (𝐴[,]𝐵)) ∧ ¬ 𝑥 = 𝐴) ∧ ¬ 𝑥 = 𝐵) → 𝐵 ∈ ℝ*)
53 eliccxr 13096 . . . . . . . . . 10 (𝑥 ∈ (𝐴[,]𝐵) → 𝑥 ∈ ℝ*)
5453ad3antlr 727 . . . . . . . . 9 ((((𝜑𝑥 ∈ (𝐴[,]𝐵)) ∧ ¬ 𝑥 = 𝐴) ∧ ¬ 𝑥 = 𝐵) → 𝑥 ∈ ℝ*)
5549, 52, 543jca 1126 . . . . . . . 8 ((((𝜑𝑥 ∈ (𝐴[,]𝐵)) ∧ ¬ 𝑥 = 𝐴) ∧ ¬ 𝑥 = 𝐵) → (𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝑥 ∈ ℝ*))
565ad2antrr 722 . . . . . . . . . . 11 (((𝜑𝑥 ∈ (𝐴[,]𝐵)) ∧ ¬ 𝑥 = 𝐴) → 𝐴 ∈ ℝ)
575adantr 480 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ (𝐴[,]𝐵)) → 𝐴 ∈ ℝ)
5850adantr 480 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ (𝐴[,]𝐵)) → 𝐵 ∈ ℝ)
59 simpr 484 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ (𝐴[,]𝐵)) → 𝑥 ∈ (𝐴[,]𝐵))
60 eliccre 42933 . . . . . . . . . . . . 13 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝑥 ∈ (𝐴[,]𝐵)) → 𝑥 ∈ ℝ)
6157, 58, 59, 60syl3anc 1369 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ (𝐴[,]𝐵)) → 𝑥 ∈ ℝ)
6261adantr 480 . . . . . . . . . . 11 (((𝜑𝑥 ∈ (𝐴[,]𝐵)) ∧ ¬ 𝑥 = 𝐴) → 𝑥 ∈ ℝ)
635, 50jca 511 . . . . . . . . . . . . . . . 16 (𝜑 → (𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ))
6463adantr 480 . . . . . . . . . . . . . . 15 ((𝜑𝑥 ∈ (𝐴[,]𝐵)) → (𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ))
65 elicc2 13073 . . . . . . . . . . . . . . 15 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝑥 ∈ (𝐴[,]𝐵) ↔ (𝑥 ∈ ℝ ∧ 𝐴𝑥𝑥𝐵)))
6664, 65syl 17 . . . . . . . . . . . . . 14 ((𝜑𝑥 ∈ (𝐴[,]𝐵)) → (𝑥 ∈ (𝐴[,]𝐵) ↔ (𝑥 ∈ ℝ ∧ 𝐴𝑥𝑥𝐵)))
6759, 66mpbid 231 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ (𝐴[,]𝐵)) → (𝑥 ∈ ℝ ∧ 𝐴𝑥𝑥𝐵))
6867simp2d 1141 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ (𝐴[,]𝐵)) → 𝐴𝑥)
6968adantr 480 . . . . . . . . . . 11 (((𝜑𝑥 ∈ (𝐴[,]𝐵)) ∧ ¬ 𝑥 = 𝐴) → 𝐴𝑥)
70 df-ne 2943 . . . . . . . . . . . . 13 (𝑥𝐴 ↔ ¬ 𝑥 = 𝐴)
7170biimpri 227 . . . . . . . . . . . 12 𝑥 = 𝐴𝑥𝐴)
7271adantl 481 . . . . . . . . . . 11 (((𝜑𝑥 ∈ (𝐴[,]𝐵)) ∧ ¬ 𝑥 = 𝐴) → 𝑥𝐴)
7356, 62, 69, 72leneltd 11059 . . . . . . . . . 10 (((𝜑𝑥 ∈ (𝐴[,]𝐵)) ∧ ¬ 𝑥 = 𝐴) → 𝐴 < 𝑥)
7473adantr 480 . . . . . . . . 9 ((((𝜑𝑥 ∈ (𝐴[,]𝐵)) ∧ ¬ 𝑥 = 𝐴) ∧ ¬ 𝑥 = 𝐵) → 𝐴 < 𝑥)
75 nesym 2999 . . . . . . . . . . . . 13 (𝐵𝑥 ↔ ¬ 𝑥 = 𝐵)
7675biimpri 227 . . . . . . . . . . . 12 𝑥 = 𝐵𝐵𝑥)
7776adantl 481 . . . . . . . . . . 11 (((𝜑𝑥 ∈ (𝐴[,]𝐵)) ∧ ¬ 𝑥 = 𝐵) → 𝐵𝑥)
7867simp3d 1142 . . . . . . . . . . . . . 14 ((𝜑𝑥 ∈ (𝐴[,]𝐵)) → 𝑥𝐵)
7961, 58, 783jca 1126 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ (𝐴[,]𝐵)) → (𝑥 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝑥𝐵))
8079adantr 480 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ (𝐴[,]𝐵)) ∧ ¬ 𝑥 = 𝐵) → (𝑥 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝑥𝐵))
81 leltne 10995 . . . . . . . . . . . 12 ((𝑥 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝑥𝐵) → (𝑥 < 𝐵𝐵𝑥))
8280, 81syl 17 . . . . . . . . . . 11 (((𝜑𝑥 ∈ (𝐴[,]𝐵)) ∧ ¬ 𝑥 = 𝐵) → (𝑥 < 𝐵𝐵𝑥))
8377, 82mpbird 256 . . . . . . . . . 10 (((𝜑𝑥 ∈ (𝐴[,]𝐵)) ∧ ¬ 𝑥 = 𝐵) → 𝑥 < 𝐵)
8483adantlr 711 . . . . . . . . 9 ((((𝜑𝑥 ∈ (𝐴[,]𝐵)) ∧ ¬ 𝑥 = 𝐴) ∧ ¬ 𝑥 = 𝐵) → 𝑥 < 𝐵)
8574, 84jca 511 . . . . . . . 8 ((((𝜑𝑥 ∈ (𝐴[,]𝐵)) ∧ ¬ 𝑥 = 𝐴) ∧ ¬ 𝑥 = 𝐵) → (𝐴 < 𝑥𝑥 < 𝐵))
86 elioo3g 13037 . . . . . . . 8 (𝑥 ∈ (𝐴(,)𝐵) ↔ ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝑥 ∈ ℝ*) ∧ (𝐴 < 𝑥𝑥 < 𝐵)))
8755, 85, 86sylanbrc 582 . . . . . . 7 ((((𝜑𝑥 ∈ (𝐴[,]𝐵)) ∧ ¬ 𝑥 = 𝐴) ∧ ¬ 𝑥 = 𝐵) → 𝑥 ∈ (𝐴(,)𝐵))
8847, 87jca 511 . . . . . 6 ((((𝜑𝑥 ∈ (𝐴[,]𝐵)) ∧ ¬ 𝑥 = 𝐴) ∧ ¬ 𝑥 = 𝐵) → (𝜑𝑥 ∈ (𝐴(,)𝐵)))
893ffvelrnda 6943 . . . . . . 7 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → (𝐹𝑥) ∈ ℂ)
9020, 89eqeltrd 2839 . . . . . 6 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → if(𝑥 = 𝐴, 𝑅, if(𝑥 = 𝐵, 𝐿, (𝐹𝑥))) ∈ ℂ)
9188, 90syl 17 . . . . 5 ((((𝜑𝑥 ∈ (𝐴[,]𝐵)) ∧ ¬ 𝑥 = 𝐴) ∧ ¬ 𝑥 = 𝐵) → if(𝑥 = 𝐴, 𝑅, if(𝑥 = 𝐵, 𝐿, (𝐹𝑥))) ∈ ℂ)
9246, 91pm2.61dan 809 . . . 4 (((𝜑𝑥 ∈ (𝐴[,]𝐵)) ∧ ¬ 𝑥 = 𝐴) → if(𝑥 = 𝐴, 𝑅, if(𝑥 = 𝐵, 𝐿, (𝐹𝑥))) ∈ ℂ)
9335, 92pm2.61dan 809 . . 3 ((𝜑𝑥 ∈ (𝐴[,]𝐵)) → if(𝑥 = 𝐴, 𝑅, if(𝑥 = 𝐵, 𝐿, (𝐹𝑥))) ∈ ℂ)
94 nfv 1918 . . . . 5 𝑥𝜑
95 eqid 2738 . . . . 5 (𝑥 ∈ (𝐴[,]𝐵) ↦ if(𝑥 = 𝐴, 𝑅, if(𝑥 = 𝐵, 𝐿, (𝐹𝑥)))) = (𝑥 ∈ (𝐴[,]𝐵) ↦ if(𝑥 = 𝐴, 𝑅, if(𝑥 = 𝐵, 𝐿, (𝐹𝑥))))
9694, 95, 5, 50, 1, 42, 31cncfiooicc 43325 . . . 4 (𝜑 → (𝑥 ∈ (𝐴[,]𝐵) ↦ if(𝑥 = 𝐴, 𝑅, if(𝑥 = 𝐵, 𝐿, (𝐹𝑥)))) ∈ ((𝐴[,]𝐵)–cn→ℂ))
97 cniccibl 24910 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ (𝑥 ∈ (𝐴[,]𝐵) ↦ if(𝑥 = 𝐴, 𝑅, if(𝑥 = 𝐵, 𝐿, (𝐹𝑥)))) ∈ ((𝐴[,]𝐵)–cn→ℂ)) → (𝑥 ∈ (𝐴[,]𝐵) ↦ if(𝑥 = 𝐴, 𝑅, if(𝑥 = 𝐵, 𝐿, (𝐹𝑥)))) ∈ 𝐿1)
985, 50, 96, 97syl3anc 1369 . . 3 (𝜑 → (𝑥 ∈ (𝐴[,]𝐵) ↦ if(𝑥 = 𝐴, 𝑅, if(𝑥 = 𝐵, 𝐿, (𝐹𝑥)))) ∈ 𝐿1)
9925, 27, 93, 98iblss 24874 . 2 (𝜑 → (𝑥 ∈ (𝐴(,)𝐵) ↦ if(𝑥 = 𝐴, 𝑅, if(𝑥 = 𝐵, 𝐿, (𝐹𝑥)))) ∈ 𝐿1)
10023, 99eqeltrd 2839 1 (𝜑𝐹 ∈ 𝐿1)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 395  w3a 1085   = wceq 1539  wcel 2108  wne 2942  wss 3883  ifcif 4456   class class class wbr 5070  cmpt 5153  dom cdm 5580  wf 6414  cfv 6418  (class class class)co 7255  cc 10800  cr 10801  *cxr 10939   < clt 10940  cle 10941  (,)cioo 13008  [,]cicc 13011  cnccncf 23945  volcvol 24532  𝐿1cibl 24686   lim climc 24931
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-inf2 9329  ax-cc 10122  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879  ax-pre-sup 10880  ax-addf 10881  ax-mulf 10882
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-int 4877  df-iun 4923  df-iin 4924  df-disj 5036  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-se 5536  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-isom 6427  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-of 7511  df-ofr 7512  df-om 7688  df-1st 7804  df-2nd 7805  df-supp 7949  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-1o 8267  df-2o 8268  df-oadd 8271  df-omul 8272  df-er 8456  df-map 8575  df-pm 8576  df-ixp 8644  df-en 8692  df-dom 8693  df-sdom 8694  df-fin 8695  df-fsupp 9059  df-fi 9100  df-sup 9131  df-inf 9132  df-oi 9199  df-dju 9590  df-card 9628  df-acn 9631  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-div 11563  df-nn 11904  df-2 11966  df-3 11967  df-4 11968  df-5 11969  df-6 11970  df-7 11971  df-8 11972  df-9 11973  df-n0 12164  df-z 12250  df-dec 12367  df-uz 12512  df-q 12618  df-rp 12660  df-xneg 12777  df-xadd 12778  df-xmul 12779  df-ioo 13012  df-ioc 13013  df-ico 13014  df-icc 13015  df-fz 13169  df-fzo 13312  df-fl 13440  df-mod 13518  df-seq 13650  df-exp 13711  df-hash 13973  df-cj 14738  df-re 14739  df-im 14740  df-sqrt 14874  df-abs 14875  df-limsup 15108  df-clim 15125  df-rlim 15126  df-sum 15326  df-struct 16776  df-sets 16793  df-slot 16811  df-ndx 16823  df-base 16841  df-ress 16868  df-plusg 16901  df-mulr 16902  df-starv 16903  df-sca 16904  df-vsca 16905  df-ip 16906  df-tset 16907  df-ple 16908  df-ds 16910  df-unif 16911  df-hom 16912  df-cco 16913  df-rest 17050  df-topn 17051  df-0g 17069  df-gsum 17070  df-topgen 17071  df-pt 17072  df-prds 17075  df-xrs 17130  df-qtop 17135  df-imas 17136  df-xps 17138  df-mre 17212  df-mrc 17213  df-acs 17215  df-mgm 18241  df-sgrp 18290  df-mnd 18301  df-submnd 18346  df-mulg 18616  df-cntz 18838  df-cmn 19303  df-psmet 20502  df-xmet 20503  df-met 20504  df-bl 20505  df-mopn 20506  df-cnfld 20511  df-top 21951  df-topon 21968  df-topsp 21990  df-bases 22004  df-cld 22078  df-ntr 22079  df-cls 22080  df-cn 22286  df-cnp 22287  df-cmp 22446  df-tx 22621  df-hmeo 22814  df-xms 23381  df-ms 23382  df-tms 23383  df-cncf 23947  df-ovol 24533  df-vol 24534  df-mbf 24688  df-itg1 24689  df-itg2 24690  df-ibl 24691  df-0p 24739  df-limc 24935
This theorem is referenced by:  fourierdlem69  43606  fourierdlem73  43610  fourierdlem81  43618  fourierdlem93  43630
  Copyright terms: Public domain W3C validator