MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sgnn Structured version   Visualization version   GIF version

Theorem sgnn 15133
Description: The signum of a negative extended real is -1. (Contributed by David A. Wheeler, 15-May-2015.)
Assertion
Ref Expression
sgnn ((𝐴 ∈ ℝ*𝐴 < 0) → (sgn‘𝐴) = -1)

Proof of Theorem sgnn
StepHypRef Expression
1 sgnval 15127 . . 3 (𝐴 ∈ ℝ* → (sgn‘𝐴) = if(𝐴 = 0, 0, if(𝐴 < 0, -1, 1)))
21adantr 480 . 2 ((𝐴 ∈ ℝ*𝐴 < 0) → (sgn‘𝐴) = if(𝐴 = 0, 0, if(𝐴 < 0, -1, 1)))
3 0xr 11308 . . . . 5 0 ∈ ℝ*
4 xrltne 13205 . . . . 5 ((𝐴 ∈ ℝ* ∧ 0 ∈ ℝ*𝐴 < 0) → 0 ≠ 𝐴)
53, 4mp3an2 1451 . . . 4 ((𝐴 ∈ ℝ*𝐴 < 0) → 0 ≠ 𝐴)
6 nesym 2997 . . . 4 (0 ≠ 𝐴 ↔ ¬ 𝐴 = 0)
75, 6sylib 218 . . 3 ((𝐴 ∈ ℝ*𝐴 < 0) → ¬ 𝐴 = 0)
87iffalsed 4536 . 2 ((𝐴 ∈ ℝ*𝐴 < 0) → if(𝐴 = 0, 0, if(𝐴 < 0, -1, 1)) = if(𝐴 < 0, -1, 1))
9 iftrue 4531 . . 3 (𝐴 < 0 → if(𝐴 < 0, -1, 1) = -1)
109adantl 481 . 2 ((𝐴 ∈ ℝ*𝐴 < 0) → if(𝐴 < 0, -1, 1) = -1)
112, 8, 103eqtrd 2781 1 ((𝐴 ∈ ℝ*𝐴 < 0) → (sgn‘𝐴) = -1)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1540  wcel 2108  wne 2940  ifcif 4525   class class class wbr 5143  cfv 6561  0cc0 11155  1c1 11156  *cxr 11294   < clt 11295  -cneg 11493  sgncsgn 15125
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-cnex 11211  ax-resscn 11212  ax-1cn 11213  ax-icn 11214  ax-addcl 11215  ax-addrcl 11216  ax-mulcl 11217  ax-i2m1 11223  ax-rnegex 11226  ax-cnre 11228  ax-pre-lttri 11229  ax-pre-lttrn 11230
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-br 5144  df-opab 5206  df-mpt 5226  df-id 5578  df-po 5592  df-so 5593  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-ov 7434  df-er 8745  df-en 8986  df-dom 8987  df-sdom 8988  df-pnf 11297  df-mnf 11298  df-xr 11299  df-ltxr 11300  df-neg 11495  df-sgn 15126
This theorem is referenced by:  sgnmnf  15134  sgncl  34541  sgnmul  34545  sgnsub  34547  sgnnbi  34548  sgnsgn  34551
  Copyright terms: Public domain W3C validator