MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sgnn Structured version   Visualization version   GIF version

Theorem sgnn 14453
Description: The signum of a negative extended real is -1. (Contributed by David A. Wheeler, 15-May-2015.)
Assertion
Ref Expression
sgnn ((𝐴 ∈ ℝ*𝐴 < 0) → (sgn‘𝐴) = -1)

Proof of Theorem sgnn
StepHypRef Expression
1 sgnval 14447 . . 3 (𝐴 ∈ ℝ* → (sgn‘𝐴) = if(𝐴 = 0, 0, if(𝐴 < 0, -1, 1)))
21adantr 483 . 2 ((𝐴 ∈ ℝ*𝐴 < 0) → (sgn‘𝐴) = if(𝐴 = 0, 0, if(𝐴 < 0, -1, 1)))
3 0xr 10688 . . . . 5 0 ∈ ℝ*
4 xrltne 12557 . . . . 5 ((𝐴 ∈ ℝ* ∧ 0 ∈ ℝ*𝐴 < 0) → 0 ≠ 𝐴)
53, 4mp3an2 1445 . . . 4 ((𝐴 ∈ ℝ*𝐴 < 0) → 0 ≠ 𝐴)
6 nesym 3072 . . . 4 (0 ≠ 𝐴 ↔ ¬ 𝐴 = 0)
75, 6sylib 220 . . 3 ((𝐴 ∈ ℝ*𝐴 < 0) → ¬ 𝐴 = 0)
87iffalsed 4478 . 2 ((𝐴 ∈ ℝ*𝐴 < 0) → if(𝐴 = 0, 0, if(𝐴 < 0, -1, 1)) = if(𝐴 < 0, -1, 1))
9 iftrue 4473 . . 3 (𝐴 < 0 → if(𝐴 < 0, -1, 1) = -1)
109adantl 484 . 2 ((𝐴 ∈ ℝ*𝐴 < 0) → if(𝐴 < 0, -1, 1) = -1)
112, 8, 103eqtrd 2860 1 ((𝐴 ∈ ℝ*𝐴 < 0) → (sgn‘𝐴) = -1)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 398   = wceq 1537  wcel 2114  wne 3016  ifcif 4467   class class class wbr 5066  cfv 6355  0cc0 10537  1c1 10538  *cxr 10674   < clt 10675  -cneg 10871  sgncsgn 14445
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-sep 5203  ax-nul 5210  ax-pow 5266  ax-pr 5330  ax-un 7461  ax-cnex 10593  ax-resscn 10594  ax-1cn 10595  ax-icn 10596  ax-addcl 10597  ax-addrcl 10598  ax-mulcl 10599  ax-i2m1 10605  ax-rnegex 10608  ax-cnre 10610  ax-pre-lttri 10611  ax-pre-lttrn 10612
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-rab 3147  df-v 3496  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4568  df-pr 4570  df-op 4574  df-uni 4839  df-br 5067  df-opab 5129  df-mpt 5147  df-id 5460  df-po 5474  df-so 5475  df-xp 5561  df-rel 5562  df-cnv 5563  df-co 5564  df-dm 5565  df-rn 5566  df-res 5567  df-ima 5568  df-iota 6314  df-fun 6357  df-fn 6358  df-f 6359  df-f1 6360  df-fo 6361  df-f1o 6362  df-fv 6363  df-ov 7159  df-er 8289  df-en 8510  df-dom 8511  df-sdom 8512  df-pnf 10677  df-mnf 10678  df-xr 10679  df-ltxr 10680  df-neg 10873  df-sgn 14446
This theorem is referenced by:  sgnmnf  14454  sgncl  31796  sgnmul  31800  sgnsub  31802  sgnnbi  31803  sgnsgn  31806
  Copyright terms: Public domain W3C validator