MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sgnn Structured version   Visualization version   GIF version

Theorem sgnn 15001
Description: The signum of a negative extended real is -1. (Contributed by David A. Wheeler, 15-May-2015.)
Assertion
Ref Expression
sgnn ((𝐴 ∈ ℝ*𝐴 < 0) → (sgn‘𝐴) = -1)

Proof of Theorem sgnn
StepHypRef Expression
1 sgnval 14995 . . 3 (𝐴 ∈ ℝ* → (sgn‘𝐴) = if(𝐴 = 0, 0, if(𝐴 < 0, -1, 1)))
21adantr 480 . 2 ((𝐴 ∈ ℝ*𝐴 < 0) → (sgn‘𝐴) = if(𝐴 = 0, 0, if(𝐴 < 0, -1, 1)))
3 0xr 11162 . . . . 5 0 ∈ ℝ*
4 xrltne 13065 . . . . 5 ((𝐴 ∈ ℝ* ∧ 0 ∈ ℝ*𝐴 < 0) → 0 ≠ 𝐴)
53, 4mp3an2 1451 . . . 4 ((𝐴 ∈ ℝ*𝐴 < 0) → 0 ≠ 𝐴)
6 nesym 2981 . . . 4 (0 ≠ 𝐴 ↔ ¬ 𝐴 = 0)
75, 6sylib 218 . . 3 ((𝐴 ∈ ℝ*𝐴 < 0) → ¬ 𝐴 = 0)
87iffalsed 4487 . 2 ((𝐴 ∈ ℝ*𝐴 < 0) → if(𝐴 = 0, 0, if(𝐴 < 0, -1, 1)) = if(𝐴 < 0, -1, 1))
9 iftrue 4482 . . 3 (𝐴 < 0 → if(𝐴 < 0, -1, 1) = -1)
109adantl 481 . 2 ((𝐴 ∈ ℝ*𝐴 < 0) → if(𝐴 < 0, -1, 1) = -1)
112, 8, 103eqtrd 2768 1 ((𝐴 ∈ ℝ*𝐴 < 0) → (sgn‘𝐴) = -1)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1540  wcel 2109  wne 2925  ifcif 4476   class class class wbr 5092  cfv 6482  0cc0 11009  1c1 11010  *cxr 11148   < clt 11149  -cneg 11348  sgncsgn 14993
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671  ax-cnex 11065  ax-resscn 11066  ax-1cn 11067  ax-icn 11068  ax-addcl 11069  ax-addrcl 11070  ax-mulcl 11071  ax-i2m1 11077  ax-rnegex 11080  ax-cnre 11082  ax-pre-lttri 11083  ax-pre-lttrn 11084
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-br 5093  df-opab 5155  df-mpt 5174  df-id 5514  df-po 5527  df-so 5528  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-ov 7352  df-er 8625  df-en 8873  df-dom 8874  df-sdom 8875  df-pnf 11151  df-mnf 11152  df-xr 11153  df-ltxr 11154  df-neg 11350  df-sgn 14994
This theorem is referenced by:  sgnmnf  15002  sgnval2  32678  sgncl  32776  sgnmul  32780  sgnsub  32782  sgnnbi  32783  sgnsgn  32786
  Copyright terms: Public domain W3C validator