MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sgnn Structured version   Visualization version   GIF version

Theorem sgnn 15094
Description: The signum of a negative extended real is -1. (Contributed by David A. Wheeler, 15-May-2015.)
Assertion
Ref Expression
sgnn ((𝐴 ∈ ℝ*𝐴 < 0) → (sgn‘𝐴) = -1)

Proof of Theorem sgnn
StepHypRef Expression
1 sgnval 15088 . . 3 (𝐴 ∈ ℝ* → (sgn‘𝐴) = if(𝐴 = 0, 0, if(𝐴 < 0, -1, 1)))
21adantr 479 . 2 ((𝐴 ∈ ℝ*𝐴 < 0) → (sgn‘𝐴) = if(𝐴 = 0, 0, if(𝐴 < 0, -1, 1)))
3 0xr 11307 . . . . 5 0 ∈ ℝ*
4 xrltne 13191 . . . . 5 ((𝐴 ∈ ℝ* ∧ 0 ∈ ℝ*𝐴 < 0) → 0 ≠ 𝐴)
53, 4mp3an2 1445 . . . 4 ((𝐴 ∈ ℝ*𝐴 < 0) → 0 ≠ 𝐴)
6 nesym 2986 . . . 4 (0 ≠ 𝐴 ↔ ¬ 𝐴 = 0)
75, 6sylib 217 . . 3 ((𝐴 ∈ ℝ*𝐴 < 0) → ¬ 𝐴 = 0)
87iffalsed 4543 . 2 ((𝐴 ∈ ℝ*𝐴 < 0) → if(𝐴 = 0, 0, if(𝐴 < 0, -1, 1)) = if(𝐴 < 0, -1, 1))
9 iftrue 4538 . . 3 (𝐴 < 0 → if(𝐴 < 0, -1, 1) = -1)
109adantl 480 . 2 ((𝐴 ∈ ℝ*𝐴 < 0) → if(𝐴 < 0, -1, 1) = -1)
112, 8, 103eqtrd 2769 1 ((𝐴 ∈ ℝ*𝐴 < 0) → (sgn‘𝐴) = -1)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 394   = wceq 1533  wcel 2098  wne 2929  ifcif 4532   class class class wbr 5152  cfv 6553  0cc0 11154  1c1 11155  *cxr 11293   < clt 11294  -cneg 11491  sgncsgn 15086
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2696  ax-sep 5303  ax-nul 5310  ax-pow 5368  ax-pr 5432  ax-un 7745  ax-cnex 11210  ax-resscn 11211  ax-1cn 11212  ax-icn 11213  ax-addcl 11214  ax-addrcl 11215  ax-mulcl 11216  ax-i2m1 11222  ax-rnegex 11225  ax-cnre 11227  ax-pre-lttri 11228  ax-pre-lttrn 11229
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2703  df-cleq 2717  df-clel 2802  df-nfc 2877  df-ne 2930  df-nel 3036  df-ral 3051  df-rex 3060  df-rab 3419  df-v 3463  df-sbc 3776  df-csb 3892  df-dif 3949  df-un 3951  df-in 3953  df-ss 3963  df-nul 4325  df-if 4533  df-pw 4608  df-sn 4633  df-pr 4635  df-op 4639  df-uni 4913  df-br 5153  df-opab 5215  df-mpt 5236  df-id 5579  df-po 5593  df-so 5594  df-xp 5687  df-rel 5688  df-cnv 5689  df-co 5690  df-dm 5691  df-rn 5692  df-res 5693  df-ima 5694  df-iota 6505  df-fun 6555  df-fn 6556  df-f 6557  df-f1 6558  df-fo 6559  df-f1o 6560  df-fv 6561  df-ov 7426  df-er 8733  df-en 8974  df-dom 8975  df-sdom 8976  df-pnf 11296  df-mnf 11297  df-xr 11298  df-ltxr 11299  df-neg 11493  df-sgn 15087
This theorem is referenced by:  sgnmnf  15095  sgncl  34328  sgnmul  34332  sgnsub  34334  sgnnbi  34335  sgnsgn  34338
  Copyright terms: Public domain W3C validator