![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > xrltlen | Structured version Visualization version GIF version |
Description: 'Less than' expressed in terms of 'less than or equal to'. (Contributed by Mario Carneiro, 6-Nov-2015.) |
Ref | Expression |
---|---|
xrltlen | ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → (𝐴 < 𝐵 ↔ (𝐴 ≤ 𝐵 ∧ 𝐵 ≠ 𝐴))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | xrlttri 13059 | . . 3 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → (𝐴 < 𝐵 ↔ ¬ (𝐴 = 𝐵 ∨ 𝐵 < 𝐴))) | |
2 | ioran 983 | . . . 4 ⊢ (¬ (𝐴 = 𝐵 ∨ 𝐵 < 𝐴) ↔ (¬ 𝐴 = 𝐵 ∧ ¬ 𝐵 < 𝐴)) | |
3 | 2 | biancomi 464 | . . 3 ⊢ (¬ (𝐴 = 𝐵 ∨ 𝐵 < 𝐴) ↔ (¬ 𝐵 < 𝐴 ∧ ¬ 𝐴 = 𝐵)) |
4 | 1, 3 | bitrdi 287 | . 2 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → (𝐴 < 𝐵 ↔ (¬ 𝐵 < 𝐴 ∧ ¬ 𝐴 = 𝐵))) |
5 | xrlenlt 11221 | . . 3 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → (𝐴 ≤ 𝐵 ↔ ¬ 𝐵 < 𝐴)) | |
6 | nesym 3001 | . . . 4 ⊢ (𝐵 ≠ 𝐴 ↔ ¬ 𝐴 = 𝐵) | |
7 | 6 | a1i 11 | . . 3 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → (𝐵 ≠ 𝐴 ↔ ¬ 𝐴 = 𝐵)) |
8 | 5, 7 | anbi12d 632 | . 2 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → ((𝐴 ≤ 𝐵 ∧ 𝐵 ≠ 𝐴) ↔ (¬ 𝐵 < 𝐴 ∧ ¬ 𝐴 = 𝐵))) |
9 | 4, 8 | bitr4d 282 | 1 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → (𝐴 < 𝐵 ↔ (𝐴 ≤ 𝐵 ∧ 𝐵 ≠ 𝐴))) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 ∧ wa 397 ∨ wo 846 = wceq 1542 ∈ wcel 2107 ≠ wne 2944 class class class wbr 5106 ℝ*cxr 11189 < clt 11190 ≤ cle 11191 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2708 ax-sep 5257 ax-nul 5264 ax-pow 5321 ax-pr 5385 ax-un 7673 ax-cnex 11108 ax-resscn 11109 ax-pre-lttri 11126 ax-pre-lttrn 11127 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2815 df-nfc 2890 df-ne 2945 df-nel 3051 df-ral 3066 df-rex 3075 df-rab 3409 df-v 3448 df-sbc 3741 df-csb 3857 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-nul 4284 df-if 4488 df-pw 4563 df-sn 4588 df-pr 4590 df-op 4594 df-uni 4867 df-br 5107 df-opab 5169 df-mpt 5190 df-id 5532 df-po 5546 df-so 5547 df-xp 5640 df-rel 5641 df-cnv 5642 df-co 5643 df-dm 5644 df-rn 5645 df-res 5646 df-ima 5647 df-iota 6449 df-fun 6499 df-fn 6500 df-f 6501 df-f1 6502 df-fo 6503 df-f1o 6504 df-fv 6505 df-er 8649 df-en 8885 df-dom 8886 df-sdom 8887 df-pnf 11192 df-mnf 11193 df-xr 11194 df-ltxr 11195 df-le 11196 |
This theorem is referenced by: dflt2 13068 hashgt0 14289 |
Copyright terms: Public domain | W3C validator |