Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fzopredsuc Structured version   Visualization version   GIF version

Theorem fzopredsuc 45645
Description: Join a predecessor and a successor to the beginning and the end of an open integer interval. This theorem holds even if 𝑁 = 𝑀 (then (𝑀...𝑁) = {𝑀} = ({𝑀} ∪ ∅) ∪ {𝑀}). (Contributed by AV, 14-Jul-2020.)
Assertion
Ref Expression
fzopredsuc (𝑁 ∈ (ℤ𝑀) → (𝑀...𝑁) = (({𝑀} ∪ ((𝑀 + 1)..^𝑁)) ∪ {𝑁}))

Proof of Theorem fzopredsuc
StepHypRef Expression
1 unidm 4116 . . . . . 6 ({𝑁} ∪ {𝑁}) = {𝑁}
21eqcomi 2742 . . . . 5 {𝑁} = ({𝑁} ∪ {𝑁})
3 oveq1 7368 . . . . . 6 (𝑀 = 𝑁 → (𝑀...𝑁) = (𝑁...𝑁))
4 fzsn 13492 . . . . . 6 (𝑁 ∈ ℤ → (𝑁...𝑁) = {𝑁})
53, 4sylan9eqr 2795 . . . . 5 ((𝑁 ∈ ℤ ∧ 𝑀 = 𝑁) → (𝑀...𝑁) = {𝑁})
6 sneq 4600 . . . . . . . 8 (𝑀 = 𝑁 → {𝑀} = {𝑁})
7 oveq1 7368 . . . . . . . . 9 (𝑀 = 𝑁 → (𝑀 + 1) = (𝑁 + 1))
87oveq1d 7376 . . . . . . . 8 (𝑀 = 𝑁 → ((𝑀 + 1)..^𝑁) = ((𝑁 + 1)..^𝑁))
96, 8uneq12d 4128 . . . . . . 7 (𝑀 = 𝑁 → ({𝑀} ∪ ((𝑀 + 1)..^𝑁)) = ({𝑁} ∪ ((𝑁 + 1)..^𝑁)))
109uneq1d 4126 . . . . . 6 (𝑀 = 𝑁 → (({𝑀} ∪ ((𝑀 + 1)..^𝑁)) ∪ {𝑁}) = (({𝑁} ∪ ((𝑁 + 1)..^𝑁)) ∪ {𝑁}))
11 zre 12511 . . . . . . . . . . . 12 (𝑁 ∈ ℤ → 𝑁 ∈ ℝ)
1211lep1d 12094 . . . . . . . . . . 11 (𝑁 ∈ ℤ → 𝑁 ≤ (𝑁 + 1))
13 peano2z 12552 . . . . . . . . . . . . 13 (𝑁 ∈ ℤ → (𝑁 + 1) ∈ ℤ)
1413zred 12615 . . . . . . . . . . . 12 (𝑁 ∈ ℤ → (𝑁 + 1) ∈ ℝ)
1511, 14lenltd 11309 . . . . . . . . . . 11 (𝑁 ∈ ℤ → (𝑁 ≤ (𝑁 + 1) ↔ ¬ (𝑁 + 1) < 𝑁))
1612, 15mpbid 231 . . . . . . . . . 10 (𝑁 ∈ ℤ → ¬ (𝑁 + 1) < 𝑁)
17 fzonlt0 13604 . . . . . . . . . . 11 (((𝑁 + 1) ∈ ℤ ∧ 𝑁 ∈ ℤ) → (¬ (𝑁 + 1) < 𝑁 ↔ ((𝑁 + 1)..^𝑁) = ∅))
1813, 17mpancom 687 . . . . . . . . . 10 (𝑁 ∈ ℤ → (¬ (𝑁 + 1) < 𝑁 ↔ ((𝑁 + 1)..^𝑁) = ∅))
1916, 18mpbid 231 . . . . . . . . 9 (𝑁 ∈ ℤ → ((𝑁 + 1)..^𝑁) = ∅)
2019uneq2d 4127 . . . . . . . 8 (𝑁 ∈ ℤ → ({𝑁} ∪ ((𝑁 + 1)..^𝑁)) = ({𝑁} ∪ ∅))
21 un0 4354 . . . . . . . 8 ({𝑁} ∪ ∅) = {𝑁}
2220, 21eqtrdi 2789 . . . . . . 7 (𝑁 ∈ ℤ → ({𝑁} ∪ ((𝑁 + 1)..^𝑁)) = {𝑁})
2322uneq1d 4126 . . . . . 6 (𝑁 ∈ ℤ → (({𝑁} ∪ ((𝑁 + 1)..^𝑁)) ∪ {𝑁}) = ({𝑁} ∪ {𝑁}))
2410, 23sylan9eqr 2795 . . . . 5 ((𝑁 ∈ ℤ ∧ 𝑀 = 𝑁) → (({𝑀} ∪ ((𝑀 + 1)..^𝑁)) ∪ {𝑁}) = ({𝑁} ∪ {𝑁}))
252, 5, 243eqtr4a 2799 . . . 4 ((𝑁 ∈ ℤ ∧ 𝑀 = 𝑁) → (𝑀...𝑁) = (({𝑀} ∪ ((𝑀 + 1)..^𝑁)) ∪ {𝑁}))
2625ex 414 . . 3 (𝑁 ∈ ℤ → (𝑀 = 𝑁 → (𝑀...𝑁) = (({𝑀} ∪ ((𝑀 + 1)..^𝑁)) ∪ {𝑁})))
27 eluzelz 12781 . . 3 (𝑁 ∈ (ℤ𝑀) → 𝑁 ∈ ℤ)
2826, 27syl11 33 . 2 (𝑀 = 𝑁 → (𝑁 ∈ (ℤ𝑀) → (𝑀...𝑁) = (({𝑀} ∪ ((𝑀 + 1)..^𝑁)) ∪ {𝑁})))
29 fzisfzounsn 13693 . . . . 5 (𝑁 ∈ (ℤ𝑀) → (𝑀...𝑁) = ((𝑀..^𝑁) ∪ {𝑁}))
3029adantl 483 . . . 4 ((¬ 𝑀 = 𝑁𝑁 ∈ (ℤ𝑀)) → (𝑀...𝑁) = ((𝑀..^𝑁) ∪ {𝑁}))
31 eluz2 12777 . . . . . . . 8 (𝑁 ∈ (ℤ𝑀) ↔ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑀𝑁))
32 simpl1 1192 . . . . . . . . . 10 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑀𝑁) ∧ ¬ 𝑀 = 𝑁) → 𝑀 ∈ ℤ)
33 simpl2 1193 . . . . . . . . . 10 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑀𝑁) ∧ ¬ 𝑀 = 𝑁) → 𝑁 ∈ ℤ)
34 nesym 2997 . . . . . . . . . . . 12 (𝑁𝑀 ↔ ¬ 𝑀 = 𝑁)
35 zre 12511 . . . . . . . . . . . . . . . 16 (𝑀 ∈ ℤ → 𝑀 ∈ ℝ)
36 ltlen 11264 . . . . . . . . . . . . . . . 16 ((𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ) → (𝑀 < 𝑁 ↔ (𝑀𝑁𝑁𝑀)))
3735, 11, 36syl2an 597 . . . . . . . . . . . . . . 15 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 < 𝑁 ↔ (𝑀𝑁𝑁𝑀)))
3837biimprd 248 . . . . . . . . . . . . . 14 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝑀𝑁𝑁𝑀) → 𝑀 < 𝑁))
3938exp4b 432 . . . . . . . . . . . . 13 (𝑀 ∈ ℤ → (𝑁 ∈ ℤ → (𝑀𝑁 → (𝑁𝑀𝑀 < 𝑁))))
40393imp 1112 . . . . . . . . . . . 12 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑀𝑁) → (𝑁𝑀𝑀 < 𝑁))
4134, 40biimtrrid 242 . . . . . . . . . . 11 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑀𝑁) → (¬ 𝑀 = 𝑁𝑀 < 𝑁))
4241imp 408 . . . . . . . . . 10 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑀𝑁) ∧ ¬ 𝑀 = 𝑁) → 𝑀 < 𝑁)
4332, 33, 423jca 1129 . . . . . . . . 9 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑀𝑁) ∧ ¬ 𝑀 = 𝑁) → (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑀 < 𝑁))
4443ex 414 . . . . . . . 8 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑀𝑁) → (¬ 𝑀 = 𝑁 → (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑀 < 𝑁)))
4531, 44sylbi 216 . . . . . . 7 (𝑁 ∈ (ℤ𝑀) → (¬ 𝑀 = 𝑁 → (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑀 < 𝑁)))
4645impcom 409 . . . . . 6 ((¬ 𝑀 = 𝑁𝑁 ∈ (ℤ𝑀)) → (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑀 < 𝑁))
47 fzopred 45644 . . . . . 6 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑀 < 𝑁) → (𝑀..^𝑁) = ({𝑀} ∪ ((𝑀 + 1)..^𝑁)))
4846, 47syl 17 . . . . 5 ((¬ 𝑀 = 𝑁𝑁 ∈ (ℤ𝑀)) → (𝑀..^𝑁) = ({𝑀} ∪ ((𝑀 + 1)..^𝑁)))
4948uneq1d 4126 . . . 4 ((¬ 𝑀 = 𝑁𝑁 ∈ (ℤ𝑀)) → ((𝑀..^𝑁) ∪ {𝑁}) = (({𝑀} ∪ ((𝑀 + 1)..^𝑁)) ∪ {𝑁}))
5030, 49eqtrd 2773 . . 3 ((¬ 𝑀 = 𝑁𝑁 ∈ (ℤ𝑀)) → (𝑀...𝑁) = (({𝑀} ∪ ((𝑀 + 1)..^𝑁)) ∪ {𝑁}))
5150ex 414 . 2 𝑀 = 𝑁 → (𝑁 ∈ (ℤ𝑀) → (𝑀...𝑁) = (({𝑀} ∪ ((𝑀 + 1)..^𝑁)) ∪ {𝑁})))
5228, 51pm2.61i 182 1 (𝑁 ∈ (ℤ𝑀) → (𝑀...𝑁) = (({𝑀} ∪ ((𝑀 + 1)..^𝑁)) ∪ {𝑁}))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 397  w3a 1088   = wceq 1542  wcel 2107  wne 2940  cun 3912  c0 4286  {csn 4590   class class class wbr 5109  cfv 6500  (class class class)co 7361  cr 11058  1c1 11060   + caddc 11062   < clt 11197  cle 11198  cz 12507  cuz 12771  ...cfz 13433  ..^cfzo 13576
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-sep 5260  ax-nul 5267  ax-pow 5324  ax-pr 5388  ax-un 7676  ax-cnex 11115  ax-resscn 11116  ax-1cn 11117  ax-icn 11118  ax-addcl 11119  ax-addrcl 11120  ax-mulcl 11121  ax-mulrcl 11122  ax-mulcom 11123  ax-addass 11124  ax-mulass 11125  ax-distr 11126  ax-i2m1 11127  ax-1ne0 11128  ax-1rid 11129  ax-rnegex 11130  ax-rrecex 11131  ax-cnre 11132  ax-pre-lttri 11133  ax-pre-lttrn 11134  ax-pre-ltadd 11135  ax-pre-mulgt0 11136
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-reu 3353  df-rab 3407  df-v 3449  df-sbc 3744  df-csb 3860  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3933  df-nul 4287  df-if 4491  df-pw 4566  df-sn 4591  df-pr 4593  df-op 4597  df-uni 4870  df-iun 4960  df-br 5110  df-opab 5172  df-mpt 5193  df-tr 5227  df-id 5535  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5592  df-we 5594  df-xp 5643  df-rel 5644  df-cnv 5645  df-co 5646  df-dm 5647  df-rn 5648  df-res 5649  df-ima 5650  df-pred 6257  df-ord 6324  df-on 6325  df-lim 6326  df-suc 6327  df-iota 6452  df-fun 6502  df-fn 6503  df-f 6504  df-f1 6505  df-fo 6506  df-f1o 6507  df-fv 6508  df-riota 7317  df-ov 7364  df-oprab 7365  df-mpo 7366  df-om 7807  df-1st 7925  df-2nd 7926  df-frecs 8216  df-wrecs 8247  df-recs 8321  df-rdg 8360  df-er 8654  df-en 8890  df-dom 8891  df-sdom 8892  df-pnf 11199  df-mnf 11200  df-xr 11201  df-ltxr 11202  df-le 11203  df-sub 11395  df-neg 11396  df-nn 12162  df-n0 12422  df-z 12508  df-uz 12772  df-fz 13434  df-fzo 13577
This theorem is referenced by:  1fzopredsuc  45646  sbgoldbo  46069
  Copyright terms: Public domain W3C validator