Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fzopredsuc Structured version   Visualization version   GIF version

Theorem fzopredsuc 45067
Description: Join a predecessor and a successor to the beginning and the end of an open integer interval. This theorem holds even if 𝑁 = 𝑀 (then (𝑀...𝑁) = {𝑀} = ({𝑀} ∪ ∅) ∪ {𝑀}). (Contributed by AV, 14-Jul-2020.)
Assertion
Ref Expression
fzopredsuc (𝑁 ∈ (ℤ𝑀) → (𝑀...𝑁) = (({𝑀} ∪ ((𝑀 + 1)..^𝑁)) ∪ {𝑁}))

Proof of Theorem fzopredsuc
StepHypRef Expression
1 unidm 4097 . . . . . 6 ({𝑁} ∪ {𝑁}) = {𝑁}
21eqcomi 2746 . . . . 5 {𝑁} = ({𝑁} ∪ {𝑁})
3 oveq1 7322 . . . . . 6 (𝑀 = 𝑁 → (𝑀...𝑁) = (𝑁...𝑁))
4 fzsn 13371 . . . . . 6 (𝑁 ∈ ℤ → (𝑁...𝑁) = {𝑁})
53, 4sylan9eqr 2799 . . . . 5 ((𝑁 ∈ ℤ ∧ 𝑀 = 𝑁) → (𝑀...𝑁) = {𝑁})
6 sneq 4581 . . . . . . . 8 (𝑀 = 𝑁 → {𝑀} = {𝑁})
7 oveq1 7322 . . . . . . . . 9 (𝑀 = 𝑁 → (𝑀 + 1) = (𝑁 + 1))
87oveq1d 7330 . . . . . . . 8 (𝑀 = 𝑁 → ((𝑀 + 1)..^𝑁) = ((𝑁 + 1)..^𝑁))
96, 8uneq12d 4109 . . . . . . 7 (𝑀 = 𝑁 → ({𝑀} ∪ ((𝑀 + 1)..^𝑁)) = ({𝑁} ∪ ((𝑁 + 1)..^𝑁)))
109uneq1d 4107 . . . . . 6 (𝑀 = 𝑁 → (({𝑀} ∪ ((𝑀 + 1)..^𝑁)) ∪ {𝑁}) = (({𝑁} ∪ ((𝑁 + 1)..^𝑁)) ∪ {𝑁}))
11 zre 12396 . . . . . . . . . . . 12 (𝑁 ∈ ℤ → 𝑁 ∈ ℝ)
1211lep1d 11979 . . . . . . . . . . 11 (𝑁 ∈ ℤ → 𝑁 ≤ (𝑁 + 1))
13 peano2z 12434 . . . . . . . . . . . . 13 (𝑁 ∈ ℤ → (𝑁 + 1) ∈ ℤ)
1413zred 12499 . . . . . . . . . . . 12 (𝑁 ∈ ℤ → (𝑁 + 1) ∈ ℝ)
1511, 14lenltd 11194 . . . . . . . . . . 11 (𝑁 ∈ ℤ → (𝑁 ≤ (𝑁 + 1) ↔ ¬ (𝑁 + 1) < 𝑁))
1612, 15mpbid 231 . . . . . . . . . 10 (𝑁 ∈ ℤ → ¬ (𝑁 + 1) < 𝑁)
17 fzonlt0 13483 . . . . . . . . . . 11 (((𝑁 + 1) ∈ ℤ ∧ 𝑁 ∈ ℤ) → (¬ (𝑁 + 1) < 𝑁 ↔ ((𝑁 + 1)..^𝑁) = ∅))
1813, 17mpancom 685 . . . . . . . . . 10 (𝑁 ∈ ℤ → (¬ (𝑁 + 1) < 𝑁 ↔ ((𝑁 + 1)..^𝑁) = ∅))
1916, 18mpbid 231 . . . . . . . . 9 (𝑁 ∈ ℤ → ((𝑁 + 1)..^𝑁) = ∅)
2019uneq2d 4108 . . . . . . . 8 (𝑁 ∈ ℤ → ({𝑁} ∪ ((𝑁 + 1)..^𝑁)) = ({𝑁} ∪ ∅))
21 un0 4335 . . . . . . . 8 ({𝑁} ∪ ∅) = {𝑁}
2220, 21eqtrdi 2793 . . . . . . 7 (𝑁 ∈ ℤ → ({𝑁} ∪ ((𝑁 + 1)..^𝑁)) = {𝑁})
2322uneq1d 4107 . . . . . 6 (𝑁 ∈ ℤ → (({𝑁} ∪ ((𝑁 + 1)..^𝑁)) ∪ {𝑁}) = ({𝑁} ∪ {𝑁}))
2410, 23sylan9eqr 2799 . . . . 5 ((𝑁 ∈ ℤ ∧ 𝑀 = 𝑁) → (({𝑀} ∪ ((𝑀 + 1)..^𝑁)) ∪ {𝑁}) = ({𝑁} ∪ {𝑁}))
252, 5, 243eqtr4a 2803 . . . 4 ((𝑁 ∈ ℤ ∧ 𝑀 = 𝑁) → (𝑀...𝑁) = (({𝑀} ∪ ((𝑀 + 1)..^𝑁)) ∪ {𝑁}))
2625ex 413 . . 3 (𝑁 ∈ ℤ → (𝑀 = 𝑁 → (𝑀...𝑁) = (({𝑀} ∪ ((𝑀 + 1)..^𝑁)) ∪ {𝑁})))
27 eluzelz 12665 . . 3 (𝑁 ∈ (ℤ𝑀) → 𝑁 ∈ ℤ)
2826, 27syl11 33 . 2 (𝑀 = 𝑁 → (𝑁 ∈ (ℤ𝑀) → (𝑀...𝑁) = (({𝑀} ∪ ((𝑀 + 1)..^𝑁)) ∪ {𝑁})))
29 fzisfzounsn 13572 . . . . 5 (𝑁 ∈ (ℤ𝑀) → (𝑀...𝑁) = ((𝑀..^𝑁) ∪ {𝑁}))
3029adantl 482 . . . 4 ((¬ 𝑀 = 𝑁𝑁 ∈ (ℤ𝑀)) → (𝑀...𝑁) = ((𝑀..^𝑁) ∪ {𝑁}))
31 eluz2 12661 . . . . . . . 8 (𝑁 ∈ (ℤ𝑀) ↔ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑀𝑁))
32 simpl1 1190 . . . . . . . . . 10 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑀𝑁) ∧ ¬ 𝑀 = 𝑁) → 𝑀 ∈ ℤ)
33 simpl2 1191 . . . . . . . . . 10 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑀𝑁) ∧ ¬ 𝑀 = 𝑁) → 𝑁 ∈ ℤ)
34 nesym 2998 . . . . . . . . . . . 12 (𝑁𝑀 ↔ ¬ 𝑀 = 𝑁)
35 zre 12396 . . . . . . . . . . . . . . . 16 (𝑀 ∈ ℤ → 𝑀 ∈ ℝ)
36 ltlen 11149 . . . . . . . . . . . . . . . 16 ((𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ) → (𝑀 < 𝑁 ↔ (𝑀𝑁𝑁𝑀)))
3735, 11, 36syl2an 596 . . . . . . . . . . . . . . 15 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 < 𝑁 ↔ (𝑀𝑁𝑁𝑀)))
3837biimprd 247 . . . . . . . . . . . . . 14 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝑀𝑁𝑁𝑀) → 𝑀 < 𝑁))
3938exp4b 431 . . . . . . . . . . . . 13 (𝑀 ∈ ℤ → (𝑁 ∈ ℤ → (𝑀𝑁 → (𝑁𝑀𝑀 < 𝑁))))
40393imp 1110 . . . . . . . . . . . 12 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑀𝑁) → (𝑁𝑀𝑀 < 𝑁))
4134, 40syl5bir 242 . . . . . . . . . . 11 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑀𝑁) → (¬ 𝑀 = 𝑁𝑀 < 𝑁))
4241imp 407 . . . . . . . . . 10 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑀𝑁) ∧ ¬ 𝑀 = 𝑁) → 𝑀 < 𝑁)
4332, 33, 423jca 1127 . . . . . . . . 9 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑀𝑁) ∧ ¬ 𝑀 = 𝑁) → (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑀 < 𝑁))
4443ex 413 . . . . . . . 8 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑀𝑁) → (¬ 𝑀 = 𝑁 → (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑀 < 𝑁)))
4531, 44sylbi 216 . . . . . . 7 (𝑁 ∈ (ℤ𝑀) → (¬ 𝑀 = 𝑁 → (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑀 < 𝑁)))
4645impcom 408 . . . . . 6 ((¬ 𝑀 = 𝑁𝑁 ∈ (ℤ𝑀)) → (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑀 < 𝑁))
47 fzopred 45066 . . . . . 6 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑀 < 𝑁) → (𝑀..^𝑁) = ({𝑀} ∪ ((𝑀 + 1)..^𝑁)))
4846, 47syl 17 . . . . 5 ((¬ 𝑀 = 𝑁𝑁 ∈ (ℤ𝑀)) → (𝑀..^𝑁) = ({𝑀} ∪ ((𝑀 + 1)..^𝑁)))
4948uneq1d 4107 . . . 4 ((¬ 𝑀 = 𝑁𝑁 ∈ (ℤ𝑀)) → ((𝑀..^𝑁) ∪ {𝑁}) = (({𝑀} ∪ ((𝑀 + 1)..^𝑁)) ∪ {𝑁}))
5030, 49eqtrd 2777 . . 3 ((¬ 𝑀 = 𝑁𝑁 ∈ (ℤ𝑀)) → (𝑀...𝑁) = (({𝑀} ∪ ((𝑀 + 1)..^𝑁)) ∪ {𝑁}))
5150ex 413 . 2 𝑀 = 𝑁 → (𝑁 ∈ (ℤ𝑀) → (𝑀...𝑁) = (({𝑀} ∪ ((𝑀 + 1)..^𝑁)) ∪ {𝑁})))
5228, 51pm2.61i 182 1 (𝑁 ∈ (ℤ𝑀) → (𝑀...𝑁) = (({𝑀} ∪ ((𝑀 + 1)..^𝑁)) ∪ {𝑁}))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 396  w3a 1086   = wceq 1540  wcel 2105  wne 2941  cun 3895  c0 4267  {csn 4571   class class class wbr 5087  cfv 6465  (class class class)co 7315  cr 10943  1c1 10945   + caddc 10947   < clt 11082  cle 11083  cz 12392  cuz 12655  ...cfz 13312  ..^cfzo 13455
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2708  ax-sep 5238  ax-nul 5245  ax-pow 5303  ax-pr 5367  ax-un 7628  ax-cnex 11000  ax-resscn 11001  ax-1cn 11002  ax-icn 11003  ax-addcl 11004  ax-addrcl 11005  ax-mulcl 11006  ax-mulrcl 11007  ax-mulcom 11008  ax-addass 11009  ax-mulass 11010  ax-distr 11011  ax-i2m1 11012  ax-1ne0 11013  ax-1rid 11014  ax-rnegex 11015  ax-rrecex 11016  ax-cnre 11017  ax-pre-lttri 11018  ax-pre-lttrn 11019  ax-pre-ltadd 11020  ax-pre-mulgt0 11021
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2815  df-nfc 2887  df-ne 2942  df-nel 3048  df-ral 3063  df-rex 3072  df-reu 3351  df-rab 3405  df-v 3443  df-sbc 3727  df-csb 3843  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3916  df-nul 4268  df-if 4472  df-pw 4547  df-sn 4572  df-pr 4574  df-op 4578  df-uni 4851  df-iun 4939  df-br 5088  df-opab 5150  df-mpt 5171  df-tr 5205  df-id 5507  df-eprel 5513  df-po 5521  df-so 5522  df-fr 5562  df-we 5564  df-xp 5613  df-rel 5614  df-cnv 5615  df-co 5616  df-dm 5617  df-rn 5618  df-res 5619  df-ima 5620  df-pred 6224  df-ord 6291  df-on 6292  df-lim 6293  df-suc 6294  df-iota 6417  df-fun 6467  df-fn 6468  df-f 6469  df-f1 6470  df-fo 6471  df-f1o 6472  df-fv 6473  df-riota 7272  df-ov 7318  df-oprab 7319  df-mpo 7320  df-om 7758  df-1st 7876  df-2nd 7877  df-frecs 8144  df-wrecs 8175  df-recs 8249  df-rdg 8288  df-er 8546  df-en 8782  df-dom 8783  df-sdom 8784  df-pnf 11084  df-mnf 11085  df-xr 11086  df-ltxr 11087  df-le 11088  df-sub 11280  df-neg 11281  df-nn 12047  df-n0 12307  df-z 12393  df-uz 12656  df-fz 13313  df-fzo 13456
This theorem is referenced by:  1fzopredsuc  45068  sbgoldbo  45491
  Copyright terms: Public domain W3C validator