Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fzopredsuc Structured version   Visualization version   GIF version

Theorem fzopredsuc 45545
Description: Join a predecessor and a successor to the beginning and the end of an open integer interval. This theorem holds even if 𝑁 = 𝑀 (then (𝑀...𝑁) = {𝑀} = ({𝑀} ∪ ∅) ∪ {𝑀}). (Contributed by AV, 14-Jul-2020.)
Assertion
Ref Expression
fzopredsuc (𝑁 ∈ (ℤ𝑀) → (𝑀...𝑁) = (({𝑀} ∪ ((𝑀 + 1)..^𝑁)) ∪ {𝑁}))

Proof of Theorem fzopredsuc
StepHypRef Expression
1 unidm 4112 . . . . . 6 ({𝑁} ∪ {𝑁}) = {𝑁}
21eqcomi 2745 . . . . 5 {𝑁} = ({𝑁} ∪ {𝑁})
3 oveq1 7364 . . . . . 6 (𝑀 = 𝑁 → (𝑀...𝑁) = (𝑁...𝑁))
4 fzsn 13483 . . . . . 6 (𝑁 ∈ ℤ → (𝑁...𝑁) = {𝑁})
53, 4sylan9eqr 2798 . . . . 5 ((𝑁 ∈ ℤ ∧ 𝑀 = 𝑁) → (𝑀...𝑁) = {𝑁})
6 sneq 4596 . . . . . . . 8 (𝑀 = 𝑁 → {𝑀} = {𝑁})
7 oveq1 7364 . . . . . . . . 9 (𝑀 = 𝑁 → (𝑀 + 1) = (𝑁 + 1))
87oveq1d 7372 . . . . . . . 8 (𝑀 = 𝑁 → ((𝑀 + 1)..^𝑁) = ((𝑁 + 1)..^𝑁))
96, 8uneq12d 4124 . . . . . . 7 (𝑀 = 𝑁 → ({𝑀} ∪ ((𝑀 + 1)..^𝑁)) = ({𝑁} ∪ ((𝑁 + 1)..^𝑁)))
109uneq1d 4122 . . . . . 6 (𝑀 = 𝑁 → (({𝑀} ∪ ((𝑀 + 1)..^𝑁)) ∪ {𝑁}) = (({𝑁} ∪ ((𝑁 + 1)..^𝑁)) ∪ {𝑁}))
11 zre 12503 . . . . . . . . . . . 12 (𝑁 ∈ ℤ → 𝑁 ∈ ℝ)
1211lep1d 12086 . . . . . . . . . . 11 (𝑁 ∈ ℤ → 𝑁 ≤ (𝑁 + 1))
13 peano2z 12544 . . . . . . . . . . . . 13 (𝑁 ∈ ℤ → (𝑁 + 1) ∈ ℤ)
1413zred 12607 . . . . . . . . . . . 12 (𝑁 ∈ ℤ → (𝑁 + 1) ∈ ℝ)
1511, 14lenltd 11301 . . . . . . . . . . 11 (𝑁 ∈ ℤ → (𝑁 ≤ (𝑁 + 1) ↔ ¬ (𝑁 + 1) < 𝑁))
1612, 15mpbid 231 . . . . . . . . . 10 (𝑁 ∈ ℤ → ¬ (𝑁 + 1) < 𝑁)
17 fzonlt0 13595 . . . . . . . . . . 11 (((𝑁 + 1) ∈ ℤ ∧ 𝑁 ∈ ℤ) → (¬ (𝑁 + 1) < 𝑁 ↔ ((𝑁 + 1)..^𝑁) = ∅))
1813, 17mpancom 686 . . . . . . . . . 10 (𝑁 ∈ ℤ → (¬ (𝑁 + 1) < 𝑁 ↔ ((𝑁 + 1)..^𝑁) = ∅))
1916, 18mpbid 231 . . . . . . . . 9 (𝑁 ∈ ℤ → ((𝑁 + 1)..^𝑁) = ∅)
2019uneq2d 4123 . . . . . . . 8 (𝑁 ∈ ℤ → ({𝑁} ∪ ((𝑁 + 1)..^𝑁)) = ({𝑁} ∪ ∅))
21 un0 4350 . . . . . . . 8 ({𝑁} ∪ ∅) = {𝑁}
2220, 21eqtrdi 2792 . . . . . . 7 (𝑁 ∈ ℤ → ({𝑁} ∪ ((𝑁 + 1)..^𝑁)) = {𝑁})
2322uneq1d 4122 . . . . . 6 (𝑁 ∈ ℤ → (({𝑁} ∪ ((𝑁 + 1)..^𝑁)) ∪ {𝑁}) = ({𝑁} ∪ {𝑁}))
2410, 23sylan9eqr 2798 . . . . 5 ((𝑁 ∈ ℤ ∧ 𝑀 = 𝑁) → (({𝑀} ∪ ((𝑀 + 1)..^𝑁)) ∪ {𝑁}) = ({𝑁} ∪ {𝑁}))
252, 5, 243eqtr4a 2802 . . . 4 ((𝑁 ∈ ℤ ∧ 𝑀 = 𝑁) → (𝑀...𝑁) = (({𝑀} ∪ ((𝑀 + 1)..^𝑁)) ∪ {𝑁}))
2625ex 413 . . 3 (𝑁 ∈ ℤ → (𝑀 = 𝑁 → (𝑀...𝑁) = (({𝑀} ∪ ((𝑀 + 1)..^𝑁)) ∪ {𝑁})))
27 eluzelz 12773 . . 3 (𝑁 ∈ (ℤ𝑀) → 𝑁 ∈ ℤ)
2826, 27syl11 33 . 2 (𝑀 = 𝑁 → (𝑁 ∈ (ℤ𝑀) → (𝑀...𝑁) = (({𝑀} ∪ ((𝑀 + 1)..^𝑁)) ∪ {𝑁})))
29 fzisfzounsn 13684 . . . . 5 (𝑁 ∈ (ℤ𝑀) → (𝑀...𝑁) = ((𝑀..^𝑁) ∪ {𝑁}))
3029adantl 482 . . . 4 ((¬ 𝑀 = 𝑁𝑁 ∈ (ℤ𝑀)) → (𝑀...𝑁) = ((𝑀..^𝑁) ∪ {𝑁}))
31 eluz2 12769 . . . . . . . 8 (𝑁 ∈ (ℤ𝑀) ↔ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑀𝑁))
32 simpl1 1191 . . . . . . . . . 10 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑀𝑁) ∧ ¬ 𝑀 = 𝑁) → 𝑀 ∈ ℤ)
33 simpl2 1192 . . . . . . . . . 10 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑀𝑁) ∧ ¬ 𝑀 = 𝑁) → 𝑁 ∈ ℤ)
34 nesym 3000 . . . . . . . . . . . 12 (𝑁𝑀 ↔ ¬ 𝑀 = 𝑁)
35 zre 12503 . . . . . . . . . . . . . . . 16 (𝑀 ∈ ℤ → 𝑀 ∈ ℝ)
36 ltlen 11256 . . . . . . . . . . . . . . . 16 ((𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ) → (𝑀 < 𝑁 ↔ (𝑀𝑁𝑁𝑀)))
3735, 11, 36syl2an 596 . . . . . . . . . . . . . . 15 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 < 𝑁 ↔ (𝑀𝑁𝑁𝑀)))
3837biimprd 247 . . . . . . . . . . . . . 14 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝑀𝑁𝑁𝑀) → 𝑀 < 𝑁))
3938exp4b 431 . . . . . . . . . . . . 13 (𝑀 ∈ ℤ → (𝑁 ∈ ℤ → (𝑀𝑁 → (𝑁𝑀𝑀 < 𝑁))))
40393imp 1111 . . . . . . . . . . . 12 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑀𝑁) → (𝑁𝑀𝑀 < 𝑁))
4134, 40biimtrrid 242 . . . . . . . . . . 11 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑀𝑁) → (¬ 𝑀 = 𝑁𝑀 < 𝑁))
4241imp 407 . . . . . . . . . 10 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑀𝑁) ∧ ¬ 𝑀 = 𝑁) → 𝑀 < 𝑁)
4332, 33, 423jca 1128 . . . . . . . . 9 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑀𝑁) ∧ ¬ 𝑀 = 𝑁) → (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑀 < 𝑁))
4443ex 413 . . . . . . . 8 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑀𝑁) → (¬ 𝑀 = 𝑁 → (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑀 < 𝑁)))
4531, 44sylbi 216 . . . . . . 7 (𝑁 ∈ (ℤ𝑀) → (¬ 𝑀 = 𝑁 → (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑀 < 𝑁)))
4645impcom 408 . . . . . 6 ((¬ 𝑀 = 𝑁𝑁 ∈ (ℤ𝑀)) → (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑀 < 𝑁))
47 fzopred 45544 . . . . . 6 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑀 < 𝑁) → (𝑀..^𝑁) = ({𝑀} ∪ ((𝑀 + 1)..^𝑁)))
4846, 47syl 17 . . . . 5 ((¬ 𝑀 = 𝑁𝑁 ∈ (ℤ𝑀)) → (𝑀..^𝑁) = ({𝑀} ∪ ((𝑀 + 1)..^𝑁)))
4948uneq1d 4122 . . . 4 ((¬ 𝑀 = 𝑁𝑁 ∈ (ℤ𝑀)) → ((𝑀..^𝑁) ∪ {𝑁}) = (({𝑀} ∪ ((𝑀 + 1)..^𝑁)) ∪ {𝑁}))
5030, 49eqtrd 2776 . . 3 ((¬ 𝑀 = 𝑁𝑁 ∈ (ℤ𝑀)) → (𝑀...𝑁) = (({𝑀} ∪ ((𝑀 + 1)..^𝑁)) ∪ {𝑁}))
5150ex 413 . 2 𝑀 = 𝑁 → (𝑁 ∈ (ℤ𝑀) → (𝑀...𝑁) = (({𝑀} ∪ ((𝑀 + 1)..^𝑁)) ∪ {𝑁})))
5228, 51pm2.61i 182 1 (𝑁 ∈ (ℤ𝑀) → (𝑀...𝑁) = (({𝑀} ∪ ((𝑀 + 1)..^𝑁)) ∪ {𝑁}))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 396  w3a 1087   = wceq 1541  wcel 2106  wne 2943  cun 3908  c0 4282  {csn 4586   class class class wbr 5105  cfv 6496  (class class class)co 7357  cr 11050  1c1 11052   + caddc 11054   < clt 11189  cle 11190  cz 12499  cuz 12763  ...cfz 13424  ..^cfzo 13567
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-sep 5256  ax-nul 5263  ax-pow 5320  ax-pr 5384  ax-un 7672  ax-cnex 11107  ax-resscn 11108  ax-1cn 11109  ax-icn 11110  ax-addcl 11111  ax-addrcl 11112  ax-mulcl 11113  ax-mulrcl 11114  ax-mulcom 11115  ax-addass 11116  ax-mulass 11117  ax-distr 11118  ax-i2m1 11119  ax-1ne0 11120  ax-1rid 11121  ax-rnegex 11122  ax-rrecex 11123  ax-cnre 11124  ax-pre-lttri 11125  ax-pre-lttrn 11126  ax-pre-ltadd 11127  ax-pre-mulgt0 11128
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3065  df-rex 3074  df-reu 3354  df-rab 3408  df-v 3447  df-sbc 3740  df-csb 3856  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-pss 3929  df-nul 4283  df-if 4487  df-pw 4562  df-sn 4587  df-pr 4589  df-op 4593  df-uni 4866  df-iun 4956  df-br 5106  df-opab 5168  df-mpt 5189  df-tr 5223  df-id 5531  df-eprel 5537  df-po 5545  df-so 5546  df-fr 5588  df-we 5590  df-xp 5639  df-rel 5640  df-cnv 5641  df-co 5642  df-dm 5643  df-rn 5644  df-res 5645  df-ima 5646  df-pred 6253  df-ord 6320  df-on 6321  df-lim 6322  df-suc 6323  df-iota 6448  df-fun 6498  df-fn 6499  df-f 6500  df-f1 6501  df-fo 6502  df-f1o 6503  df-fv 6504  df-riota 7313  df-ov 7360  df-oprab 7361  df-mpo 7362  df-om 7803  df-1st 7921  df-2nd 7922  df-frecs 8212  df-wrecs 8243  df-recs 8317  df-rdg 8356  df-er 8648  df-en 8884  df-dom 8885  df-sdom 8886  df-pnf 11191  df-mnf 11192  df-xr 11193  df-ltxr 11194  df-le 11195  df-sub 11387  df-neg 11388  df-nn 12154  df-n0 12414  df-z 12500  df-uz 12764  df-fz 13425  df-fzo 13568
This theorem is referenced by:  1fzopredsuc  45546  sbgoldbo  45969
  Copyright terms: Public domain W3C validator