Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fzopredsuc Structured version   Visualization version   GIF version

Theorem fzopredsuc 47328
Description: Join a predecessor and a successor to the beginning and the end of an open integer interval. This theorem holds even if 𝑁 = 𝑀 (then (𝑀...𝑁) = {𝑀} = ({𝑀} ∪ ∅) ∪ {𝑀}). (Contributed by AV, 14-Jul-2020.)
Assertion
Ref Expression
fzopredsuc (𝑁 ∈ (ℤ𝑀) → (𝑀...𝑁) = (({𝑀} ∪ ((𝑀 + 1)..^𝑁)) ∪ {𝑁}))

Proof of Theorem fzopredsuc
StepHypRef Expression
1 unidm 4123 . . . . . 6 ({𝑁} ∪ {𝑁}) = {𝑁}
21eqcomi 2739 . . . . 5 {𝑁} = ({𝑁} ∪ {𝑁})
3 oveq1 7397 . . . . . 6 (𝑀 = 𝑁 → (𝑀...𝑁) = (𝑁...𝑁))
4 fzsn 13534 . . . . . 6 (𝑁 ∈ ℤ → (𝑁...𝑁) = {𝑁})
53, 4sylan9eqr 2787 . . . . 5 ((𝑁 ∈ ℤ ∧ 𝑀 = 𝑁) → (𝑀...𝑁) = {𝑁})
6 sneq 4602 . . . . . . . 8 (𝑀 = 𝑁 → {𝑀} = {𝑁})
7 oveq1 7397 . . . . . . . . 9 (𝑀 = 𝑁 → (𝑀 + 1) = (𝑁 + 1))
87oveq1d 7405 . . . . . . . 8 (𝑀 = 𝑁 → ((𝑀 + 1)..^𝑁) = ((𝑁 + 1)..^𝑁))
96, 8uneq12d 4135 . . . . . . 7 (𝑀 = 𝑁 → ({𝑀} ∪ ((𝑀 + 1)..^𝑁)) = ({𝑁} ∪ ((𝑁 + 1)..^𝑁)))
109uneq1d 4133 . . . . . 6 (𝑀 = 𝑁 → (({𝑀} ∪ ((𝑀 + 1)..^𝑁)) ∪ {𝑁}) = (({𝑁} ∪ ((𝑁 + 1)..^𝑁)) ∪ {𝑁}))
11 zre 12540 . . . . . . . . . . . 12 (𝑁 ∈ ℤ → 𝑁 ∈ ℝ)
1211lep1d 12121 . . . . . . . . . . 11 (𝑁 ∈ ℤ → 𝑁 ≤ (𝑁 + 1))
13 peano2z 12581 . . . . . . . . . . . . 13 (𝑁 ∈ ℤ → (𝑁 + 1) ∈ ℤ)
1413zred 12645 . . . . . . . . . . . 12 (𝑁 ∈ ℤ → (𝑁 + 1) ∈ ℝ)
1511, 14lenltd 11327 . . . . . . . . . . 11 (𝑁 ∈ ℤ → (𝑁 ≤ (𝑁 + 1) ↔ ¬ (𝑁 + 1) < 𝑁))
1612, 15mpbid 232 . . . . . . . . . 10 (𝑁 ∈ ℤ → ¬ (𝑁 + 1) < 𝑁)
17 fzonlt0 13650 . . . . . . . . . . 11 (((𝑁 + 1) ∈ ℤ ∧ 𝑁 ∈ ℤ) → (¬ (𝑁 + 1) < 𝑁 ↔ ((𝑁 + 1)..^𝑁) = ∅))
1813, 17mpancom 688 . . . . . . . . . 10 (𝑁 ∈ ℤ → (¬ (𝑁 + 1) < 𝑁 ↔ ((𝑁 + 1)..^𝑁) = ∅))
1916, 18mpbid 232 . . . . . . . . 9 (𝑁 ∈ ℤ → ((𝑁 + 1)..^𝑁) = ∅)
2019uneq2d 4134 . . . . . . . 8 (𝑁 ∈ ℤ → ({𝑁} ∪ ((𝑁 + 1)..^𝑁)) = ({𝑁} ∪ ∅))
21 un0 4360 . . . . . . . 8 ({𝑁} ∪ ∅) = {𝑁}
2220, 21eqtrdi 2781 . . . . . . 7 (𝑁 ∈ ℤ → ({𝑁} ∪ ((𝑁 + 1)..^𝑁)) = {𝑁})
2322uneq1d 4133 . . . . . 6 (𝑁 ∈ ℤ → (({𝑁} ∪ ((𝑁 + 1)..^𝑁)) ∪ {𝑁}) = ({𝑁} ∪ {𝑁}))
2410, 23sylan9eqr 2787 . . . . 5 ((𝑁 ∈ ℤ ∧ 𝑀 = 𝑁) → (({𝑀} ∪ ((𝑀 + 1)..^𝑁)) ∪ {𝑁}) = ({𝑁} ∪ {𝑁}))
252, 5, 243eqtr4a 2791 . . . 4 ((𝑁 ∈ ℤ ∧ 𝑀 = 𝑁) → (𝑀...𝑁) = (({𝑀} ∪ ((𝑀 + 1)..^𝑁)) ∪ {𝑁}))
2625ex 412 . . 3 (𝑁 ∈ ℤ → (𝑀 = 𝑁 → (𝑀...𝑁) = (({𝑀} ∪ ((𝑀 + 1)..^𝑁)) ∪ {𝑁})))
27 eluzelz 12810 . . 3 (𝑁 ∈ (ℤ𝑀) → 𝑁 ∈ ℤ)
2826, 27syl11 33 . 2 (𝑀 = 𝑁 → (𝑁 ∈ (ℤ𝑀) → (𝑀...𝑁) = (({𝑀} ∪ ((𝑀 + 1)..^𝑁)) ∪ {𝑁})))
29 fzisfzounsn 13747 . . . . 5 (𝑁 ∈ (ℤ𝑀) → (𝑀...𝑁) = ((𝑀..^𝑁) ∪ {𝑁}))
3029adantl 481 . . . 4 ((¬ 𝑀 = 𝑁𝑁 ∈ (ℤ𝑀)) → (𝑀...𝑁) = ((𝑀..^𝑁) ∪ {𝑁}))
31 eluz2 12806 . . . . . . . 8 (𝑁 ∈ (ℤ𝑀) ↔ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑀𝑁))
32 simpl1 1192 . . . . . . . . . 10 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑀𝑁) ∧ ¬ 𝑀 = 𝑁) → 𝑀 ∈ ℤ)
33 simpl2 1193 . . . . . . . . . 10 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑀𝑁) ∧ ¬ 𝑀 = 𝑁) → 𝑁 ∈ ℤ)
34 nesym 2982 . . . . . . . . . . . 12 (𝑁𝑀 ↔ ¬ 𝑀 = 𝑁)
35 zre 12540 . . . . . . . . . . . . . . . 16 (𝑀 ∈ ℤ → 𝑀 ∈ ℝ)
36 ltlen 11282 . . . . . . . . . . . . . . . 16 ((𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ) → (𝑀 < 𝑁 ↔ (𝑀𝑁𝑁𝑀)))
3735, 11, 36syl2an 596 . . . . . . . . . . . . . . 15 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 < 𝑁 ↔ (𝑀𝑁𝑁𝑀)))
3837biimprd 248 . . . . . . . . . . . . . 14 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝑀𝑁𝑁𝑀) → 𝑀 < 𝑁))
3938exp4b 430 . . . . . . . . . . . . 13 (𝑀 ∈ ℤ → (𝑁 ∈ ℤ → (𝑀𝑁 → (𝑁𝑀𝑀 < 𝑁))))
40393imp 1110 . . . . . . . . . . . 12 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑀𝑁) → (𝑁𝑀𝑀 < 𝑁))
4134, 40biimtrrid 243 . . . . . . . . . . 11 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑀𝑁) → (¬ 𝑀 = 𝑁𝑀 < 𝑁))
4241imp 406 . . . . . . . . . 10 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑀𝑁) ∧ ¬ 𝑀 = 𝑁) → 𝑀 < 𝑁)
4332, 33, 423jca 1128 . . . . . . . . 9 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑀𝑁) ∧ ¬ 𝑀 = 𝑁) → (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑀 < 𝑁))
4443ex 412 . . . . . . . 8 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑀𝑁) → (¬ 𝑀 = 𝑁 → (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑀 < 𝑁)))
4531, 44sylbi 217 . . . . . . 7 (𝑁 ∈ (ℤ𝑀) → (¬ 𝑀 = 𝑁 → (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑀 < 𝑁)))
4645impcom 407 . . . . . 6 ((¬ 𝑀 = 𝑁𝑁 ∈ (ℤ𝑀)) → (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑀 < 𝑁))
47 fzopred 47327 . . . . . 6 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑀 < 𝑁) → (𝑀..^𝑁) = ({𝑀} ∪ ((𝑀 + 1)..^𝑁)))
4846, 47syl 17 . . . . 5 ((¬ 𝑀 = 𝑁𝑁 ∈ (ℤ𝑀)) → (𝑀..^𝑁) = ({𝑀} ∪ ((𝑀 + 1)..^𝑁)))
4948uneq1d 4133 . . . 4 ((¬ 𝑀 = 𝑁𝑁 ∈ (ℤ𝑀)) → ((𝑀..^𝑁) ∪ {𝑁}) = (({𝑀} ∪ ((𝑀 + 1)..^𝑁)) ∪ {𝑁}))
5030, 49eqtrd 2765 . . 3 ((¬ 𝑀 = 𝑁𝑁 ∈ (ℤ𝑀)) → (𝑀...𝑁) = (({𝑀} ∪ ((𝑀 + 1)..^𝑁)) ∪ {𝑁}))
5150ex 412 . 2 𝑀 = 𝑁 → (𝑁 ∈ (ℤ𝑀) → (𝑀...𝑁) = (({𝑀} ∪ ((𝑀 + 1)..^𝑁)) ∪ {𝑁})))
5228, 51pm2.61i 182 1 (𝑁 ∈ (ℤ𝑀) → (𝑀...𝑁) = (({𝑀} ∪ ((𝑀 + 1)..^𝑁)) ∪ {𝑁}))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wne 2926  cun 3915  c0 4299  {csn 4592   class class class wbr 5110  cfv 6514  (class class class)co 7390  cr 11074  1c1 11076   + caddc 11078   < clt 11215  cle 11216  cz 12536  cuz 12800  ...cfz 13475  ..^cfzo 13622
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-cnex 11131  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-om 7846  df-1st 7971  df-2nd 7972  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-er 8674  df-en 8922  df-dom 8923  df-sdom 8924  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415  df-nn 12194  df-n0 12450  df-z 12537  df-uz 12801  df-fz 13476  df-fzo 13623
This theorem is referenced by:  1fzopredsuc  47329  sbgoldbo  47792
  Copyright terms: Public domain W3C validator