Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fzopredsuc Structured version   Visualization version   GIF version

Theorem fzopredsuc 47352
Description: Join a predecessor and a successor to the beginning and the end of an open integer interval. This theorem holds even if 𝑁 = 𝑀 (then (𝑀...𝑁) = {𝑀} = ({𝑀} ∪ ∅) ∪ {𝑀}). (Contributed by AV, 14-Jul-2020.)
Assertion
Ref Expression
fzopredsuc (𝑁 ∈ (ℤ𝑀) → (𝑀...𝑁) = (({𝑀} ∪ ((𝑀 + 1)..^𝑁)) ∪ {𝑁}))

Proof of Theorem fzopredsuc
StepHypRef Expression
1 unidm 4132 . . . . . 6 ({𝑁} ∪ {𝑁}) = {𝑁}
21eqcomi 2744 . . . . 5 {𝑁} = ({𝑁} ∪ {𝑁})
3 oveq1 7412 . . . . . 6 (𝑀 = 𝑁 → (𝑀...𝑁) = (𝑁...𝑁))
4 fzsn 13583 . . . . . 6 (𝑁 ∈ ℤ → (𝑁...𝑁) = {𝑁})
53, 4sylan9eqr 2792 . . . . 5 ((𝑁 ∈ ℤ ∧ 𝑀 = 𝑁) → (𝑀...𝑁) = {𝑁})
6 sneq 4611 . . . . . . . 8 (𝑀 = 𝑁 → {𝑀} = {𝑁})
7 oveq1 7412 . . . . . . . . 9 (𝑀 = 𝑁 → (𝑀 + 1) = (𝑁 + 1))
87oveq1d 7420 . . . . . . . 8 (𝑀 = 𝑁 → ((𝑀 + 1)..^𝑁) = ((𝑁 + 1)..^𝑁))
96, 8uneq12d 4144 . . . . . . 7 (𝑀 = 𝑁 → ({𝑀} ∪ ((𝑀 + 1)..^𝑁)) = ({𝑁} ∪ ((𝑁 + 1)..^𝑁)))
109uneq1d 4142 . . . . . 6 (𝑀 = 𝑁 → (({𝑀} ∪ ((𝑀 + 1)..^𝑁)) ∪ {𝑁}) = (({𝑁} ∪ ((𝑁 + 1)..^𝑁)) ∪ {𝑁}))
11 zre 12592 . . . . . . . . . . . 12 (𝑁 ∈ ℤ → 𝑁 ∈ ℝ)
1211lep1d 12173 . . . . . . . . . . 11 (𝑁 ∈ ℤ → 𝑁 ≤ (𝑁 + 1))
13 peano2z 12633 . . . . . . . . . . . . 13 (𝑁 ∈ ℤ → (𝑁 + 1) ∈ ℤ)
1413zred 12697 . . . . . . . . . . . 12 (𝑁 ∈ ℤ → (𝑁 + 1) ∈ ℝ)
1511, 14lenltd 11381 . . . . . . . . . . 11 (𝑁 ∈ ℤ → (𝑁 ≤ (𝑁 + 1) ↔ ¬ (𝑁 + 1) < 𝑁))
1612, 15mpbid 232 . . . . . . . . . 10 (𝑁 ∈ ℤ → ¬ (𝑁 + 1) < 𝑁)
17 fzonlt0 13699 . . . . . . . . . . 11 (((𝑁 + 1) ∈ ℤ ∧ 𝑁 ∈ ℤ) → (¬ (𝑁 + 1) < 𝑁 ↔ ((𝑁 + 1)..^𝑁) = ∅))
1813, 17mpancom 688 . . . . . . . . . 10 (𝑁 ∈ ℤ → (¬ (𝑁 + 1) < 𝑁 ↔ ((𝑁 + 1)..^𝑁) = ∅))
1916, 18mpbid 232 . . . . . . . . 9 (𝑁 ∈ ℤ → ((𝑁 + 1)..^𝑁) = ∅)
2019uneq2d 4143 . . . . . . . 8 (𝑁 ∈ ℤ → ({𝑁} ∪ ((𝑁 + 1)..^𝑁)) = ({𝑁} ∪ ∅))
21 un0 4369 . . . . . . . 8 ({𝑁} ∪ ∅) = {𝑁}
2220, 21eqtrdi 2786 . . . . . . 7 (𝑁 ∈ ℤ → ({𝑁} ∪ ((𝑁 + 1)..^𝑁)) = {𝑁})
2322uneq1d 4142 . . . . . 6 (𝑁 ∈ ℤ → (({𝑁} ∪ ((𝑁 + 1)..^𝑁)) ∪ {𝑁}) = ({𝑁} ∪ {𝑁}))
2410, 23sylan9eqr 2792 . . . . 5 ((𝑁 ∈ ℤ ∧ 𝑀 = 𝑁) → (({𝑀} ∪ ((𝑀 + 1)..^𝑁)) ∪ {𝑁}) = ({𝑁} ∪ {𝑁}))
252, 5, 243eqtr4a 2796 . . . 4 ((𝑁 ∈ ℤ ∧ 𝑀 = 𝑁) → (𝑀...𝑁) = (({𝑀} ∪ ((𝑀 + 1)..^𝑁)) ∪ {𝑁}))
2625ex 412 . . 3 (𝑁 ∈ ℤ → (𝑀 = 𝑁 → (𝑀...𝑁) = (({𝑀} ∪ ((𝑀 + 1)..^𝑁)) ∪ {𝑁})))
27 eluzelz 12862 . . 3 (𝑁 ∈ (ℤ𝑀) → 𝑁 ∈ ℤ)
2826, 27syl11 33 . 2 (𝑀 = 𝑁 → (𝑁 ∈ (ℤ𝑀) → (𝑀...𝑁) = (({𝑀} ∪ ((𝑀 + 1)..^𝑁)) ∪ {𝑁})))
29 fzisfzounsn 13795 . . . . 5 (𝑁 ∈ (ℤ𝑀) → (𝑀...𝑁) = ((𝑀..^𝑁) ∪ {𝑁}))
3029adantl 481 . . . 4 ((¬ 𝑀 = 𝑁𝑁 ∈ (ℤ𝑀)) → (𝑀...𝑁) = ((𝑀..^𝑁) ∪ {𝑁}))
31 eluz2 12858 . . . . . . . 8 (𝑁 ∈ (ℤ𝑀) ↔ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑀𝑁))
32 simpl1 1192 . . . . . . . . . 10 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑀𝑁) ∧ ¬ 𝑀 = 𝑁) → 𝑀 ∈ ℤ)
33 simpl2 1193 . . . . . . . . . 10 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑀𝑁) ∧ ¬ 𝑀 = 𝑁) → 𝑁 ∈ ℤ)
34 nesym 2988 . . . . . . . . . . . 12 (𝑁𝑀 ↔ ¬ 𝑀 = 𝑁)
35 zre 12592 . . . . . . . . . . . . . . . 16 (𝑀 ∈ ℤ → 𝑀 ∈ ℝ)
36 ltlen 11336 . . . . . . . . . . . . . . . 16 ((𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ) → (𝑀 < 𝑁 ↔ (𝑀𝑁𝑁𝑀)))
3735, 11, 36syl2an 596 . . . . . . . . . . . . . . 15 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 < 𝑁 ↔ (𝑀𝑁𝑁𝑀)))
3837biimprd 248 . . . . . . . . . . . . . 14 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝑀𝑁𝑁𝑀) → 𝑀 < 𝑁))
3938exp4b 430 . . . . . . . . . . . . 13 (𝑀 ∈ ℤ → (𝑁 ∈ ℤ → (𝑀𝑁 → (𝑁𝑀𝑀 < 𝑁))))
40393imp 1110 . . . . . . . . . . . 12 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑀𝑁) → (𝑁𝑀𝑀 < 𝑁))
4134, 40biimtrrid 243 . . . . . . . . . . 11 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑀𝑁) → (¬ 𝑀 = 𝑁𝑀 < 𝑁))
4241imp 406 . . . . . . . . . 10 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑀𝑁) ∧ ¬ 𝑀 = 𝑁) → 𝑀 < 𝑁)
4332, 33, 423jca 1128 . . . . . . . . 9 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑀𝑁) ∧ ¬ 𝑀 = 𝑁) → (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑀 < 𝑁))
4443ex 412 . . . . . . . 8 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑀𝑁) → (¬ 𝑀 = 𝑁 → (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑀 < 𝑁)))
4531, 44sylbi 217 . . . . . . 7 (𝑁 ∈ (ℤ𝑀) → (¬ 𝑀 = 𝑁 → (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑀 < 𝑁)))
4645impcom 407 . . . . . 6 ((¬ 𝑀 = 𝑁𝑁 ∈ (ℤ𝑀)) → (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑀 < 𝑁))
47 fzopred 47351 . . . . . 6 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑀 < 𝑁) → (𝑀..^𝑁) = ({𝑀} ∪ ((𝑀 + 1)..^𝑁)))
4846, 47syl 17 . . . . 5 ((¬ 𝑀 = 𝑁𝑁 ∈ (ℤ𝑀)) → (𝑀..^𝑁) = ({𝑀} ∪ ((𝑀 + 1)..^𝑁)))
4948uneq1d 4142 . . . 4 ((¬ 𝑀 = 𝑁𝑁 ∈ (ℤ𝑀)) → ((𝑀..^𝑁) ∪ {𝑁}) = (({𝑀} ∪ ((𝑀 + 1)..^𝑁)) ∪ {𝑁}))
5030, 49eqtrd 2770 . . 3 ((¬ 𝑀 = 𝑁𝑁 ∈ (ℤ𝑀)) → (𝑀...𝑁) = (({𝑀} ∪ ((𝑀 + 1)..^𝑁)) ∪ {𝑁}))
5150ex 412 . 2 𝑀 = 𝑁 → (𝑁 ∈ (ℤ𝑀) → (𝑀...𝑁) = (({𝑀} ∪ ((𝑀 + 1)..^𝑁)) ∪ {𝑁})))
5228, 51pm2.61i 182 1 (𝑁 ∈ (ℤ𝑀) → (𝑀...𝑁) = (({𝑀} ∪ ((𝑀 + 1)..^𝑁)) ∪ {𝑁}))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2108  wne 2932  cun 3924  c0 4308  {csn 4601   class class class wbr 5119  cfv 6531  (class class class)co 7405  cr 11128  1c1 11130   + caddc 11132   < clt 11269  cle 11270  cz 12588  cuz 12852  ...cfz 13524  ..^cfzo 13671
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7729  ax-cnex 11185  ax-resscn 11186  ax-1cn 11187  ax-icn 11188  ax-addcl 11189  ax-addrcl 11190  ax-mulcl 11191  ax-mulrcl 11192  ax-mulcom 11193  ax-addass 11194  ax-mulass 11195  ax-distr 11196  ax-i2m1 11197  ax-1ne0 11198  ax-1rid 11199  ax-rnegex 11200  ax-rrecex 11201  ax-cnre 11202  ax-pre-lttri 11203  ax-pre-lttrn 11204  ax-pre-ltadd 11205  ax-pre-mulgt0 11206
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-nel 3037  df-ral 3052  df-rex 3061  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-iun 4969  df-br 5120  df-opab 5182  df-mpt 5202  df-tr 5230  df-id 5548  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-we 5608  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-pred 6290  df-ord 6355  df-on 6356  df-lim 6357  df-suc 6358  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-f1 6536  df-fo 6537  df-f1o 6538  df-fv 6539  df-riota 7362  df-ov 7408  df-oprab 7409  df-mpo 7410  df-om 7862  df-1st 7988  df-2nd 7989  df-frecs 8280  df-wrecs 8311  df-recs 8385  df-rdg 8424  df-er 8719  df-en 8960  df-dom 8961  df-sdom 8962  df-pnf 11271  df-mnf 11272  df-xr 11273  df-ltxr 11274  df-le 11275  df-sub 11468  df-neg 11469  df-nn 12241  df-n0 12502  df-z 12589  df-uz 12853  df-fz 13525  df-fzo 13672
This theorem is referenced by:  1fzopredsuc  47353  sbgoldbo  47801
  Copyright terms: Public domain W3C validator