Proof of Theorem fzopredsuc
| Step | Hyp | Ref
| Expression |
| 1 | | unidm 4157 |
. . . . . 6
⊢ ({𝑁} ∪ {𝑁}) = {𝑁} |
| 2 | 1 | eqcomi 2746 |
. . . . 5
⊢ {𝑁} = ({𝑁} ∪ {𝑁}) |
| 3 | | oveq1 7438 |
. . . . . 6
⊢ (𝑀 = 𝑁 → (𝑀...𝑁) = (𝑁...𝑁)) |
| 4 | | fzsn 13606 |
. . . . . 6
⊢ (𝑁 ∈ ℤ → (𝑁...𝑁) = {𝑁}) |
| 5 | 3, 4 | sylan9eqr 2799 |
. . . . 5
⊢ ((𝑁 ∈ ℤ ∧ 𝑀 = 𝑁) → (𝑀...𝑁) = {𝑁}) |
| 6 | | sneq 4636 |
. . . . . . . 8
⊢ (𝑀 = 𝑁 → {𝑀} = {𝑁}) |
| 7 | | oveq1 7438 |
. . . . . . . . 9
⊢ (𝑀 = 𝑁 → (𝑀 + 1) = (𝑁 + 1)) |
| 8 | 7 | oveq1d 7446 |
. . . . . . . 8
⊢ (𝑀 = 𝑁 → ((𝑀 + 1)..^𝑁) = ((𝑁 + 1)..^𝑁)) |
| 9 | 6, 8 | uneq12d 4169 |
. . . . . . 7
⊢ (𝑀 = 𝑁 → ({𝑀} ∪ ((𝑀 + 1)..^𝑁)) = ({𝑁} ∪ ((𝑁 + 1)..^𝑁))) |
| 10 | 9 | uneq1d 4167 |
. . . . . 6
⊢ (𝑀 = 𝑁 → (({𝑀} ∪ ((𝑀 + 1)..^𝑁)) ∪ {𝑁}) = (({𝑁} ∪ ((𝑁 + 1)..^𝑁)) ∪ {𝑁})) |
| 11 | | zre 12617 |
. . . . . . . . . . . 12
⊢ (𝑁 ∈ ℤ → 𝑁 ∈
ℝ) |
| 12 | 11 | lep1d 12199 |
. . . . . . . . . . 11
⊢ (𝑁 ∈ ℤ → 𝑁 ≤ (𝑁 + 1)) |
| 13 | | peano2z 12658 |
. . . . . . . . . . . . 13
⊢ (𝑁 ∈ ℤ → (𝑁 + 1) ∈
ℤ) |
| 14 | 13 | zred 12722 |
. . . . . . . . . . . 12
⊢ (𝑁 ∈ ℤ → (𝑁 + 1) ∈
ℝ) |
| 15 | 11, 14 | lenltd 11407 |
. . . . . . . . . . 11
⊢ (𝑁 ∈ ℤ → (𝑁 ≤ (𝑁 + 1) ↔ ¬ (𝑁 + 1) < 𝑁)) |
| 16 | 12, 15 | mpbid 232 |
. . . . . . . . . 10
⊢ (𝑁 ∈ ℤ → ¬
(𝑁 + 1) < 𝑁) |
| 17 | | fzonlt0 13722 |
. . . . . . . . . . 11
⊢ (((𝑁 + 1) ∈ ℤ ∧ 𝑁 ∈ ℤ) → (¬
(𝑁 + 1) < 𝑁 ↔ ((𝑁 + 1)..^𝑁) = ∅)) |
| 18 | 13, 17 | mpancom 688 |
. . . . . . . . . 10
⊢ (𝑁 ∈ ℤ → (¬
(𝑁 + 1) < 𝑁 ↔ ((𝑁 + 1)..^𝑁) = ∅)) |
| 19 | 16, 18 | mpbid 232 |
. . . . . . . . 9
⊢ (𝑁 ∈ ℤ → ((𝑁 + 1)..^𝑁) = ∅) |
| 20 | 19 | uneq2d 4168 |
. . . . . . . 8
⊢ (𝑁 ∈ ℤ → ({𝑁} ∪ ((𝑁 + 1)..^𝑁)) = ({𝑁} ∪ ∅)) |
| 21 | | un0 4394 |
. . . . . . . 8
⊢ ({𝑁} ∪ ∅) = {𝑁} |
| 22 | 20, 21 | eqtrdi 2793 |
. . . . . . 7
⊢ (𝑁 ∈ ℤ → ({𝑁} ∪ ((𝑁 + 1)..^𝑁)) = {𝑁}) |
| 23 | 22 | uneq1d 4167 |
. . . . . 6
⊢ (𝑁 ∈ ℤ → (({𝑁} ∪ ((𝑁 + 1)..^𝑁)) ∪ {𝑁}) = ({𝑁} ∪ {𝑁})) |
| 24 | 10, 23 | sylan9eqr 2799 |
. . . . 5
⊢ ((𝑁 ∈ ℤ ∧ 𝑀 = 𝑁) → (({𝑀} ∪ ((𝑀 + 1)..^𝑁)) ∪ {𝑁}) = ({𝑁} ∪ {𝑁})) |
| 25 | 2, 5, 24 | 3eqtr4a 2803 |
. . . 4
⊢ ((𝑁 ∈ ℤ ∧ 𝑀 = 𝑁) → (𝑀...𝑁) = (({𝑀} ∪ ((𝑀 + 1)..^𝑁)) ∪ {𝑁})) |
| 26 | 25 | ex 412 |
. . 3
⊢ (𝑁 ∈ ℤ → (𝑀 = 𝑁 → (𝑀...𝑁) = (({𝑀} ∪ ((𝑀 + 1)..^𝑁)) ∪ {𝑁}))) |
| 27 | | eluzelz 12888 |
. . 3
⊢ (𝑁 ∈
(ℤ≥‘𝑀) → 𝑁 ∈ ℤ) |
| 28 | 26, 27 | syl11 33 |
. 2
⊢ (𝑀 = 𝑁 → (𝑁 ∈ (ℤ≥‘𝑀) → (𝑀...𝑁) = (({𝑀} ∪ ((𝑀 + 1)..^𝑁)) ∪ {𝑁}))) |
| 29 | | fzisfzounsn 13818 |
. . . . 5
⊢ (𝑁 ∈
(ℤ≥‘𝑀) → (𝑀...𝑁) = ((𝑀..^𝑁) ∪ {𝑁})) |
| 30 | 29 | adantl 481 |
. . . 4
⊢ ((¬
𝑀 = 𝑁 ∧ 𝑁 ∈ (ℤ≥‘𝑀)) → (𝑀...𝑁) = ((𝑀..^𝑁) ∪ {𝑁})) |
| 31 | | eluz2 12884 |
. . . . . . . 8
⊢ (𝑁 ∈
(ℤ≥‘𝑀) ↔ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑀 ≤ 𝑁)) |
| 32 | | simpl1 1192 |
. . . . . . . . . 10
⊢ (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑀 ≤ 𝑁) ∧ ¬ 𝑀 = 𝑁) → 𝑀 ∈ ℤ) |
| 33 | | simpl2 1193 |
. . . . . . . . . 10
⊢ (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑀 ≤ 𝑁) ∧ ¬ 𝑀 = 𝑁) → 𝑁 ∈ ℤ) |
| 34 | | nesym 2997 |
. . . . . . . . . . . 12
⊢ (𝑁 ≠ 𝑀 ↔ ¬ 𝑀 = 𝑁) |
| 35 | | zre 12617 |
. . . . . . . . . . . . . . . 16
⊢ (𝑀 ∈ ℤ → 𝑀 ∈
ℝ) |
| 36 | | ltlen 11362 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ) → (𝑀 < 𝑁 ↔ (𝑀 ≤ 𝑁 ∧ 𝑁 ≠ 𝑀))) |
| 37 | 35, 11, 36 | syl2an 596 |
. . . . . . . . . . . . . . 15
⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 < 𝑁 ↔ (𝑀 ≤ 𝑁 ∧ 𝑁 ≠ 𝑀))) |
| 38 | 37 | biimprd 248 |
. . . . . . . . . . . . . 14
⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝑀 ≤ 𝑁 ∧ 𝑁 ≠ 𝑀) → 𝑀 < 𝑁)) |
| 39 | 38 | exp4b 430 |
. . . . . . . . . . . . 13
⊢ (𝑀 ∈ ℤ → (𝑁 ∈ ℤ → (𝑀 ≤ 𝑁 → (𝑁 ≠ 𝑀 → 𝑀 < 𝑁)))) |
| 40 | 39 | 3imp 1111 |
. . . . . . . . . . . 12
⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑀 ≤ 𝑁) → (𝑁 ≠ 𝑀 → 𝑀 < 𝑁)) |
| 41 | 34, 40 | biimtrrid 243 |
. . . . . . . . . . 11
⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑀 ≤ 𝑁) → (¬ 𝑀 = 𝑁 → 𝑀 < 𝑁)) |
| 42 | 41 | imp 406 |
. . . . . . . . . 10
⊢ (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑀 ≤ 𝑁) ∧ ¬ 𝑀 = 𝑁) → 𝑀 < 𝑁) |
| 43 | 32, 33, 42 | 3jca 1129 |
. . . . . . . . 9
⊢ (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑀 ≤ 𝑁) ∧ ¬ 𝑀 = 𝑁) → (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑀 < 𝑁)) |
| 44 | 43 | ex 412 |
. . . . . . . 8
⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑀 ≤ 𝑁) → (¬ 𝑀 = 𝑁 → (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑀 < 𝑁))) |
| 45 | 31, 44 | sylbi 217 |
. . . . . . 7
⊢ (𝑁 ∈
(ℤ≥‘𝑀) → (¬ 𝑀 = 𝑁 → (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑀 < 𝑁))) |
| 46 | 45 | impcom 407 |
. . . . . 6
⊢ ((¬
𝑀 = 𝑁 ∧ 𝑁 ∈ (ℤ≥‘𝑀)) → (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑀 < 𝑁)) |
| 47 | | fzopred 47334 |
. . . . . 6
⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑀 < 𝑁) → (𝑀..^𝑁) = ({𝑀} ∪ ((𝑀 + 1)..^𝑁))) |
| 48 | 46, 47 | syl 17 |
. . . . 5
⊢ ((¬
𝑀 = 𝑁 ∧ 𝑁 ∈ (ℤ≥‘𝑀)) → (𝑀..^𝑁) = ({𝑀} ∪ ((𝑀 + 1)..^𝑁))) |
| 49 | 48 | uneq1d 4167 |
. . . 4
⊢ ((¬
𝑀 = 𝑁 ∧ 𝑁 ∈ (ℤ≥‘𝑀)) → ((𝑀..^𝑁) ∪ {𝑁}) = (({𝑀} ∪ ((𝑀 + 1)..^𝑁)) ∪ {𝑁})) |
| 50 | 30, 49 | eqtrd 2777 |
. . 3
⊢ ((¬
𝑀 = 𝑁 ∧ 𝑁 ∈ (ℤ≥‘𝑀)) → (𝑀...𝑁) = (({𝑀} ∪ ((𝑀 + 1)..^𝑁)) ∪ {𝑁})) |
| 51 | 50 | ex 412 |
. 2
⊢ (¬
𝑀 = 𝑁 → (𝑁 ∈ (ℤ≥‘𝑀) → (𝑀...𝑁) = (({𝑀} ∪ ((𝑀 + 1)..^𝑁)) ∪ {𝑁}))) |
| 52 | 28, 51 | pm2.61i 182 |
1
⊢ (𝑁 ∈
(ℤ≥‘𝑀) → (𝑀...𝑁) = (({𝑀} ∪ ((𝑀 + 1)..^𝑁)) ∪ {𝑁})) |