Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  hlrelat5N Structured version   Visualization version   GIF version

Theorem hlrelat5N 39395
Description: An atomistic lattice with 0 is relatively atomic, using the definition in Remark 2 of [Kalmbach] p. 149. (Contributed by NM, 21-Oct-2011.) (New usage is discouraged.)
Hypotheses
Ref Expression
hlrelat5.b 𝐵 = (Base‘𝐾)
hlrelat5.l = (le‘𝐾)
hlrelat5.s < = (lt‘𝐾)
hlrelat5.j = (join‘𝐾)
hlrelat5.a 𝐴 = (Atoms‘𝐾)
Assertion
Ref Expression
hlrelat5N (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋 < 𝑌) → ∃𝑝𝐴 (𝑋 < (𝑋 𝑝) ∧ 𝑝 𝑌))
Distinct variable groups:   𝐴,𝑝   𝐵,𝑝   𝐾,𝑝   ,𝑝   𝑋,𝑝   𝑌,𝑝
Allowed substitution hints:   < (𝑝)   (𝑝)

Proof of Theorem hlrelat5N
StepHypRef Expression
1 hlrelat5.b . . . 4 𝐵 = (Base‘𝐾)
2 hlrelat5.l . . . 4 = (le‘𝐾)
3 hlrelat5.s . . . 4 < = (lt‘𝐾)
4 hlrelat5.a . . . 4 𝐴 = (Atoms‘𝐾)
51, 2, 3, 4hlrelat1 39394 . . 3 ((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) → (𝑋 < 𝑌 → ∃𝑝𝐴𝑝 𝑋𝑝 𝑌)))
65imp 406 . 2 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋 < 𝑌) → ∃𝑝𝐴𝑝 𝑋𝑝 𝑌))
7 hllat 39356 . . . . . . . 8 (𝐾 ∈ HL → 𝐾 ∈ Lat)
8 id 22 . . . . . . . 8 (𝑋𝐵𝑋𝐵)
91, 4atbase 39282 . . . . . . . 8 (𝑝𝐴𝑝𝐵)
10 ovexd 7422 . . . . . . . . . . 11 (𝑝𝐵 → (𝑋 𝑝) ∈ V)
112, 3pltval 18291 . . . . . . . . . . 11 ((𝐾 ∈ Lat ∧ 𝑋𝐵 ∧ (𝑋 𝑝) ∈ V) → (𝑋 < (𝑋 𝑝) ↔ (𝑋 (𝑋 𝑝) ∧ 𝑋 ≠ (𝑋 𝑝))))
1210, 11syl3an3 1165 . . . . . . . . . 10 ((𝐾 ∈ Lat ∧ 𝑋𝐵𝑝𝐵) → (𝑋 < (𝑋 𝑝) ↔ (𝑋 (𝑋 𝑝) ∧ 𝑋 ≠ (𝑋 𝑝))))
13 hlrelat5.j . . . . . . . . . . . 12 = (join‘𝐾)
141, 2, 13latlej1 18407 . . . . . . . . . . 11 ((𝐾 ∈ Lat ∧ 𝑋𝐵𝑝𝐵) → 𝑋 (𝑋 𝑝))
1514biantrurd 532 . . . . . . . . . 10 ((𝐾 ∈ Lat ∧ 𝑋𝐵𝑝𝐵) → (𝑋 ≠ (𝑋 𝑝) ↔ (𝑋 (𝑋 𝑝) ∧ 𝑋 ≠ (𝑋 𝑝))))
1612, 15bitr4d 282 . . . . . . . . 9 ((𝐾 ∈ Lat ∧ 𝑋𝐵𝑝𝐵) → (𝑋 < (𝑋 𝑝) ↔ 𝑋 ≠ (𝑋 𝑝)))
171, 2, 13latleeqj1 18410 . . . . . . . . . . . . 13 ((𝐾 ∈ Lat ∧ 𝑝𝐵𝑋𝐵) → (𝑝 𝑋 ↔ (𝑝 𝑋) = 𝑋))
18173com23 1126 . . . . . . . . . . . 12 ((𝐾 ∈ Lat ∧ 𝑋𝐵𝑝𝐵) → (𝑝 𝑋 ↔ (𝑝 𝑋) = 𝑋))
191, 13latjcom 18406 . . . . . . . . . . . . 13 ((𝐾 ∈ Lat ∧ 𝑋𝐵𝑝𝐵) → (𝑋 𝑝) = (𝑝 𝑋))
2019eqeq1d 2731 . . . . . . . . . . . 12 ((𝐾 ∈ Lat ∧ 𝑋𝐵𝑝𝐵) → ((𝑋 𝑝) = 𝑋 ↔ (𝑝 𝑋) = 𝑋))
2118, 20bitr4d 282 . . . . . . . . . . 11 ((𝐾 ∈ Lat ∧ 𝑋𝐵𝑝𝐵) → (𝑝 𝑋 ↔ (𝑋 𝑝) = 𝑋))
2221notbid 318 . . . . . . . . . 10 ((𝐾 ∈ Lat ∧ 𝑋𝐵𝑝𝐵) → (¬ 𝑝 𝑋 ↔ ¬ (𝑋 𝑝) = 𝑋))
23 nesym 2981 . . . . . . . . . 10 (𝑋 ≠ (𝑋 𝑝) ↔ ¬ (𝑋 𝑝) = 𝑋)
2422, 23bitr4di 289 . . . . . . . . 9 ((𝐾 ∈ Lat ∧ 𝑋𝐵𝑝𝐵) → (¬ 𝑝 𝑋𝑋 ≠ (𝑋 𝑝)))
2516, 24bitr4d 282 . . . . . . . 8 ((𝐾 ∈ Lat ∧ 𝑋𝐵𝑝𝐵) → (𝑋 < (𝑋 𝑝) ↔ ¬ 𝑝 𝑋))
267, 8, 9, 25syl3an 1160 . . . . . . 7 ((𝐾 ∈ HL ∧ 𝑋𝐵𝑝𝐴) → (𝑋 < (𝑋 𝑝) ↔ ¬ 𝑝 𝑋))
27263expa 1118 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑋𝐵) ∧ 𝑝𝐴) → (𝑋 < (𝑋 𝑝) ↔ ¬ 𝑝 𝑋))
2827anbi1d 631 . . . . 5 (((𝐾 ∈ HL ∧ 𝑋𝐵) ∧ 𝑝𝐴) → ((𝑋 < (𝑋 𝑝) ∧ 𝑝 𝑌) ↔ (¬ 𝑝 𝑋𝑝 𝑌)))
2928rexbidva 3155 . . . 4 ((𝐾 ∈ HL ∧ 𝑋𝐵) → (∃𝑝𝐴 (𝑋 < (𝑋 𝑝) ∧ 𝑝 𝑌) ↔ ∃𝑝𝐴𝑝 𝑋𝑝 𝑌)))
30293adant3 1132 . . 3 ((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) → (∃𝑝𝐴 (𝑋 < (𝑋 𝑝) ∧ 𝑝 𝑌) ↔ ∃𝑝𝐴𝑝 𝑋𝑝 𝑌)))
3130adantr 480 . 2 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋 < 𝑌) → (∃𝑝𝐴 (𝑋 < (𝑋 𝑝) ∧ 𝑝 𝑌) ↔ ∃𝑝𝐴𝑝 𝑋𝑝 𝑌)))
326, 31mpbird 257 1 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋 < 𝑌) → ∃𝑝𝐴 (𝑋 < (𝑋 𝑝) ∧ 𝑝 𝑌))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wne 2925  wrex 3053  Vcvv 3447   class class class wbr 5107  cfv 6511  (class class class)co 7387  Basecbs 17179  lecple 17227  ltcplt 18269  joincjn 18272  Latclat 18390  Atomscatm 39256  HLchlt 39343
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-id 5533  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-riota 7344  df-ov 7390  df-oprab 7391  df-proset 18255  df-poset 18274  df-plt 18289  df-lub 18305  df-glb 18306  df-join 18307  df-meet 18308  df-p0 18384  df-lat 18391  df-clat 18458  df-oposet 39169  df-ol 39171  df-oml 39172  df-covers 39259  df-ats 39260  df-atl 39291  df-cvlat 39315  df-hlat 39344
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator