Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  hlrelat5N Structured version   Visualization version   GIF version

Theorem hlrelat5N 37342
Description: An atomistic lattice with 0 is relatively atomic, using the definition in Remark 2 of [Kalmbach] p. 149. (Contributed by NM, 21-Oct-2011.) (New usage is discouraged.)
Hypotheses
Ref Expression
hlrelat5.b 𝐵 = (Base‘𝐾)
hlrelat5.l = (le‘𝐾)
hlrelat5.s < = (lt‘𝐾)
hlrelat5.j = (join‘𝐾)
hlrelat5.a 𝐴 = (Atoms‘𝐾)
Assertion
Ref Expression
hlrelat5N (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋 < 𝑌) → ∃𝑝𝐴 (𝑋 < (𝑋 𝑝) ∧ 𝑝 𝑌))
Distinct variable groups:   𝐴,𝑝   𝐵,𝑝   𝐾,𝑝   ,𝑝   𝑋,𝑝   𝑌,𝑝
Allowed substitution hints:   < (𝑝)   (𝑝)

Proof of Theorem hlrelat5N
StepHypRef Expression
1 hlrelat5.b . . . 4 𝐵 = (Base‘𝐾)
2 hlrelat5.l . . . 4 = (le‘𝐾)
3 hlrelat5.s . . . 4 < = (lt‘𝐾)
4 hlrelat5.a . . . 4 𝐴 = (Atoms‘𝐾)
51, 2, 3, 4hlrelat1 37341 . . 3 ((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) → (𝑋 < 𝑌 → ∃𝑝𝐴𝑝 𝑋𝑝 𝑌)))
65imp 406 . 2 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋 < 𝑌) → ∃𝑝𝐴𝑝 𝑋𝑝 𝑌))
7 hllat 37304 . . . . . . . 8 (𝐾 ∈ HL → 𝐾 ∈ Lat)
8 id 22 . . . . . . . 8 (𝑋𝐵𝑋𝐵)
91, 4atbase 37230 . . . . . . . 8 (𝑝𝐴𝑝𝐵)
10 ovexd 7290 . . . . . . . . . . 11 (𝑝𝐵 → (𝑋 𝑝) ∈ V)
112, 3pltval 17965 . . . . . . . . . . 11 ((𝐾 ∈ Lat ∧ 𝑋𝐵 ∧ (𝑋 𝑝) ∈ V) → (𝑋 < (𝑋 𝑝) ↔ (𝑋 (𝑋 𝑝) ∧ 𝑋 ≠ (𝑋 𝑝))))
1210, 11syl3an3 1163 . . . . . . . . . 10 ((𝐾 ∈ Lat ∧ 𝑋𝐵𝑝𝐵) → (𝑋 < (𝑋 𝑝) ↔ (𝑋 (𝑋 𝑝) ∧ 𝑋 ≠ (𝑋 𝑝))))
13 hlrelat5.j . . . . . . . . . . . 12 = (join‘𝐾)
141, 2, 13latlej1 18081 . . . . . . . . . . 11 ((𝐾 ∈ Lat ∧ 𝑋𝐵𝑝𝐵) → 𝑋 (𝑋 𝑝))
1514biantrurd 532 . . . . . . . . . 10 ((𝐾 ∈ Lat ∧ 𝑋𝐵𝑝𝐵) → (𝑋 ≠ (𝑋 𝑝) ↔ (𝑋 (𝑋 𝑝) ∧ 𝑋 ≠ (𝑋 𝑝))))
1612, 15bitr4d 281 . . . . . . . . 9 ((𝐾 ∈ Lat ∧ 𝑋𝐵𝑝𝐵) → (𝑋 < (𝑋 𝑝) ↔ 𝑋 ≠ (𝑋 𝑝)))
171, 2, 13latleeqj1 18084 . . . . . . . . . . . . 13 ((𝐾 ∈ Lat ∧ 𝑝𝐵𝑋𝐵) → (𝑝 𝑋 ↔ (𝑝 𝑋) = 𝑋))
18173com23 1124 . . . . . . . . . . . 12 ((𝐾 ∈ Lat ∧ 𝑋𝐵𝑝𝐵) → (𝑝 𝑋 ↔ (𝑝 𝑋) = 𝑋))
191, 13latjcom 18080 . . . . . . . . . . . . 13 ((𝐾 ∈ Lat ∧ 𝑋𝐵𝑝𝐵) → (𝑋 𝑝) = (𝑝 𝑋))
2019eqeq1d 2740 . . . . . . . . . . . 12 ((𝐾 ∈ Lat ∧ 𝑋𝐵𝑝𝐵) → ((𝑋 𝑝) = 𝑋 ↔ (𝑝 𝑋) = 𝑋))
2118, 20bitr4d 281 . . . . . . . . . . 11 ((𝐾 ∈ Lat ∧ 𝑋𝐵𝑝𝐵) → (𝑝 𝑋 ↔ (𝑋 𝑝) = 𝑋))
2221notbid 317 . . . . . . . . . 10 ((𝐾 ∈ Lat ∧ 𝑋𝐵𝑝𝐵) → (¬ 𝑝 𝑋 ↔ ¬ (𝑋 𝑝) = 𝑋))
23 nesym 2999 . . . . . . . . . 10 (𝑋 ≠ (𝑋 𝑝) ↔ ¬ (𝑋 𝑝) = 𝑋)
2422, 23bitr4di 288 . . . . . . . . 9 ((𝐾 ∈ Lat ∧ 𝑋𝐵𝑝𝐵) → (¬ 𝑝 𝑋𝑋 ≠ (𝑋 𝑝)))
2516, 24bitr4d 281 . . . . . . . 8 ((𝐾 ∈ Lat ∧ 𝑋𝐵𝑝𝐵) → (𝑋 < (𝑋 𝑝) ↔ ¬ 𝑝 𝑋))
267, 8, 9, 25syl3an 1158 . . . . . . 7 ((𝐾 ∈ HL ∧ 𝑋𝐵𝑝𝐴) → (𝑋 < (𝑋 𝑝) ↔ ¬ 𝑝 𝑋))
27263expa 1116 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑋𝐵) ∧ 𝑝𝐴) → (𝑋 < (𝑋 𝑝) ↔ ¬ 𝑝 𝑋))
2827anbi1d 629 . . . . 5 (((𝐾 ∈ HL ∧ 𝑋𝐵) ∧ 𝑝𝐴) → ((𝑋 < (𝑋 𝑝) ∧ 𝑝 𝑌) ↔ (¬ 𝑝 𝑋𝑝 𝑌)))
2928rexbidva 3224 . . . 4 ((𝐾 ∈ HL ∧ 𝑋𝐵) → (∃𝑝𝐴 (𝑋 < (𝑋 𝑝) ∧ 𝑝 𝑌) ↔ ∃𝑝𝐴𝑝 𝑋𝑝 𝑌)))
30293adant3 1130 . . 3 ((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) → (∃𝑝𝐴 (𝑋 < (𝑋 𝑝) ∧ 𝑝 𝑌) ↔ ∃𝑝𝐴𝑝 𝑋𝑝 𝑌)))
3130adantr 480 . 2 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋 < 𝑌) → (∃𝑝𝐴 (𝑋 < (𝑋 𝑝) ∧ 𝑝 𝑌) ↔ ∃𝑝𝐴𝑝 𝑋𝑝 𝑌)))
326, 31mpbird 256 1 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋 < 𝑌) → ∃𝑝𝐴 (𝑋 < (𝑋 𝑝) ∧ 𝑝 𝑌))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 395  w3a 1085   = wceq 1539  wcel 2108  wne 2942  wrex 3064  Vcvv 3422   class class class wbr 5070  cfv 6418  (class class class)co 7255  Basecbs 16840  lecple 16895  ltcplt 17941  joincjn 17944  Latclat 18064  Atomscatm 37204  HLchlt 37291
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-reu 3070  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-id 5480  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-proset 17928  df-poset 17946  df-plt 17963  df-lub 17979  df-glb 17980  df-join 17981  df-meet 17982  df-p0 18058  df-lat 18065  df-clat 18132  df-oposet 37117  df-ol 37119  df-oml 37120  df-covers 37207  df-ats 37208  df-atl 37239  df-cvlat 37263  df-hlat 37292
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator