Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  hlrelat5N Structured version   Visualization version   GIF version

Theorem hlrelat5N 39368
Description: An atomistic lattice with 0 is relatively atomic, using the definition in Remark 2 of [Kalmbach] p. 149. (Contributed by NM, 21-Oct-2011.) (New usage is discouraged.)
Hypotheses
Ref Expression
hlrelat5.b 𝐵 = (Base‘𝐾)
hlrelat5.l = (le‘𝐾)
hlrelat5.s < = (lt‘𝐾)
hlrelat5.j = (join‘𝐾)
hlrelat5.a 𝐴 = (Atoms‘𝐾)
Assertion
Ref Expression
hlrelat5N (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋 < 𝑌) → ∃𝑝𝐴 (𝑋 < (𝑋 𝑝) ∧ 𝑝 𝑌))
Distinct variable groups:   𝐴,𝑝   𝐵,𝑝   𝐾,𝑝   ,𝑝   𝑋,𝑝   𝑌,𝑝
Allowed substitution hints:   < (𝑝)   (𝑝)

Proof of Theorem hlrelat5N
StepHypRef Expression
1 hlrelat5.b . . . 4 𝐵 = (Base‘𝐾)
2 hlrelat5.l . . . 4 = (le‘𝐾)
3 hlrelat5.s . . . 4 < = (lt‘𝐾)
4 hlrelat5.a . . . 4 𝐴 = (Atoms‘𝐾)
51, 2, 3, 4hlrelat1 39367 . . 3 ((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) → (𝑋 < 𝑌 → ∃𝑝𝐴𝑝 𝑋𝑝 𝑌)))
65imp 406 . 2 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋 < 𝑌) → ∃𝑝𝐴𝑝 𝑋𝑝 𝑌))
7 hllat 39329 . . . . . . . 8 (𝐾 ∈ HL → 𝐾 ∈ Lat)
8 id 22 . . . . . . . 8 (𝑋𝐵𝑋𝐵)
91, 4atbase 39255 . . . . . . . 8 (𝑝𝐴𝑝𝐵)
10 ovexd 7404 . . . . . . . . . . 11 (𝑝𝐵 → (𝑋 𝑝) ∈ V)
112, 3pltval 18267 . . . . . . . . . . 11 ((𝐾 ∈ Lat ∧ 𝑋𝐵 ∧ (𝑋 𝑝) ∈ V) → (𝑋 < (𝑋 𝑝) ↔ (𝑋 (𝑋 𝑝) ∧ 𝑋 ≠ (𝑋 𝑝))))
1210, 11syl3an3 1165 . . . . . . . . . 10 ((𝐾 ∈ Lat ∧ 𝑋𝐵𝑝𝐵) → (𝑋 < (𝑋 𝑝) ↔ (𝑋 (𝑋 𝑝) ∧ 𝑋 ≠ (𝑋 𝑝))))
13 hlrelat5.j . . . . . . . . . . . 12 = (join‘𝐾)
141, 2, 13latlej1 18383 . . . . . . . . . . 11 ((𝐾 ∈ Lat ∧ 𝑋𝐵𝑝𝐵) → 𝑋 (𝑋 𝑝))
1514biantrurd 532 . . . . . . . . . 10 ((𝐾 ∈ Lat ∧ 𝑋𝐵𝑝𝐵) → (𝑋 ≠ (𝑋 𝑝) ↔ (𝑋 (𝑋 𝑝) ∧ 𝑋 ≠ (𝑋 𝑝))))
1612, 15bitr4d 282 . . . . . . . . 9 ((𝐾 ∈ Lat ∧ 𝑋𝐵𝑝𝐵) → (𝑋 < (𝑋 𝑝) ↔ 𝑋 ≠ (𝑋 𝑝)))
171, 2, 13latleeqj1 18386 . . . . . . . . . . . . 13 ((𝐾 ∈ Lat ∧ 𝑝𝐵𝑋𝐵) → (𝑝 𝑋 ↔ (𝑝 𝑋) = 𝑋))
18173com23 1126 . . . . . . . . . . . 12 ((𝐾 ∈ Lat ∧ 𝑋𝐵𝑝𝐵) → (𝑝 𝑋 ↔ (𝑝 𝑋) = 𝑋))
191, 13latjcom 18382 . . . . . . . . . . . . 13 ((𝐾 ∈ Lat ∧ 𝑋𝐵𝑝𝐵) → (𝑋 𝑝) = (𝑝 𝑋))
2019eqeq1d 2731 . . . . . . . . . . . 12 ((𝐾 ∈ Lat ∧ 𝑋𝐵𝑝𝐵) → ((𝑋 𝑝) = 𝑋 ↔ (𝑝 𝑋) = 𝑋))
2118, 20bitr4d 282 . . . . . . . . . . 11 ((𝐾 ∈ Lat ∧ 𝑋𝐵𝑝𝐵) → (𝑝 𝑋 ↔ (𝑋 𝑝) = 𝑋))
2221notbid 318 . . . . . . . . . 10 ((𝐾 ∈ Lat ∧ 𝑋𝐵𝑝𝐵) → (¬ 𝑝 𝑋 ↔ ¬ (𝑋 𝑝) = 𝑋))
23 nesym 2981 . . . . . . . . . 10 (𝑋 ≠ (𝑋 𝑝) ↔ ¬ (𝑋 𝑝) = 𝑋)
2422, 23bitr4di 289 . . . . . . . . 9 ((𝐾 ∈ Lat ∧ 𝑋𝐵𝑝𝐵) → (¬ 𝑝 𝑋𝑋 ≠ (𝑋 𝑝)))
2516, 24bitr4d 282 . . . . . . . 8 ((𝐾 ∈ Lat ∧ 𝑋𝐵𝑝𝐵) → (𝑋 < (𝑋 𝑝) ↔ ¬ 𝑝 𝑋))
267, 8, 9, 25syl3an 1160 . . . . . . 7 ((𝐾 ∈ HL ∧ 𝑋𝐵𝑝𝐴) → (𝑋 < (𝑋 𝑝) ↔ ¬ 𝑝 𝑋))
27263expa 1118 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑋𝐵) ∧ 𝑝𝐴) → (𝑋 < (𝑋 𝑝) ↔ ¬ 𝑝 𝑋))
2827anbi1d 631 . . . . 5 (((𝐾 ∈ HL ∧ 𝑋𝐵) ∧ 𝑝𝐴) → ((𝑋 < (𝑋 𝑝) ∧ 𝑝 𝑌) ↔ (¬ 𝑝 𝑋𝑝 𝑌)))
2928rexbidva 3155 . . . 4 ((𝐾 ∈ HL ∧ 𝑋𝐵) → (∃𝑝𝐴 (𝑋 < (𝑋 𝑝) ∧ 𝑝 𝑌) ↔ ∃𝑝𝐴𝑝 𝑋𝑝 𝑌)))
30293adant3 1132 . . 3 ((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) → (∃𝑝𝐴 (𝑋 < (𝑋 𝑝) ∧ 𝑝 𝑌) ↔ ∃𝑝𝐴𝑝 𝑋𝑝 𝑌)))
3130adantr 480 . 2 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋 < 𝑌) → (∃𝑝𝐴 (𝑋 < (𝑋 𝑝) ∧ 𝑝 𝑌) ↔ ∃𝑝𝐴𝑝 𝑋𝑝 𝑌)))
326, 31mpbird 257 1 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋 < 𝑌) → ∃𝑝𝐴 (𝑋 < (𝑋 𝑝) ∧ 𝑝 𝑌))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wne 2925  wrex 3053  Vcvv 3444   class class class wbr 5102  cfv 6499  (class class class)co 7369  Basecbs 17155  lecple 17203  ltcplt 18245  joincjn 18248  Latclat 18366  Atomscatm 39229  HLchlt 39316
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rmo 3351  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-id 5526  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-riota 7326  df-ov 7372  df-oprab 7373  df-proset 18231  df-poset 18250  df-plt 18265  df-lub 18281  df-glb 18282  df-join 18283  df-meet 18284  df-p0 18360  df-lat 18367  df-clat 18434  df-oposet 39142  df-ol 39144  df-oml 39145  df-covers 39232  df-ats 39233  df-atl 39264  df-cvlat 39288  df-hlat 39317
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator