Step | Hyp | Ref
| Expression |
1 | | iccpartgtprec.m |
. 2
⊢ (𝜑 → 𝑀 ∈ ℕ) |
2 | | ral0 4440 |
. . . . 5
⊢
∀𝑖 ∈
∅ (𝑃‘𝑖) < (𝑃‘1) |
3 | | oveq2 7263 |
. . . . . . 7
⊢ (𝑀 = 1 → (1..^𝑀) = (1..^1)) |
4 | | fzo0 13339 |
. . . . . . 7
⊢ (1..^1) =
∅ |
5 | 3, 4 | eqtrdi 2795 |
. . . . . 6
⊢ (𝑀 = 1 → (1..^𝑀) = ∅) |
6 | | fveq2 6756 |
. . . . . . 7
⊢ (𝑀 = 1 → (𝑃‘𝑀) = (𝑃‘1)) |
7 | 6 | breq2d 5082 |
. . . . . 6
⊢ (𝑀 = 1 → ((𝑃‘𝑖) < (𝑃‘𝑀) ↔ (𝑃‘𝑖) < (𝑃‘1))) |
8 | 5, 7 | raleqbidv 3327 |
. . . . 5
⊢ (𝑀 = 1 → (∀𝑖 ∈ (1..^𝑀)(𝑃‘𝑖) < (𝑃‘𝑀) ↔ ∀𝑖 ∈ ∅ (𝑃‘𝑖) < (𝑃‘1))) |
9 | 2, 8 | mpbiri 257 |
. . . 4
⊢ (𝑀 = 1 → ∀𝑖 ∈ (1..^𝑀)(𝑃‘𝑖) < (𝑃‘𝑀)) |
10 | 9 | 2a1d 26 |
. . 3
⊢ (𝑀 = 1 → (𝜑 → (𝑀 ∈ ℕ → ∀𝑖 ∈ (1..^𝑀)(𝑃‘𝑖) < (𝑃‘𝑀)))) |
11 | | simpr 484 |
. . . . . . 7
⊢ (((𝜑 ∧ ¬ 𝑀 = 1) ∧ 𝑀 ∈ ℕ) → 𝑀 ∈ ℕ) |
12 | | iccpartgtprec.p |
. . . . . . . . 9
⊢ (𝜑 → 𝑃 ∈ (RePart‘𝑀)) |
13 | 12 | adantr 480 |
. . . . . . . 8
⊢ ((𝜑 ∧ ¬ 𝑀 = 1) → 𝑃 ∈ (RePart‘𝑀)) |
14 | 13 | adantr 480 |
. . . . . . 7
⊢ (((𝜑 ∧ ¬ 𝑀 = 1) ∧ 𝑀 ∈ ℕ) → 𝑃 ∈ (RePart‘𝑀)) |
15 | | nnnn0 12170 |
. . . . . . . . 9
⊢ (𝑀 ∈ ℕ → 𝑀 ∈
ℕ0) |
16 | | nn0fz0 13283 |
. . . . . . . . 9
⊢ (𝑀 ∈ ℕ0
↔ 𝑀 ∈ (0...𝑀)) |
17 | 15, 16 | sylib 217 |
. . . . . . . 8
⊢ (𝑀 ∈ ℕ → 𝑀 ∈ (0...𝑀)) |
18 | 17 | adantl 481 |
. . . . . . 7
⊢ (((𝜑 ∧ ¬ 𝑀 = 1) ∧ 𝑀 ∈ ℕ) → 𝑀 ∈ (0...𝑀)) |
19 | 11, 14, 18 | iccpartxr 44759 |
. . . . . 6
⊢ (((𝜑 ∧ ¬ 𝑀 = 1) ∧ 𝑀 ∈ ℕ) → (𝑃‘𝑀) ∈
ℝ*) |
20 | | elxr 12781 |
. . . . . . 7
⊢ ((𝑃‘𝑀) ∈ ℝ* ↔ ((𝑃‘𝑀) ∈ ℝ ∨ (𝑃‘𝑀) = +∞ ∨ (𝑃‘𝑀) = -∞)) |
21 | | elfzoelz 13316 |
. . . . . . . . . . . . . 14
⊢ (𝑖 ∈ (1..^𝑀) → 𝑖 ∈ ℤ) |
22 | 21 | ad2antll 725 |
. . . . . . . . . . . . 13
⊢ (((𝑃‘𝑀) ∈ ℝ ∧ (((𝜑 ∧ ¬ 𝑀 = 1) ∧ 𝑀 ∈ ℕ) ∧ 𝑖 ∈ (1..^𝑀))) → 𝑖 ∈ ℤ) |
23 | | elfzo2 13319 |
. . . . . . . . . . . . . . 15
⊢ (𝑖 ∈ (1..^𝑀) ↔ (𝑖 ∈ (ℤ≥‘1)
∧ 𝑀 ∈ ℤ
∧ 𝑖 < 𝑀)) |
24 | | eluzelz 12521 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑖 ∈
(ℤ≥‘1) → 𝑖 ∈ ℤ) |
25 | 24 | peano2zd 12358 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑖 ∈
(ℤ≥‘1) → (𝑖 + 1) ∈ ℤ) |
26 | 25 | 3ad2ant1 1131 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑖 ∈
(ℤ≥‘1) ∧ 𝑀 ∈ ℤ ∧ 𝑖 < 𝑀) → (𝑖 + 1) ∈ ℤ) |
27 | | simp2 1135 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑖 ∈
(ℤ≥‘1) ∧ 𝑀 ∈ ℤ ∧ 𝑖 < 𝑀) → 𝑀 ∈ ℤ) |
28 | | zltp1le 12300 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑖 ∈ ℤ ∧ 𝑀 ∈ ℤ) → (𝑖 < 𝑀 ↔ (𝑖 + 1) ≤ 𝑀)) |
29 | 24, 28 | sylan 579 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑖 ∈
(ℤ≥‘1) ∧ 𝑀 ∈ ℤ) → (𝑖 < 𝑀 ↔ (𝑖 + 1) ≤ 𝑀)) |
30 | 29 | biimp3a 1467 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑖 ∈
(ℤ≥‘1) ∧ 𝑀 ∈ ℤ ∧ 𝑖 < 𝑀) → (𝑖 + 1) ≤ 𝑀) |
31 | | eluz2 12517 |
. . . . . . . . . . . . . . . 16
⊢ (𝑀 ∈
(ℤ≥‘(𝑖 + 1)) ↔ ((𝑖 + 1) ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ (𝑖 + 1) ≤ 𝑀)) |
32 | 26, 27, 30, 31 | syl3anbrc 1341 |
. . . . . . . . . . . . . . 15
⊢ ((𝑖 ∈
(ℤ≥‘1) ∧ 𝑀 ∈ ℤ ∧ 𝑖 < 𝑀) → 𝑀 ∈ (ℤ≥‘(𝑖 + 1))) |
33 | 23, 32 | sylbi 216 |
. . . . . . . . . . . . . 14
⊢ (𝑖 ∈ (1..^𝑀) → 𝑀 ∈ (ℤ≥‘(𝑖 + 1))) |
34 | 33 | ad2antll 725 |
. . . . . . . . . . . . 13
⊢ (((𝑃‘𝑀) ∈ ℝ ∧ (((𝜑 ∧ ¬ 𝑀 = 1) ∧ 𝑀 ∈ ℕ) ∧ 𝑖 ∈ (1..^𝑀))) → 𝑀 ∈ (ℤ≥‘(𝑖 + 1))) |
35 | | fveq2 6756 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑘 = 𝑀 → (𝑃‘𝑘) = (𝑃‘𝑀)) |
36 | 35 | eqcomd 2744 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑘 = 𝑀 → (𝑃‘𝑀) = (𝑃‘𝑘)) |
37 | 36 | eleq1d 2823 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑘 = 𝑀 → ((𝑃‘𝑀) ∈ ℝ ↔ (𝑃‘𝑘) ∈ ℝ)) |
38 | 37 | biimpcd 248 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑃‘𝑀) ∈ ℝ → (𝑘 = 𝑀 → (𝑃‘𝑘) ∈ ℝ)) |
39 | 38 | adantr 480 |
. . . . . . . . . . . . . . . 16
⊢ (((𝑃‘𝑀) ∈ ℝ ∧ (((𝜑 ∧ ¬ 𝑀 = 1) ∧ 𝑀 ∈ ℕ) ∧ 𝑖 ∈ (1..^𝑀))) → (𝑘 = 𝑀 → (𝑃‘𝑘) ∈ ℝ)) |
40 | 39 | adantr 480 |
. . . . . . . . . . . . . . 15
⊢ ((((𝑃‘𝑀) ∈ ℝ ∧ (((𝜑 ∧ ¬ 𝑀 = 1) ∧ 𝑀 ∈ ℕ) ∧ 𝑖 ∈ (1..^𝑀))) ∧ 𝑘 ∈ (𝑖...𝑀)) → (𝑘 = 𝑀 → (𝑃‘𝑘) ∈ ℝ)) |
41 | 40 | com12 32 |
. . . . . . . . . . . . . 14
⊢ (𝑘 = 𝑀 → ((((𝑃‘𝑀) ∈ ℝ ∧ (((𝜑 ∧ ¬ 𝑀 = 1) ∧ 𝑀 ∈ ℕ) ∧ 𝑖 ∈ (1..^𝑀))) ∧ 𝑘 ∈ (𝑖...𝑀)) → (𝑃‘𝑘) ∈ ℝ)) |
42 | 11 | adantr 480 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((((𝜑 ∧ ¬ 𝑀 = 1) ∧ 𝑀 ∈ ℕ) ∧ 𝑖 ∈ (1..^𝑀)) → 𝑀 ∈ ℕ) |
43 | 42 | adantl 481 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝑃‘𝑀) ∈ ℝ ∧ (((𝜑 ∧ ¬ 𝑀 = 1) ∧ 𝑀 ∈ ℕ) ∧ 𝑖 ∈ (1..^𝑀))) → 𝑀 ∈ ℕ) |
44 | 43 | adantr 480 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝑃‘𝑀) ∈ ℝ ∧ (((𝜑 ∧ ¬ 𝑀 = 1) ∧ 𝑀 ∈ ℕ) ∧ 𝑖 ∈ (1..^𝑀))) ∧ 𝑘 ∈ (𝑖...𝑀)) → 𝑀 ∈ ℕ) |
45 | 44 | adantl 481 |
. . . . . . . . . . . . . . . 16
⊢ ((¬
𝑘 = 𝑀 ∧ (((𝑃‘𝑀) ∈ ℝ ∧ (((𝜑 ∧ ¬ 𝑀 = 1) ∧ 𝑀 ∈ ℕ) ∧ 𝑖 ∈ (1..^𝑀))) ∧ 𝑘 ∈ (𝑖...𝑀))) → 𝑀 ∈ ℕ) |
46 | 14 | adantr 480 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((((𝜑 ∧ ¬ 𝑀 = 1) ∧ 𝑀 ∈ ℕ) ∧ 𝑖 ∈ (1..^𝑀)) → 𝑃 ∈ (RePart‘𝑀)) |
47 | 46 | adantl 481 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝑃‘𝑀) ∈ ℝ ∧ (((𝜑 ∧ ¬ 𝑀 = 1) ∧ 𝑀 ∈ ℕ) ∧ 𝑖 ∈ (1..^𝑀))) → 𝑃 ∈ (RePart‘𝑀)) |
48 | 47 | adantr 480 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝑃‘𝑀) ∈ ℝ ∧ (((𝜑 ∧ ¬ 𝑀 = 1) ∧ 𝑀 ∈ ℕ) ∧ 𝑖 ∈ (1..^𝑀))) ∧ 𝑘 ∈ (𝑖...𝑀)) → 𝑃 ∈ (RePart‘𝑀)) |
49 | 48 | adantl 481 |
. . . . . . . . . . . . . . . 16
⊢ ((¬
𝑘 = 𝑀 ∧ (((𝑃‘𝑀) ∈ ℝ ∧ (((𝜑 ∧ ¬ 𝑀 = 1) ∧ 𝑀 ∈ ℕ) ∧ 𝑖 ∈ (1..^𝑀))) ∧ 𝑘 ∈ (𝑖...𝑀))) → 𝑃 ∈ (RePart‘𝑀)) |
50 | | elfz2 13175 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (𝑘 ∈ (𝑖...𝑀) ↔ ((𝑖 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑘 ∈ ℤ) ∧ (𝑖 ≤ 𝑘 ∧ 𝑘 ≤ 𝑀))) |
51 | | eluz2 12517 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ (𝑖 ∈
(ℤ≥‘1) ↔ (1 ∈ ℤ ∧ 𝑖 ∈ ℤ ∧ 1 ≤
𝑖)) |
52 | | 1red 10907 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. 35
⊢ ((𝑖 ∈ ℤ ∧ 𝑘 ∈ ℤ) → 1 ∈
ℝ) |
53 | | zre 12253 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . 36
⊢ (𝑖 ∈ ℤ → 𝑖 ∈
ℝ) |
54 | 53 | adantr 480 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. 35
⊢ ((𝑖 ∈ ℤ ∧ 𝑘 ∈ ℤ) → 𝑖 ∈
ℝ) |
55 | | zre 12253 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . 36
⊢ (𝑘 ∈ ℤ → 𝑘 ∈
ℝ) |
56 | 55 | adantl 481 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. 35
⊢ ((𝑖 ∈ ℤ ∧ 𝑘 ∈ ℤ) → 𝑘 ∈
ℝ) |
57 | | letr 10999 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. 35
⊢ ((1
∈ ℝ ∧ 𝑖
∈ ℝ ∧ 𝑘
∈ ℝ) → ((1 ≤ 𝑖 ∧ 𝑖 ≤ 𝑘) → 1 ≤ 𝑘)) |
58 | 52, 54, 56, 57 | syl3anc 1369 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
34
⊢ ((𝑖 ∈ ℤ ∧ 𝑘 ∈ ℤ) → ((1 ≤
𝑖 ∧ 𝑖 ≤ 𝑘) → 1 ≤ 𝑘)) |
59 | 58 | expcomd 416 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
⊢ ((𝑖 ∈ ℤ ∧ 𝑘 ∈ ℤ) → (𝑖 ≤ 𝑘 → (1 ≤ 𝑖 → 1 ≤ 𝑘))) |
60 | 59 | adantrd 491 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢ ((𝑖 ∈ ℤ ∧ 𝑘 ∈ ℤ) → ((𝑖 ≤ 𝑘 ∧ 𝑘 ≤ 𝑀) → (1 ≤ 𝑖 → 1 ≤ 𝑘))) |
61 | 60 | 3adant2 1129 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ ((𝑖 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑘 ∈ ℤ) → ((𝑖 ≤ 𝑘 ∧ 𝑘 ≤ 𝑀) → (1 ≤ 𝑖 → 1 ≤ 𝑘))) |
62 | 61 | imp 406 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ (((𝑖 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑘 ∈ ℤ) ∧ (𝑖 ≤ 𝑘 ∧ 𝑘 ≤ 𝑀)) → (1 ≤ 𝑖 → 1 ≤ 𝑘)) |
63 | 62 | com12 32 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ (1 ≤
𝑖 → (((𝑖 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑘 ∈ ℤ) ∧ (𝑖 ≤ 𝑘 ∧ 𝑘 ≤ 𝑀)) → 1 ≤ 𝑘)) |
64 | 63 | 3ad2ant3 1133 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ ((1
∈ ℤ ∧ 𝑖
∈ ℤ ∧ 1 ≤ 𝑖) → (((𝑖 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑘 ∈ ℤ) ∧ (𝑖 ≤ 𝑘 ∧ 𝑘 ≤ 𝑀)) → 1 ≤ 𝑘)) |
65 | 51, 64 | sylbi 216 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (𝑖 ∈
(ℤ≥‘1) → (((𝑖 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑘 ∈ ℤ) ∧ (𝑖 ≤ 𝑘 ∧ 𝑘 ≤ 𝑀)) → 1 ≤ 𝑘)) |
66 | 65 | 3ad2ant1 1131 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ ((𝑖 ∈
(ℤ≥‘1) ∧ 𝑀 ∈ ℤ ∧ 𝑖 < 𝑀) → (((𝑖 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑘 ∈ ℤ) ∧ (𝑖 ≤ 𝑘 ∧ 𝑘 ≤ 𝑀)) → 1 ≤ 𝑘)) |
67 | 23, 66 | sylbi 216 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (𝑖 ∈ (1..^𝑀) → (((𝑖 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑘 ∈ ℤ) ∧ (𝑖 ≤ 𝑘 ∧ 𝑘 ≤ 𝑀)) → 1 ≤ 𝑘)) |
68 | 50, 67 | syl5bi 241 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝑖 ∈ (1..^𝑀) → (𝑘 ∈ (𝑖...𝑀) → 1 ≤ 𝑘)) |
69 | 68 | imp 406 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝑖 ∈ (1..^𝑀) ∧ 𝑘 ∈ (𝑖...𝑀)) → 1 ≤ 𝑘) |
70 | 69 | 3adant3 1130 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝑖 ∈ (1..^𝑀) ∧ 𝑘 ∈ (𝑖...𝑀) ∧ ¬ 𝑘 = 𝑀) → 1 ≤ 𝑘) |
71 | | zre 12253 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
⊢ (𝑀 ∈ ℤ → 𝑀 ∈
ℝ) |
72 | 71, 55 | anim12ci 613 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢ ((𝑀 ∈ ℤ ∧ 𝑘 ∈ ℤ) → (𝑘 ∈ ℝ ∧ 𝑀 ∈
ℝ)) |
73 | 72 | 3adant1 1128 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ ((𝑖 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑘 ∈ ℤ) → (𝑘 ∈ ℝ ∧ 𝑀 ∈
ℝ)) |
74 | | ltlen 11006 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ ((𝑘 ∈ ℝ ∧ 𝑀 ∈ ℝ) → (𝑘 < 𝑀 ↔ (𝑘 ≤ 𝑀 ∧ 𝑀 ≠ 𝑘))) |
75 | 73, 74 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ ((𝑖 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑘 ∈ ℤ) → (𝑘 < 𝑀 ↔ (𝑘 ≤ 𝑀 ∧ 𝑀 ≠ 𝑘))) |
76 | | nesym 2999 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ (𝑀 ≠ 𝑘 ↔ ¬ 𝑘 = 𝑀) |
77 | 76 | anbi2i 622 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ ((𝑘 ≤ 𝑀 ∧ 𝑀 ≠ 𝑘) ↔ (𝑘 ≤ 𝑀 ∧ ¬ 𝑘 = 𝑀)) |
78 | 75, 77 | bitr2di 287 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ ((𝑖 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑘 ∈ ℤ) → ((𝑘 ≤ 𝑀 ∧ ¬ 𝑘 = 𝑀) ↔ 𝑘 < 𝑀)) |
79 | 78 | biimpd 228 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ ((𝑖 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑘 ∈ ℤ) → ((𝑘 ≤ 𝑀 ∧ ¬ 𝑘 = 𝑀) → 𝑘 < 𝑀)) |
80 | 79 | expd 415 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ ((𝑖 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑘 ∈ ℤ) → (𝑘 ≤ 𝑀 → (¬ 𝑘 = 𝑀 → 𝑘 < 𝑀))) |
81 | 80 | adantld 490 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ ((𝑖 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑘 ∈ ℤ) → ((𝑖 ≤ 𝑘 ∧ 𝑘 ≤ 𝑀) → (¬ 𝑘 = 𝑀 → 𝑘 < 𝑀))) |
82 | 81 | imp 406 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (((𝑖 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑘 ∈ ℤ) ∧ (𝑖 ≤ 𝑘 ∧ 𝑘 ≤ 𝑀)) → (¬ 𝑘 = 𝑀 → 𝑘 < 𝑀)) |
83 | 50, 82 | sylbi 216 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝑘 ∈ (𝑖...𝑀) → (¬ 𝑘 = 𝑀 → 𝑘 < 𝑀)) |
84 | 83 | imp 406 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝑘 ∈ (𝑖...𝑀) ∧ ¬ 𝑘 = 𝑀) → 𝑘 < 𝑀) |
85 | 84 | 3adant1 1128 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝑖 ∈ (1..^𝑀) ∧ 𝑘 ∈ (𝑖...𝑀) ∧ ¬ 𝑘 = 𝑀) → 𝑘 < 𝑀) |
86 | 70, 85 | jca 511 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝑖 ∈ (1..^𝑀) ∧ 𝑘 ∈ (𝑖...𝑀) ∧ ¬ 𝑘 = 𝑀) → (1 ≤ 𝑘 ∧ 𝑘 < 𝑀)) |
87 | | elfzelz 13185 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝑘 ∈ (𝑖...𝑀) → 𝑘 ∈ ℤ) |
88 | | 1zzd 12281 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝑘 ∈ (𝑖...𝑀) → 1 ∈ ℤ) |
89 | | elfzel2 13183 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝑘 ∈ (𝑖...𝑀) → 𝑀 ∈ ℤ) |
90 | 87, 88, 89 | 3jca 1126 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑘 ∈ (𝑖...𝑀) → (𝑘 ∈ ℤ ∧ 1 ∈ ℤ ∧
𝑀 ∈
ℤ)) |
91 | 90 | 3ad2ant2 1132 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝑖 ∈ (1..^𝑀) ∧ 𝑘 ∈ (𝑖...𝑀) ∧ ¬ 𝑘 = 𝑀) → (𝑘 ∈ ℤ ∧ 1 ∈ ℤ ∧
𝑀 ∈
ℤ)) |
92 | | elfzo 13318 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝑘 ∈ ℤ ∧ 1 ∈
ℤ ∧ 𝑀 ∈
ℤ) → (𝑘 ∈
(1..^𝑀) ↔ (1 ≤
𝑘 ∧ 𝑘 < 𝑀))) |
93 | 91, 92 | syl 17 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝑖 ∈ (1..^𝑀) ∧ 𝑘 ∈ (𝑖...𝑀) ∧ ¬ 𝑘 = 𝑀) → (𝑘 ∈ (1..^𝑀) ↔ (1 ≤ 𝑘 ∧ 𝑘 < 𝑀))) |
94 | 86, 93 | mpbird 256 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝑖 ∈ (1..^𝑀) ∧ 𝑘 ∈ (𝑖...𝑀) ∧ ¬ 𝑘 = 𝑀) → 𝑘 ∈ (1..^𝑀)) |
95 | 94 | 3exp 1117 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑖 ∈ (1..^𝑀) → (𝑘 ∈ (𝑖...𝑀) → (¬ 𝑘 = 𝑀 → 𝑘 ∈ (1..^𝑀)))) |
96 | 95 | ad2antll 725 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝑃‘𝑀) ∈ ℝ ∧ (((𝜑 ∧ ¬ 𝑀 = 1) ∧ 𝑀 ∈ ℕ) ∧ 𝑖 ∈ (1..^𝑀))) → (𝑘 ∈ (𝑖...𝑀) → (¬ 𝑘 = 𝑀 → 𝑘 ∈ (1..^𝑀)))) |
97 | 96 | imp 406 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝑃‘𝑀) ∈ ℝ ∧ (((𝜑 ∧ ¬ 𝑀 = 1) ∧ 𝑀 ∈ ℕ) ∧ 𝑖 ∈ (1..^𝑀))) ∧ 𝑘 ∈ (𝑖...𝑀)) → (¬ 𝑘 = 𝑀 → 𝑘 ∈ (1..^𝑀))) |
98 | 97 | impcom 407 |
. . . . . . . . . . . . . . . 16
⊢ ((¬
𝑘 = 𝑀 ∧ (((𝑃‘𝑀) ∈ ℝ ∧ (((𝜑 ∧ ¬ 𝑀 = 1) ∧ 𝑀 ∈ ℕ) ∧ 𝑖 ∈ (1..^𝑀))) ∧ 𝑘 ∈ (𝑖...𝑀))) → 𝑘 ∈ (1..^𝑀)) |
99 | 45, 49, 98 | iccpartipre 44761 |
. . . . . . . . . . . . . . 15
⊢ ((¬
𝑘 = 𝑀 ∧ (((𝑃‘𝑀) ∈ ℝ ∧ (((𝜑 ∧ ¬ 𝑀 = 1) ∧ 𝑀 ∈ ℕ) ∧ 𝑖 ∈ (1..^𝑀))) ∧ 𝑘 ∈ (𝑖...𝑀))) → (𝑃‘𝑘) ∈ ℝ) |
100 | 99 | ex 412 |
. . . . . . . . . . . . . 14
⊢ (¬
𝑘 = 𝑀 → ((((𝑃‘𝑀) ∈ ℝ ∧ (((𝜑 ∧ ¬ 𝑀 = 1) ∧ 𝑀 ∈ ℕ) ∧ 𝑖 ∈ (1..^𝑀))) ∧ 𝑘 ∈ (𝑖...𝑀)) → (𝑃‘𝑘) ∈ ℝ)) |
101 | 41, 100 | pm2.61i 182 |
. . . . . . . . . . . . 13
⊢ ((((𝑃‘𝑀) ∈ ℝ ∧ (((𝜑 ∧ ¬ 𝑀 = 1) ∧ 𝑀 ∈ ℕ) ∧ 𝑖 ∈ (1..^𝑀))) ∧ 𝑘 ∈ (𝑖...𝑀)) → (𝑃‘𝑘) ∈ ℝ) |
102 | 43 | adantr 480 |
. . . . . . . . . . . . . . 15
⊢ ((((𝑃‘𝑀) ∈ ℝ ∧ (((𝜑 ∧ ¬ 𝑀 = 1) ∧ 𝑀 ∈ ℕ) ∧ 𝑖 ∈ (1..^𝑀))) ∧ 𝑘 ∈ (𝑖...(𝑀 − 1))) → 𝑀 ∈ ℕ) |
103 | 47 | adantr 480 |
. . . . . . . . . . . . . . 15
⊢ ((((𝑃‘𝑀) ∈ ℝ ∧ (((𝜑 ∧ ¬ 𝑀 = 1) ∧ 𝑀 ∈ ℕ) ∧ 𝑖 ∈ (1..^𝑀))) ∧ 𝑘 ∈ (𝑖...(𝑀 − 1))) → 𝑃 ∈ (RePart‘𝑀)) |
104 | | 1eluzge0 12561 |
. . . . . . . . . . . . . . . . . . . 20
⊢ 1 ∈
(ℤ≥‘0) |
105 | | fzoss1 13342 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (1 ∈
(ℤ≥‘0) → (1..^𝑀) ⊆ (0..^𝑀)) |
106 | 104, 105 | mp1i 13 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑖 ∈ (1..^𝑀) ∧ 𝑘 ∈ (𝑖...(𝑀 − 1))) → (1..^𝑀) ⊆ (0..^𝑀)) |
107 | | elfzoel2 13315 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝑖 ∈ (1..^𝑀) → 𝑀 ∈ ℤ) |
108 | | fzoval 13317 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝑀 ∈ ℤ → (𝑖..^𝑀) = (𝑖...(𝑀 − 1))) |
109 | 107, 108 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑖 ∈ (1..^𝑀) → (𝑖..^𝑀) = (𝑖...(𝑀 − 1))) |
110 | 109 | eqcomd 2744 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑖 ∈ (1..^𝑀) → (𝑖...(𝑀 − 1)) = (𝑖..^𝑀)) |
111 | 110 | eleq2d 2824 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑖 ∈ (1..^𝑀) → (𝑘 ∈ (𝑖...(𝑀 − 1)) ↔ 𝑘 ∈ (𝑖..^𝑀))) |
112 | | elfzouz 13320 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑖 ∈ (1..^𝑀) → 𝑖 ∈
(ℤ≥‘1)) |
113 | | fzoss1 13342 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑖 ∈
(ℤ≥‘1) → (𝑖..^𝑀) ⊆ (1..^𝑀)) |
114 | 112, 113 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑖 ∈ (1..^𝑀) → (𝑖..^𝑀) ⊆ (1..^𝑀)) |
115 | 114 | sseld 3916 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑖 ∈ (1..^𝑀) → (𝑘 ∈ (𝑖..^𝑀) → 𝑘 ∈ (1..^𝑀))) |
116 | 111, 115 | sylbid 239 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑖 ∈ (1..^𝑀) → (𝑘 ∈ (𝑖...(𝑀 − 1)) → 𝑘 ∈ (1..^𝑀))) |
117 | 116 | imp 406 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑖 ∈ (1..^𝑀) ∧ 𝑘 ∈ (𝑖...(𝑀 − 1))) → 𝑘 ∈ (1..^𝑀)) |
118 | 106, 117 | sseldd 3918 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑖 ∈ (1..^𝑀) ∧ 𝑘 ∈ (𝑖...(𝑀 − 1))) → 𝑘 ∈ (0..^𝑀)) |
119 | 118 | ex 412 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑖 ∈ (1..^𝑀) → (𝑘 ∈ (𝑖...(𝑀 − 1)) → 𝑘 ∈ (0..^𝑀))) |
120 | 119 | ad2antll 725 |
. . . . . . . . . . . . . . . 16
⊢ (((𝑃‘𝑀) ∈ ℝ ∧ (((𝜑 ∧ ¬ 𝑀 = 1) ∧ 𝑀 ∈ ℕ) ∧ 𝑖 ∈ (1..^𝑀))) → (𝑘 ∈ (𝑖...(𝑀 − 1)) → 𝑘 ∈ (0..^𝑀))) |
121 | 120 | imp 406 |
. . . . . . . . . . . . . . 15
⊢ ((((𝑃‘𝑀) ∈ ℝ ∧ (((𝜑 ∧ ¬ 𝑀 = 1) ∧ 𝑀 ∈ ℕ) ∧ 𝑖 ∈ (1..^𝑀))) ∧ 𝑘 ∈ (𝑖...(𝑀 − 1))) → 𝑘 ∈ (0..^𝑀)) |
122 | | iccpartimp 44757 |
. . . . . . . . . . . . . . 15
⊢ ((𝑀 ∈ ℕ ∧ 𝑃 ∈ (RePart‘𝑀) ∧ 𝑘 ∈ (0..^𝑀)) → (𝑃 ∈ (ℝ*
↑m (0...𝑀))
∧ (𝑃‘𝑘) < (𝑃‘(𝑘 + 1)))) |
123 | 102, 103,
121, 122 | syl3anc 1369 |
. . . . . . . . . . . . . 14
⊢ ((((𝑃‘𝑀) ∈ ℝ ∧ (((𝜑 ∧ ¬ 𝑀 = 1) ∧ 𝑀 ∈ ℕ) ∧ 𝑖 ∈ (1..^𝑀))) ∧ 𝑘 ∈ (𝑖...(𝑀 − 1))) → (𝑃 ∈ (ℝ*
↑m (0...𝑀))
∧ (𝑃‘𝑘) < (𝑃‘(𝑘 + 1)))) |
124 | 123 | simprd 495 |
. . . . . . . . . . . . 13
⊢ ((((𝑃‘𝑀) ∈ ℝ ∧ (((𝜑 ∧ ¬ 𝑀 = 1) ∧ 𝑀 ∈ ℕ) ∧ 𝑖 ∈ (1..^𝑀))) ∧ 𝑘 ∈ (𝑖...(𝑀 − 1))) → (𝑃‘𝑘) < (𝑃‘(𝑘 + 1))) |
125 | 22, 34, 101, 124 | smonoord 44711 |
. . . . . . . . . . . 12
⊢ (((𝑃‘𝑀) ∈ ℝ ∧ (((𝜑 ∧ ¬ 𝑀 = 1) ∧ 𝑀 ∈ ℕ) ∧ 𝑖 ∈ (1..^𝑀))) → (𝑃‘𝑖) < (𝑃‘𝑀)) |
126 | 125 | ex 412 |
. . . . . . . . . . 11
⊢ ((𝑃‘𝑀) ∈ ℝ → ((((𝜑 ∧ ¬ 𝑀 = 1) ∧ 𝑀 ∈ ℕ) ∧ 𝑖 ∈ (1..^𝑀)) → (𝑃‘𝑖) < (𝑃‘𝑀))) |
127 | | simpr 484 |
. . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ ¬ 𝑀 = 1) ∧ 𝑀 ∈ ℕ) ∧ 𝑖 ∈ (1..^𝑀)) → 𝑖 ∈ (1..^𝑀)) |
128 | 42, 46, 127 | iccpartipre 44761 |
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ ¬ 𝑀 = 1) ∧ 𝑀 ∈ ℕ) ∧ 𝑖 ∈ (1..^𝑀)) → (𝑃‘𝑖) ∈ ℝ) |
129 | | ltpnf 12785 |
. . . . . . . . . . . . 13
⊢ ((𝑃‘𝑖) ∈ ℝ → (𝑃‘𝑖) < +∞) |
130 | 128, 129 | syl 17 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ ¬ 𝑀 = 1) ∧ 𝑀 ∈ ℕ) ∧ 𝑖 ∈ (1..^𝑀)) → (𝑃‘𝑖) < +∞) |
131 | | breq2 5074 |
. . . . . . . . . . . 12
⊢ ((𝑃‘𝑀) = +∞ → ((𝑃‘𝑖) < (𝑃‘𝑀) ↔ (𝑃‘𝑖) < +∞)) |
132 | 130, 131 | syl5ibr 245 |
. . . . . . . . . . 11
⊢ ((𝑃‘𝑀) = +∞ → ((((𝜑 ∧ ¬ 𝑀 = 1) ∧ 𝑀 ∈ ℕ) ∧ 𝑖 ∈ (1..^𝑀)) → (𝑃‘𝑖) < (𝑃‘𝑀))) |
133 | 42 | adantl 481 |
. . . . . . . . . . . . . . 15
⊢ (((𝑃‘𝑀) = -∞ ∧ (((𝜑 ∧ ¬ 𝑀 = 1) ∧ 𝑀 ∈ ℕ) ∧ 𝑖 ∈ (1..^𝑀))) → 𝑀 ∈ ℕ) |
134 | 46 | adantl 481 |
. . . . . . . . . . . . . . 15
⊢ (((𝑃‘𝑀) = -∞ ∧ (((𝜑 ∧ ¬ 𝑀 = 1) ∧ 𝑀 ∈ ℕ) ∧ 𝑖 ∈ (1..^𝑀))) → 𝑃 ∈ (RePart‘𝑀)) |
135 | | elfzofz 13331 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑖 ∈ (1..^𝑀) → 𝑖 ∈ (1...𝑀)) |
136 | 135 | ad2antll 725 |
. . . . . . . . . . . . . . . 16
⊢ (((𝑃‘𝑀) = -∞ ∧ (((𝜑 ∧ ¬ 𝑀 = 1) ∧ 𝑀 ∈ ℕ) ∧ 𝑖 ∈ (1..^𝑀))) → 𝑖 ∈ (1...𝑀)) |
137 | | elfzubelfz 13197 |
. . . . . . . . . . . . . . . 16
⊢ (𝑖 ∈ (1...𝑀) → 𝑀 ∈ (1...𝑀)) |
138 | 136, 137 | syl 17 |
. . . . . . . . . . . . . . 15
⊢ (((𝑃‘𝑀) = -∞ ∧ (((𝜑 ∧ ¬ 𝑀 = 1) ∧ 𝑀 ∈ ℕ) ∧ 𝑖 ∈ (1..^𝑀))) → 𝑀 ∈ (1...𝑀)) |
139 | 133, 134,
138 | iccpartgtprec 44760 |
. . . . . . . . . . . . . 14
⊢ (((𝑃‘𝑀) = -∞ ∧ (((𝜑 ∧ ¬ 𝑀 = 1) ∧ 𝑀 ∈ ℕ) ∧ 𝑖 ∈ (1..^𝑀))) → (𝑃‘(𝑀 − 1)) < (𝑃‘𝑀)) |
140 | | breq2 5074 |
. . . . . . . . . . . . . . . 16
⊢ (-∞
= (𝑃‘𝑀) → ((𝑃‘(𝑀 − 1)) < -∞ ↔ (𝑃‘(𝑀 − 1)) < (𝑃‘𝑀))) |
141 | 140 | eqcoms 2746 |
. . . . . . . . . . . . . . 15
⊢ ((𝑃‘𝑀) = -∞ → ((𝑃‘(𝑀 − 1)) < -∞ ↔ (𝑃‘(𝑀 − 1)) < (𝑃‘𝑀))) |
142 | 141 | adantr 480 |
. . . . . . . . . . . . . 14
⊢ (((𝑃‘𝑀) = -∞ ∧ (((𝜑 ∧ ¬ 𝑀 = 1) ∧ 𝑀 ∈ ℕ) ∧ 𝑖 ∈ (1..^𝑀))) → ((𝑃‘(𝑀 − 1)) < -∞ ↔ (𝑃‘(𝑀 − 1)) < (𝑃‘𝑀))) |
143 | 139, 142 | mpbird 256 |
. . . . . . . . . . . . 13
⊢ (((𝑃‘𝑀) = -∞ ∧ (((𝜑 ∧ ¬ 𝑀 = 1) ∧ 𝑀 ∈ ℕ) ∧ 𝑖 ∈ (1..^𝑀))) → (𝑃‘(𝑀 − 1)) < -∞) |
144 | 15 | adantl 481 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝜑 ∧ ¬ 𝑀 = 1) ∧ 𝑀 ∈ ℕ) → 𝑀 ∈
ℕ0) |
145 | 144 | adantr 480 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝜑 ∧ ¬ 𝑀 = 1) ∧ 𝑀 ∈ ℕ) ∧ 𝑖 ∈ (1..^𝑀)) → 𝑀 ∈
ℕ0) |
146 | | nnne0 11937 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑀 ∈ ℕ → 𝑀 ≠ 0) |
147 | 146 | adantl 481 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (((𝜑 ∧ ¬ 𝑀 = 1) ∧ 𝑀 ∈ ℕ) → 𝑀 ≠ 0) |
148 | | df-ne 2943 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝑀 ≠ 1 ↔ ¬ 𝑀 = 1) |
149 | 148 | biimpri 227 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (¬
𝑀 = 1 → 𝑀 ≠ 1) |
150 | 149 | adantl 481 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝜑 ∧ ¬ 𝑀 = 1) → 𝑀 ≠ 1) |
151 | 150 | adantr 480 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (((𝜑 ∧ ¬ 𝑀 = 1) ∧ 𝑀 ∈ ℕ) → 𝑀 ≠ 1) |
152 | 144, 147,
151 | 3jca 1126 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝜑 ∧ ¬ 𝑀 = 1) ∧ 𝑀 ∈ ℕ) → (𝑀 ∈ ℕ0 ∧ 𝑀 ≠ 0 ∧ 𝑀 ≠ 1)) |
153 | 152 | adantr 480 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((((𝜑 ∧ ¬ 𝑀 = 1) ∧ 𝑀 ∈ ℕ) ∧ 𝑖 ∈ (1..^𝑀)) → (𝑀 ∈ ℕ0 ∧ 𝑀 ≠ 0 ∧ 𝑀 ≠ 1)) |
154 | | nn0n0n1ge2 12230 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑀 ∈ ℕ0
∧ 𝑀 ≠ 0 ∧ 𝑀 ≠ 1) → 2 ≤ 𝑀) |
155 | 153, 154 | syl 17 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝜑 ∧ ¬ 𝑀 = 1) ∧ 𝑀 ∈ ℕ) ∧ 𝑖 ∈ (1..^𝑀)) → 2 ≤ 𝑀) |
156 | 145, 155 | jca 511 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝜑 ∧ ¬ 𝑀 = 1) ∧ 𝑀 ∈ ℕ) ∧ 𝑖 ∈ (1..^𝑀)) → (𝑀 ∈ ℕ0 ∧ 2 ≤
𝑀)) |
157 | 156 | adantl 481 |
. . . . . . . . . . . . . . . 16
⊢ (((𝑃‘𝑀) = -∞ ∧ (((𝜑 ∧ ¬ 𝑀 = 1) ∧ 𝑀 ∈ ℕ) ∧ 𝑖 ∈ (1..^𝑀))) → (𝑀 ∈ ℕ0 ∧ 2 ≤
𝑀)) |
158 | | ige2m1fz 13275 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑀 ∈ ℕ0
∧ 2 ≤ 𝑀) →
(𝑀 − 1) ∈
(0...𝑀)) |
159 | 157, 158 | syl 17 |
. . . . . . . . . . . . . . 15
⊢ (((𝑃‘𝑀) = -∞ ∧ (((𝜑 ∧ ¬ 𝑀 = 1) ∧ 𝑀 ∈ ℕ) ∧ 𝑖 ∈ (1..^𝑀))) → (𝑀 − 1) ∈ (0...𝑀)) |
160 | 133, 134,
159 | iccpartxr 44759 |
. . . . . . . . . . . . . 14
⊢ (((𝑃‘𝑀) = -∞ ∧ (((𝜑 ∧ ¬ 𝑀 = 1) ∧ 𝑀 ∈ ℕ) ∧ 𝑖 ∈ (1..^𝑀))) → (𝑃‘(𝑀 − 1)) ∈
ℝ*) |
161 | | nltmnf 12794 |
. . . . . . . . . . . . . 14
⊢ ((𝑃‘(𝑀 − 1)) ∈ ℝ*
→ ¬ (𝑃‘(𝑀 − 1)) < -∞) |
162 | 160, 161 | syl 17 |
. . . . . . . . . . . . 13
⊢ (((𝑃‘𝑀) = -∞ ∧ (((𝜑 ∧ ¬ 𝑀 = 1) ∧ 𝑀 ∈ ℕ) ∧ 𝑖 ∈ (1..^𝑀))) → ¬ (𝑃‘(𝑀 − 1)) < -∞) |
163 | 143, 162 | pm2.21dd 194 |
. . . . . . . . . . . 12
⊢ (((𝑃‘𝑀) = -∞ ∧ (((𝜑 ∧ ¬ 𝑀 = 1) ∧ 𝑀 ∈ ℕ) ∧ 𝑖 ∈ (1..^𝑀))) → (𝑃‘𝑖) < (𝑃‘𝑀)) |
164 | 163 | ex 412 |
. . . . . . . . . . 11
⊢ ((𝑃‘𝑀) = -∞ → ((((𝜑 ∧ ¬ 𝑀 = 1) ∧ 𝑀 ∈ ℕ) ∧ 𝑖 ∈ (1..^𝑀)) → (𝑃‘𝑖) < (𝑃‘𝑀))) |
165 | 126, 132,
164 | 3jaoi 1425 |
. . . . . . . . . 10
⊢ (((𝑃‘𝑀) ∈ ℝ ∨ (𝑃‘𝑀) = +∞ ∨ (𝑃‘𝑀) = -∞) → ((((𝜑 ∧ ¬ 𝑀 = 1) ∧ 𝑀 ∈ ℕ) ∧ 𝑖 ∈ (1..^𝑀)) → (𝑃‘𝑖) < (𝑃‘𝑀))) |
166 | 165 | impl 455 |
. . . . . . . . 9
⊢
(((((𝑃‘𝑀) ∈ ℝ ∨ (𝑃‘𝑀) = +∞ ∨ (𝑃‘𝑀) = -∞) ∧ ((𝜑 ∧ ¬ 𝑀 = 1) ∧ 𝑀 ∈ ℕ)) ∧ 𝑖 ∈ (1..^𝑀)) → (𝑃‘𝑖) < (𝑃‘𝑀)) |
167 | 166 | ralrimiva 3107 |
. . . . . . . 8
⊢ ((((𝑃‘𝑀) ∈ ℝ ∨ (𝑃‘𝑀) = +∞ ∨ (𝑃‘𝑀) = -∞) ∧ ((𝜑 ∧ ¬ 𝑀 = 1) ∧ 𝑀 ∈ ℕ)) → ∀𝑖 ∈ (1..^𝑀)(𝑃‘𝑖) < (𝑃‘𝑀)) |
168 | 167 | ex 412 |
. . . . . . 7
⊢ (((𝑃‘𝑀) ∈ ℝ ∨ (𝑃‘𝑀) = +∞ ∨ (𝑃‘𝑀) = -∞) → (((𝜑 ∧ ¬ 𝑀 = 1) ∧ 𝑀 ∈ ℕ) → ∀𝑖 ∈ (1..^𝑀)(𝑃‘𝑖) < (𝑃‘𝑀))) |
169 | 20, 168 | sylbi 216 |
. . . . . 6
⊢ ((𝑃‘𝑀) ∈ ℝ* → (((𝜑 ∧ ¬ 𝑀 = 1) ∧ 𝑀 ∈ ℕ) → ∀𝑖 ∈ (1..^𝑀)(𝑃‘𝑖) < (𝑃‘𝑀))) |
170 | 19, 169 | mpcom 38 |
. . . . 5
⊢ (((𝜑 ∧ ¬ 𝑀 = 1) ∧ 𝑀 ∈ ℕ) → ∀𝑖 ∈ (1..^𝑀)(𝑃‘𝑖) < (𝑃‘𝑀)) |
171 | 170 | ex 412 |
. . . 4
⊢ ((𝜑 ∧ ¬ 𝑀 = 1) → (𝑀 ∈ ℕ → ∀𝑖 ∈ (1..^𝑀)(𝑃‘𝑖) < (𝑃‘𝑀))) |
172 | 171 | expcom 413 |
. . 3
⊢ (¬
𝑀 = 1 → (𝜑 → (𝑀 ∈ ℕ → ∀𝑖 ∈ (1..^𝑀)(𝑃‘𝑖) < (𝑃‘𝑀)))) |
173 | 10, 172 | pm2.61i 182 |
. 2
⊢ (𝜑 → (𝑀 ∈ ℕ → ∀𝑖 ∈ (1..^𝑀)(𝑃‘𝑖) < (𝑃‘𝑀))) |
174 | 1, 173 | mpd 15 |
1
⊢ (𝜑 → ∀𝑖 ∈ (1..^𝑀)(𝑃‘𝑖) < (𝑃‘𝑀)) |