![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > uvcvv0 | Structured version Visualization version GIF version |
Description: The unit vector is zero at its designated coordinate. (Contributed by Stefan O'Rear, 3-Feb-2015.) |
Ref | Expression |
---|---|
uvcvv.u | ⊢ 𝑈 = (𝑅 unitVec 𝐼) |
uvcvv.r | ⊢ (𝜑 → 𝑅 ∈ 𝑉) |
uvcvv.i | ⊢ (𝜑 → 𝐼 ∈ 𝑊) |
uvcvv.j | ⊢ (𝜑 → 𝐽 ∈ 𝐼) |
uvcvv0.k | ⊢ (𝜑 → 𝐾 ∈ 𝐼) |
uvcvv0.jk | ⊢ (𝜑 → 𝐽 ≠ 𝐾) |
uvcvv0.z | ⊢ 0 = (0g‘𝑅) |
Ref | Expression |
---|---|
uvcvv0 | ⊢ (𝜑 → ((𝑈‘𝐽)‘𝐾) = 0 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | uvcvv.r | . . 3 ⊢ (𝜑 → 𝑅 ∈ 𝑉) | |
2 | uvcvv.i | . . 3 ⊢ (𝜑 → 𝐼 ∈ 𝑊) | |
3 | uvcvv.j | . . 3 ⊢ (𝜑 → 𝐽 ∈ 𝐼) | |
4 | uvcvv0.k | . . 3 ⊢ (𝜑 → 𝐾 ∈ 𝐼) | |
5 | uvcvv.u | . . . 4 ⊢ 𝑈 = (𝑅 unitVec 𝐼) | |
6 | eqid 2740 | . . . 4 ⊢ (1r‘𝑅) = (1r‘𝑅) | |
7 | uvcvv0.z | . . . 4 ⊢ 0 = (0g‘𝑅) | |
8 | 5, 6, 7 | uvcvval 21829 | . . 3 ⊢ (((𝑅 ∈ 𝑉 ∧ 𝐼 ∈ 𝑊 ∧ 𝐽 ∈ 𝐼) ∧ 𝐾 ∈ 𝐼) → ((𝑈‘𝐽)‘𝐾) = if(𝐾 = 𝐽, (1r‘𝑅), 0 )) |
9 | 1, 2, 3, 4, 8 | syl31anc 1373 | . 2 ⊢ (𝜑 → ((𝑈‘𝐽)‘𝐾) = if(𝐾 = 𝐽, (1r‘𝑅), 0 )) |
10 | uvcvv0.jk | . . . 4 ⊢ (𝜑 → 𝐽 ≠ 𝐾) | |
11 | nesym 3003 | . . . 4 ⊢ (𝐽 ≠ 𝐾 ↔ ¬ 𝐾 = 𝐽) | |
12 | 10, 11 | sylib 218 | . . 3 ⊢ (𝜑 → ¬ 𝐾 = 𝐽) |
13 | 12 | iffalsed 4559 | . 2 ⊢ (𝜑 → if(𝐾 = 𝐽, (1r‘𝑅), 0 ) = 0 ) |
14 | 9, 13 | eqtrd 2780 | 1 ⊢ (𝜑 → ((𝑈‘𝐽)‘𝐾) = 0 ) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 = wceq 1537 ∈ wcel 2108 ≠ wne 2946 ifcif 4548 ‘cfv 6573 (class class class)co 7448 0gc0g 17499 1rcur 20208 unitVec cuvc 21825 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-rep 5303 ax-sep 5317 ax-nul 5324 ax-pr 5447 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-ral 3068 df-rex 3077 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-id 5593 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-ov 7451 df-oprab 7452 df-mpo 7453 df-uvc 21826 |
This theorem is referenced by: uvcf1 21835 uvcresum 21836 frlmssuvc1 21837 frlmsslsp 21839 frlmup2 21842 |
Copyright terms: Public domain | W3C validator |