Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > uvcvv0 | Structured version Visualization version GIF version |
Description: The unit vector is zero at its designated coordinate. (Contributed by Stefan O'Rear, 3-Feb-2015.) |
Ref | Expression |
---|---|
uvcvv.u | ⊢ 𝑈 = (𝑅 unitVec 𝐼) |
uvcvv.r | ⊢ (𝜑 → 𝑅 ∈ 𝑉) |
uvcvv.i | ⊢ (𝜑 → 𝐼 ∈ 𝑊) |
uvcvv.j | ⊢ (𝜑 → 𝐽 ∈ 𝐼) |
uvcvv0.k | ⊢ (𝜑 → 𝐾 ∈ 𝐼) |
uvcvv0.jk | ⊢ (𝜑 → 𝐽 ≠ 𝐾) |
uvcvv0.z | ⊢ 0 = (0g‘𝑅) |
Ref | Expression |
---|---|
uvcvv0 | ⊢ (𝜑 → ((𝑈‘𝐽)‘𝐾) = 0 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | uvcvv.r | . . 3 ⊢ (𝜑 → 𝑅 ∈ 𝑉) | |
2 | uvcvv.i | . . 3 ⊢ (𝜑 → 𝐼 ∈ 𝑊) | |
3 | uvcvv.j | . . 3 ⊢ (𝜑 → 𝐽 ∈ 𝐼) | |
4 | uvcvv0.k | . . 3 ⊢ (𝜑 → 𝐾 ∈ 𝐼) | |
5 | uvcvv.u | . . . 4 ⊢ 𝑈 = (𝑅 unitVec 𝐼) | |
6 | eqid 2739 | . . . 4 ⊢ (1r‘𝑅) = (1r‘𝑅) | |
7 | uvcvv0.z | . . . 4 ⊢ 0 = (0g‘𝑅) | |
8 | 5, 6, 7 | uvcvval 20974 | . . 3 ⊢ (((𝑅 ∈ 𝑉 ∧ 𝐼 ∈ 𝑊 ∧ 𝐽 ∈ 𝐼) ∧ 𝐾 ∈ 𝐼) → ((𝑈‘𝐽)‘𝐾) = if(𝐾 = 𝐽, (1r‘𝑅), 0 )) |
9 | 1, 2, 3, 4, 8 | syl31anc 1371 | . 2 ⊢ (𝜑 → ((𝑈‘𝐽)‘𝐾) = if(𝐾 = 𝐽, (1r‘𝑅), 0 )) |
10 | uvcvv0.jk | . . . 4 ⊢ (𝜑 → 𝐽 ≠ 𝐾) | |
11 | nesym 3001 | . . . 4 ⊢ (𝐽 ≠ 𝐾 ↔ ¬ 𝐾 = 𝐽) | |
12 | 10, 11 | sylib 217 | . . 3 ⊢ (𝜑 → ¬ 𝐾 = 𝐽) |
13 | 12 | iffalsed 4475 | . 2 ⊢ (𝜑 → if(𝐾 = 𝐽, (1r‘𝑅), 0 ) = 0 ) |
14 | 9, 13 | eqtrd 2779 | 1 ⊢ (𝜑 → ((𝑈‘𝐽)‘𝐾) = 0 ) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 = wceq 1541 ∈ wcel 2109 ≠ wne 2944 ifcif 4464 ‘cfv 6430 (class class class)co 7268 0gc0g 17131 1rcur 19718 unitVec cuvc 20970 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1801 ax-4 1815 ax-5 1916 ax-6 1974 ax-7 2014 ax-8 2111 ax-9 2119 ax-10 2140 ax-11 2157 ax-12 2174 ax-ext 2710 ax-rep 5213 ax-sep 5226 ax-nul 5233 ax-pr 5355 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1544 df-fal 1554 df-ex 1786 df-nf 1790 df-sb 2071 df-mo 2541 df-eu 2570 df-clab 2717 df-cleq 2731 df-clel 2817 df-nfc 2890 df-ne 2945 df-ral 3070 df-rex 3071 df-reu 3072 df-rab 3074 df-v 3432 df-sbc 3720 df-csb 3837 df-dif 3894 df-un 3896 df-in 3898 df-ss 3908 df-nul 4262 df-if 4465 df-sn 4567 df-pr 4569 df-op 4573 df-uni 4845 df-iun 4931 df-br 5079 df-opab 5141 df-mpt 5162 df-id 5488 df-xp 5594 df-rel 5595 df-cnv 5596 df-co 5597 df-dm 5598 df-rn 5599 df-res 5600 df-ima 5601 df-iota 6388 df-fun 6432 df-fn 6433 df-f 6434 df-f1 6435 df-fo 6436 df-f1o 6437 df-fv 6438 df-ov 7271 df-oprab 7272 df-mpo 7273 df-uvc 20971 |
This theorem is referenced by: uvcf1 20980 uvcresum 20981 frlmssuvc1 20982 frlmsslsp 20984 frlmup2 20987 |
Copyright terms: Public domain | W3C validator |