MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  uvcvv0 Structured version   Visualization version   GIF version

Theorem uvcvv0 20482
Description: The unit vector is zero at its designated coordinate. (Contributed by Stefan O'Rear, 3-Feb-2015.)
Hypotheses
Ref Expression
uvcvv.u 𝑈 = (𝑅 unitVec 𝐼)
uvcvv.r (𝜑𝑅𝑉)
uvcvv.i (𝜑𝐼𝑊)
uvcvv.j (𝜑𝐽𝐼)
uvcvv0.k (𝜑𝐾𝐼)
uvcvv0.jk (𝜑𝐽𝐾)
uvcvv0.z 0 = (0g𝑅)
Assertion
Ref Expression
uvcvv0 (𝜑 → ((𝑈𝐽)‘𝐾) = 0 )

Proof of Theorem uvcvv0
StepHypRef Expression
1 uvcvv.r . . 3 (𝜑𝑅𝑉)
2 uvcvv.i . . 3 (𝜑𝐼𝑊)
3 uvcvv.j . . 3 (𝜑𝐽𝐼)
4 uvcvv0.k . . 3 (𝜑𝐾𝐼)
5 uvcvv.u . . . 4 𝑈 = (𝑅 unitVec 𝐼)
6 eqid 2801 . . . 4 (1r𝑅) = (1r𝑅)
7 uvcvv0.z . . . 4 0 = (0g𝑅)
85, 6, 7uvcvval 20478 . . 3 (((𝑅𝑉𝐼𝑊𝐽𝐼) ∧ 𝐾𝐼) → ((𝑈𝐽)‘𝐾) = if(𝐾 = 𝐽, (1r𝑅), 0 ))
91, 2, 3, 4, 8syl31anc 1370 . 2 (𝜑 → ((𝑈𝐽)‘𝐾) = if(𝐾 = 𝐽, (1r𝑅), 0 ))
10 uvcvv0.jk . . . 4 (𝜑𝐽𝐾)
11 nesym 3046 . . . 4 (𝐽𝐾 ↔ ¬ 𝐾 = 𝐽)
1210, 11sylib 221 . . 3 (𝜑 → ¬ 𝐾 = 𝐽)
1312iffalsed 4439 . 2 (𝜑 → if(𝐾 = 𝐽, (1r𝑅), 0 ) = 0 )
149, 13eqtrd 2836 1 (𝜑 → ((𝑈𝐽)‘𝐾) = 0 )
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4   = wceq 1538  wcel 2112  wne 2990  ifcif 4428  cfv 6328  (class class class)co 7139  0gc0g 16708  1rcur 19247   unitVec cuvc 20474
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2159  ax-12 2176  ax-ext 2773  ax-rep 5157  ax-sep 5170  ax-nul 5177  ax-pr 5298
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2601  df-eu 2632  df-clab 2780  df-cleq 2794  df-clel 2873  df-nfc 2941  df-ne 2991  df-ral 3114  df-rex 3115  df-reu 3116  df-rab 3118  df-v 3446  df-sbc 3724  df-csb 3832  df-dif 3887  df-un 3889  df-in 3891  df-ss 3901  df-nul 4247  df-if 4429  df-sn 4529  df-pr 4531  df-op 4535  df-uni 4804  df-iun 4886  df-br 5034  df-opab 5096  df-mpt 5114  df-id 5428  df-xp 5529  df-rel 5530  df-cnv 5531  df-co 5532  df-dm 5533  df-rn 5534  df-res 5535  df-ima 5536  df-iota 6287  df-fun 6330  df-fn 6331  df-f 6332  df-f1 6333  df-fo 6334  df-f1o 6335  df-fv 6336  df-ov 7142  df-oprab 7143  df-mpo 7144  df-uvc 20475
This theorem is referenced by:  uvcf1  20484  uvcresum  20485  frlmssuvc1  20486  frlmsslsp  20488  frlmup2  20491
  Copyright terms: Public domain W3C validator