| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > uvcvv0 | Structured version Visualization version GIF version | ||
| Description: The unit vector is zero at its designated coordinate. (Contributed by Stefan O'Rear, 3-Feb-2015.) |
| Ref | Expression |
|---|---|
| uvcvv.u | ⊢ 𝑈 = (𝑅 unitVec 𝐼) |
| uvcvv.r | ⊢ (𝜑 → 𝑅 ∈ 𝑉) |
| uvcvv.i | ⊢ (𝜑 → 𝐼 ∈ 𝑊) |
| uvcvv.j | ⊢ (𝜑 → 𝐽 ∈ 𝐼) |
| uvcvv0.k | ⊢ (𝜑 → 𝐾 ∈ 𝐼) |
| uvcvv0.jk | ⊢ (𝜑 → 𝐽 ≠ 𝐾) |
| uvcvv0.z | ⊢ 0 = (0g‘𝑅) |
| Ref | Expression |
|---|---|
| uvcvv0 | ⊢ (𝜑 → ((𝑈‘𝐽)‘𝐾) = 0 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | uvcvv.r | . . 3 ⊢ (𝜑 → 𝑅 ∈ 𝑉) | |
| 2 | uvcvv.i | . . 3 ⊢ (𝜑 → 𝐼 ∈ 𝑊) | |
| 3 | uvcvv.j | . . 3 ⊢ (𝜑 → 𝐽 ∈ 𝐼) | |
| 4 | uvcvv0.k | . . 3 ⊢ (𝜑 → 𝐾 ∈ 𝐼) | |
| 5 | uvcvv.u | . . . 4 ⊢ 𝑈 = (𝑅 unitVec 𝐼) | |
| 6 | eqid 2730 | . . . 4 ⊢ (1r‘𝑅) = (1r‘𝑅) | |
| 7 | uvcvv0.z | . . . 4 ⊢ 0 = (0g‘𝑅) | |
| 8 | 5, 6, 7 | uvcvval 21702 | . . 3 ⊢ (((𝑅 ∈ 𝑉 ∧ 𝐼 ∈ 𝑊 ∧ 𝐽 ∈ 𝐼) ∧ 𝐾 ∈ 𝐼) → ((𝑈‘𝐽)‘𝐾) = if(𝐾 = 𝐽, (1r‘𝑅), 0 )) |
| 9 | 1, 2, 3, 4, 8 | syl31anc 1375 | . 2 ⊢ (𝜑 → ((𝑈‘𝐽)‘𝐾) = if(𝐾 = 𝐽, (1r‘𝑅), 0 )) |
| 10 | uvcvv0.jk | . . . 4 ⊢ (𝜑 → 𝐽 ≠ 𝐾) | |
| 11 | nesym 2982 | . . . 4 ⊢ (𝐽 ≠ 𝐾 ↔ ¬ 𝐾 = 𝐽) | |
| 12 | 10, 11 | sylib 218 | . . 3 ⊢ (𝜑 → ¬ 𝐾 = 𝐽) |
| 13 | 12 | iffalsed 4502 | . 2 ⊢ (𝜑 → if(𝐾 = 𝐽, (1r‘𝑅), 0 ) = 0 ) |
| 14 | 9, 13 | eqtrd 2765 | 1 ⊢ (𝜑 → ((𝑈‘𝐽)‘𝐾) = 0 ) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 = wceq 1540 ∈ wcel 2109 ≠ wne 2926 ifcif 4491 ‘cfv 6514 (class class class)co 7390 0gc0g 17409 1rcur 20097 unitVec cuvc 21698 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5237 ax-sep 5254 ax-nul 5264 ax-pr 5390 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-nul 4300 df-if 4492 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-iun 4960 df-br 5111 df-opab 5173 df-mpt 5192 df-id 5536 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-ov 7393 df-oprab 7394 df-mpo 7395 df-uvc 21699 |
| This theorem is referenced by: uvcf1 21708 uvcresum 21709 frlmssuvc1 21710 frlmsslsp 21712 frlmup2 21715 |
| Copyright terms: Public domain | W3C validator |