MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  uvcvv0 Structured version   Visualization version   GIF version

Theorem uvcvv0 21715
Description: The unit vector is zero at its designated coordinate. (Contributed by Stefan O'Rear, 3-Feb-2015.)
Hypotheses
Ref Expression
uvcvv.u 𝑈 = (𝑅 unitVec 𝐼)
uvcvv.r (𝜑𝑅𝑉)
uvcvv.i (𝜑𝐼𝑊)
uvcvv.j (𝜑𝐽𝐼)
uvcvv0.k (𝜑𝐾𝐼)
uvcvv0.jk (𝜑𝐽𝐾)
uvcvv0.z 0 = (0g𝑅)
Assertion
Ref Expression
uvcvv0 (𝜑 → ((𝑈𝐽)‘𝐾) = 0 )

Proof of Theorem uvcvv0
StepHypRef Expression
1 uvcvv.r . . 3 (𝜑𝑅𝑉)
2 uvcvv.i . . 3 (𝜑𝐼𝑊)
3 uvcvv.j . . 3 (𝜑𝐽𝐼)
4 uvcvv0.k . . 3 (𝜑𝐾𝐼)
5 uvcvv.u . . . 4 𝑈 = (𝑅 unitVec 𝐼)
6 eqid 2729 . . . 4 (1r𝑅) = (1r𝑅)
7 uvcvv0.z . . . 4 0 = (0g𝑅)
85, 6, 7uvcvval 21711 . . 3 (((𝑅𝑉𝐼𝑊𝐽𝐼) ∧ 𝐾𝐼) → ((𝑈𝐽)‘𝐾) = if(𝐾 = 𝐽, (1r𝑅), 0 ))
91, 2, 3, 4, 8syl31anc 1375 . 2 (𝜑 → ((𝑈𝐽)‘𝐾) = if(𝐾 = 𝐽, (1r𝑅), 0 ))
10 uvcvv0.jk . . . 4 (𝜑𝐽𝐾)
11 nesym 2981 . . . 4 (𝐽𝐾 ↔ ¬ 𝐾 = 𝐽)
1210, 11sylib 218 . . 3 (𝜑 → ¬ 𝐾 = 𝐽)
1312iffalsed 4489 . 2 (𝜑 → if(𝐾 = 𝐽, (1r𝑅), 0 ) = 0 )
149, 13eqtrd 2764 1 (𝜑 → ((𝑈𝐽)‘𝐾) = 0 )
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4   = wceq 1540  wcel 2109  wne 2925  ifcif 4478  cfv 6486  (class class class)co 7353  0gc0g 17361  1rcur 20084   unitVec cuvc 21707
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pr 5374
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-nul 4287  df-if 4479  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-iun 4946  df-br 5096  df-opab 5158  df-mpt 5177  df-id 5518  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-ov 7356  df-oprab 7357  df-mpo 7358  df-uvc 21708
This theorem is referenced by:  uvcf1  21717  uvcresum  21718  frlmssuvc1  21719  frlmsslsp  21721  frlmup2  21724
  Copyright terms: Public domain W3C validator