Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  nfunsnaov Structured version   Visualization version   GIF version

Theorem nfunsnaov 44922
Description: If the restriction of a class to a singleton is not a function, its operation value is the universal class. (Contributed by Alexander van der Vekens, 26-May-2017.)
Assertion
Ref Expression
nfunsnaov (¬ Fun (𝐹 ↾ {⟨𝐴, 𝐵⟩}) → ((𝐴𝐹𝐵)) = V)

Proof of Theorem nfunsnaov
StepHypRef Expression
1 df-aov 44857 . 2 ((𝐴𝐹𝐵)) = (𝐹'''⟨𝐴, 𝐵⟩)
2 nfunsnafv 44878 . 2 (¬ Fun (𝐹 ↾ {⟨𝐴, 𝐵⟩}) → (𝐹'''⟨𝐴, 𝐵⟩) = V)
31, 2eqtrid 2788 1 (¬ Fun (𝐹 ↾ {⟨𝐴, 𝐵⟩}) → ((𝐴𝐹𝐵)) = V)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4   = wceq 1539  Vcvv 3437  {csn 4565  cop 4571  cres 5602  Fun wfun 6452  '''cafv 44853   ((caov 44854
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-8 2106  ax-9 2114  ax-10 2135  ax-11 2152  ax-12 2169  ax-ext 2707  ax-sep 5232  ax-nul 5239  ax-pr 5361
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 846  df-3an 1089  df-tru 1542  df-fal 1552  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2886  df-ne 2941  df-ral 3062  df-rex 3071  df-rab 3333  df-v 3439  df-sbc 3722  df-csb 3838  df-dif 3895  df-un 3897  df-in 3899  df-ss 3909  df-nul 4263  df-if 4466  df-sn 4566  df-pr 4568  df-op 4572  df-uni 4845  df-int 4887  df-br 5082  df-opab 5144  df-id 5500  df-xp 5606  df-rel 5607  df-cnv 5608  df-co 5609  df-dm 5610  df-res 5612  df-iota 6410  df-fun 6460  df-fv 6466  df-aiota 44821  df-dfat 44855  df-afv 44856  df-aov 44857
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator