Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  nfunsnaov Structured version   Visualization version   GIF version

Theorem nfunsnaov 47136
Description: If the restriction of a class to a singleton is not a function, its operation value is the universal class. (Contributed by Alexander van der Vekens, 26-May-2017.)
Assertion
Ref Expression
nfunsnaov (¬ Fun (𝐹 ↾ {⟨𝐴, 𝐵⟩}) → ((𝐴𝐹𝐵)) = V)

Proof of Theorem nfunsnaov
StepHypRef Expression
1 df-aov 47071 . 2 ((𝐴𝐹𝐵)) = (𝐹'''⟨𝐴, 𝐵⟩)
2 nfunsnafv 47092 . 2 (¬ Fun (𝐹 ↾ {⟨𝐴, 𝐵⟩}) → (𝐹'''⟨𝐴, 𝐵⟩) = V)
31, 2eqtrid 2787 1 (¬ Fun (𝐹 ↾ {⟨𝐴, 𝐵⟩}) → ((𝐴𝐹𝐵)) = V)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4   = wceq 1537  Vcvv 3478  {csn 4631  cop 4637  cres 5691  Fun wfun 6557  '''cafv 47067   ((caov 47068
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-sep 5302  ax-nul 5312  ax-pr 5438
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-ral 3060  df-rex 3069  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-nul 4340  df-if 4532  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-int 4952  df-br 5149  df-opab 5211  df-id 5583  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-res 5701  df-iota 6516  df-fun 6565  df-fv 6571  df-aiota 47035  df-dfat 47069  df-afv 47070  df-aov 47071
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator