Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  nfunsnaov Structured version   Visualization version   GIF version

Theorem nfunsnaov 44629
Description: If the restriction of a class to a singleton is not a function, its operation value is the universal class. (Contributed by Alexander van der Vekens, 26-May-2017.)
Assertion
Ref Expression
nfunsnaov (¬ Fun (𝐹 ↾ {⟨𝐴, 𝐵⟩}) → ((𝐴𝐹𝐵)) = V)

Proof of Theorem nfunsnaov
StepHypRef Expression
1 df-aov 44564 . 2 ((𝐴𝐹𝐵)) = (𝐹'''⟨𝐴, 𝐵⟩)
2 nfunsnafv 44585 . 2 (¬ Fun (𝐹 ↾ {⟨𝐴, 𝐵⟩}) → (𝐹'''⟨𝐴, 𝐵⟩) = V)
31, 2eqtrid 2791 1 (¬ Fun (𝐹 ↾ {⟨𝐴, 𝐵⟩}) → ((𝐴𝐹𝐵)) = V)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4   = wceq 1541  Vcvv 3430  {csn 4566  cop 4572  cres 5590  Fun wfun 6424  '''cafv 44560   ((caov 44561
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1801  ax-4 1815  ax-5 1916  ax-6 1974  ax-7 2014  ax-8 2111  ax-9 2119  ax-10 2140  ax-11 2157  ax-12 2174  ax-ext 2710  ax-sep 5226  ax-nul 5233  ax-pow 5291  ax-pr 5355
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1544  df-fal 1554  df-ex 1786  df-nf 1790  df-sb 2071  df-mo 2541  df-eu 2570  df-clab 2717  df-cleq 2731  df-clel 2817  df-nfc 2890  df-ne 2945  df-ral 3070  df-rex 3071  df-rab 3074  df-v 3432  df-sbc 3720  df-csb 3837  df-dif 3894  df-un 3896  df-in 3898  df-ss 3908  df-nul 4262  df-if 4465  df-sn 4567  df-pr 4569  df-op 4573  df-uni 4845  df-int 4885  df-br 5079  df-opab 5141  df-id 5488  df-xp 5594  df-rel 5595  df-cnv 5596  df-co 5597  df-dm 5598  df-res 5600  df-iota 6388  df-fun 6432  df-fv 6438  df-aiota 44528  df-dfat 44562  df-afv 44563  df-aov 44564
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator