| Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > aovvfunressn | Structured version Visualization version GIF version | ||
| Description: If the operation value of a class for an argument is a set, the class restricted to the singleton of the argument is a function. (Contributed by Alexander van der Vekens, 26-May-2017.) |
| Ref | Expression |
|---|---|
| aovvfunressn | ⊢ ( ((𝐴𝐹𝐵)) ∈ 𝐶 → Fun (𝐹 ↾ {〈𝐴, 𝐵〉})) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-aov 47231 | . . 3 ⊢ ((𝐴𝐹𝐵)) = (𝐹'''〈𝐴, 𝐵〉) | |
| 2 | 1 | eleq1i 2822 | . 2 ⊢ ( ((𝐴𝐹𝐵)) ∈ 𝐶 ↔ (𝐹'''〈𝐴, 𝐵〉) ∈ 𝐶) |
| 3 | afvvfunressn 47253 | . 2 ⊢ ((𝐹'''〈𝐴, 𝐵〉) ∈ 𝐶 → Fun (𝐹 ↾ {〈𝐴, 𝐵〉})) | |
| 4 | 2, 3 | sylbi 217 | 1 ⊢ ( ((𝐴𝐹𝐵)) ∈ 𝐶 → Fun (𝐹 ↾ {〈𝐴, 𝐵〉})) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2111 {csn 4573 〈cop 4579 ↾ cres 5616 Fun wfun 6475 '''cafv 47227 ((caov 47228 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5232 ax-nul 5242 ax-pr 5368 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4281 df-if 4473 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-int 4896 df-br 5090 df-opab 5152 df-id 5509 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-res 5626 df-iota 6437 df-fun 6483 df-fv 6489 df-aiota 47195 df-dfat 47229 df-afv 47230 df-aov 47231 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |