| Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > aovvfunressn | Structured version Visualization version GIF version | ||
| Description: If the operation value of a class for an argument is a set, the class restricted to the singleton of the argument is a function. (Contributed by Alexander van der Vekens, 26-May-2017.) |
| Ref | Expression |
|---|---|
| aovvfunressn | ⊢ ( ((𝐴𝐹𝐵)) ∈ 𝐶 → Fun (𝐹 ↾ {〈𝐴, 𝐵〉})) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-aov 47115 | . . 3 ⊢ ((𝐴𝐹𝐵)) = (𝐹'''〈𝐴, 𝐵〉) | |
| 2 | 1 | eleq1i 2819 | . 2 ⊢ ( ((𝐴𝐹𝐵)) ∈ 𝐶 ↔ (𝐹'''〈𝐴, 𝐵〉) ∈ 𝐶) |
| 3 | afvvfunressn 47137 | . 2 ⊢ ((𝐹'''〈𝐴, 𝐵〉) ∈ 𝐶 → Fun (𝐹 ↾ {〈𝐴, 𝐵〉})) | |
| 4 | 2, 3 | sylbi 217 | 1 ⊢ ( ((𝐴𝐹𝐵)) ∈ 𝐶 → Fun (𝐹 ↾ {〈𝐴, 𝐵〉})) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2109 {csn 4585 〈cop 4591 ↾ cres 5633 Fun wfun 6493 '''cafv 47111 ((caov 47112 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5246 ax-nul 5256 ax-pr 5382 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-nul 4293 df-if 4485 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-int 4907 df-br 5103 df-opab 5165 df-id 5526 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-res 5643 df-iota 6452 df-fun 6501 df-fv 6507 df-aiota 47079 df-dfat 47113 df-afv 47114 df-aov 47115 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |