Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > nqex | Structured version Visualization version GIF version |
Description: The class of positive fractions exists. (Contributed by NM, 16-Aug-1995.) (Revised by Mario Carneiro, 27-Apr-2013.) (New usage is discouraged.) |
Ref | Expression |
---|---|
nqex | ⊢ Q ∈ V |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-nq 10668 | . 2 ⊢ Q = {𝑦 ∈ (N × N) ∣ ∀𝑥 ∈ (N × N)(𝑦 ~Q 𝑥 → ¬ (2nd ‘𝑥) <N (2nd ‘𝑦))} | |
2 | niex 10637 | . . 3 ⊢ N ∈ V | |
3 | 2, 2 | xpex 7603 | . 2 ⊢ (N × N) ∈ V |
4 | 1, 3 | rabex2 5258 | 1 ⊢ Q ∈ V |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∈ wcel 2106 ∀wral 3064 Vcvv 3432 class class class wbr 5074 × cxp 5587 ‘cfv 6433 2nd c2nd 7830 Ncnpi 10600 <N clti 10603 ~Q ceq 10607 Qcnq 10608 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-11 2154 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 ax-inf2 9399 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-ne 2944 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3434 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-pss 3906 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-br 5075 df-opab 5137 df-tr 5192 df-eprel 5495 df-po 5503 df-so 5504 df-fr 5544 df-we 5546 df-xp 5595 df-rel 5596 df-ord 6269 df-on 6270 df-lim 6271 df-suc 6272 df-om 7713 df-ni 10628 df-nq 10668 |
This theorem is referenced by: npex 10742 elnp 10743 genpv 10755 genpdm 10758 |
Copyright terms: Public domain | W3C validator |