![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > nqex | Structured version Visualization version GIF version |
Description: The class of positive fractions exists. (Contributed by NM, 16-Aug-1995.) (Revised by Mario Carneiro, 27-Apr-2013.) (New usage is discouraged.) |
Ref | Expression |
---|---|
nqex | ⊢ Q ∈ V |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-nq 10069 | . 2 ⊢ Q = {𝑦 ∈ (N × N) ∣ ∀𝑥 ∈ (N × N)(𝑦 ~Q 𝑥 → ¬ (2nd ‘𝑥) <N (2nd ‘𝑦))} | |
2 | niex 10038 | . . 3 ⊢ N ∈ V | |
3 | 2, 2 | xpex 7240 | . 2 ⊢ (N × N) ∈ V |
4 | 1, 3 | rabex2 5051 | 1 ⊢ Q ∈ V |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∈ wcel 2107 ∀wral 3090 Vcvv 3398 class class class wbr 4886 × cxp 5353 ‘cfv 6135 2nd c2nd 7444 Ncnpi 10001 <N clti 10004 ~Q ceq 10008 Qcnq 10009 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1839 ax-4 1853 ax-5 1953 ax-6 2021 ax-7 2055 ax-8 2109 ax-9 2116 ax-10 2135 ax-11 2150 ax-12 2163 ax-13 2334 ax-ext 2754 ax-sep 5017 ax-nul 5025 ax-pow 5077 ax-pr 5138 ax-un 7226 ax-inf2 8835 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 837 df-3or 1072 df-3an 1073 df-tru 1605 df-ex 1824 df-nf 1828 df-sb 2012 df-mo 2551 df-eu 2587 df-clab 2764 df-cleq 2770 df-clel 2774 df-nfc 2921 df-ne 2970 df-ral 3095 df-rex 3096 df-rab 3099 df-v 3400 df-sbc 3653 df-dif 3795 df-un 3797 df-in 3799 df-ss 3806 df-pss 3808 df-nul 4142 df-if 4308 df-pw 4381 df-sn 4399 df-pr 4401 df-tp 4403 df-op 4405 df-uni 4672 df-br 4887 df-opab 4949 df-tr 4988 df-eprel 5266 df-po 5274 df-so 5275 df-fr 5314 df-we 5316 df-xp 5361 df-rel 5362 df-ord 5979 df-on 5980 df-lim 5981 df-suc 5982 df-om 7344 df-ni 10029 df-nq 10069 |
This theorem is referenced by: npex 10143 elnp 10144 genpv 10156 genpdm 10159 |
Copyright terms: Public domain | W3C validator |