| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nqex | Structured version Visualization version GIF version | ||
| Description: The class of positive fractions exists. (Contributed by NM, 16-Aug-1995.) (Revised by Mario Carneiro, 27-Apr-2013.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| nqex | ⊢ Q ∈ V |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-nq 10825 | . 2 ⊢ Q = {𝑦 ∈ (N × N) ∣ ∀𝑥 ∈ (N × N)(𝑦 ~Q 𝑥 → ¬ (2nd ‘𝑥) <N (2nd ‘𝑦))} | |
| 2 | niex 10794 | . . 3 ⊢ N ∈ V | |
| 3 | 2, 2 | xpex 7693 | . 2 ⊢ (N × N) ∈ V |
| 4 | 1, 3 | rabex2 5283 | 1 ⊢ Q ∈ V |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∈ wcel 2109 ∀wral 3044 Vcvv 3438 class class class wbr 5095 × cxp 5621 ‘cfv 6486 2nd c2nd 7930 Ncnpi 10757 <N clti 10760 ~Q ceq 10764 Qcnq 10765 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7675 ax-inf2 9556 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3397 df-v 3440 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-pss 3925 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-br 5096 df-opab 5158 df-tr 5203 df-eprel 5523 df-po 5531 df-so 5532 df-fr 5576 df-we 5578 df-xp 5629 df-rel 5630 df-ord 6314 df-on 6315 df-lim 6316 df-suc 6317 df-om 7807 df-ni 10785 df-nq 10825 |
| This theorem is referenced by: npex 10899 elnp 10900 genpv 10912 genpdm 10915 |
| Copyright terms: Public domain | W3C validator |