| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nqex | Structured version Visualization version GIF version | ||
| Description: The class of positive fractions exists. (Contributed by NM, 16-Aug-1995.) (Revised by Mario Carneiro, 27-Apr-2013.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| nqex | ⊢ Q ∈ V |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-nq 10931 | . 2 ⊢ Q = {𝑦 ∈ (N × N) ∣ ∀𝑥 ∈ (N × N)(𝑦 ~Q 𝑥 → ¬ (2nd ‘𝑥) <N (2nd ‘𝑦))} | |
| 2 | niex 10900 | . . 3 ⊢ N ∈ V | |
| 3 | 2, 2 | xpex 7752 | . 2 ⊢ (N × N) ∈ V |
| 4 | 1, 3 | rabex2 5316 | 1 ⊢ Q ∈ V |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∈ wcel 2109 ∀wral 3052 Vcvv 3464 class class class wbr 5124 × cxp 5657 ‘cfv 6536 2nd c2nd 7992 Ncnpi 10863 <N clti 10866 ~Q ceq 10870 Qcnq 10871 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2708 ax-sep 5271 ax-nul 5281 ax-pow 5340 ax-pr 5407 ax-un 7734 ax-inf2 9660 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2715 df-cleq 2728 df-clel 2810 df-ne 2934 df-ral 3053 df-rex 3062 df-rab 3421 df-v 3466 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-pss 3951 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-br 5125 df-opab 5187 df-tr 5235 df-eprel 5558 df-po 5566 df-so 5567 df-fr 5611 df-we 5613 df-xp 5665 df-rel 5666 df-ord 6360 df-on 6361 df-lim 6362 df-suc 6363 df-om 7867 df-ni 10891 df-nq 10931 |
| This theorem is referenced by: npex 11005 elnp 11006 genpv 11018 genpdm 11021 |
| Copyright terms: Public domain | W3C validator |