Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > nqex | Structured version Visualization version GIF version |
Description: The class of positive fractions exists. (Contributed by NM, 16-Aug-1995.) (Revised by Mario Carneiro, 27-Apr-2013.) (New usage is discouraged.) |
Ref | Expression |
---|---|
nqex | ⊢ Q ∈ V |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-nq 10599 | . 2 ⊢ Q = {𝑦 ∈ (N × N) ∣ ∀𝑥 ∈ (N × N)(𝑦 ~Q 𝑥 → ¬ (2nd ‘𝑥) <N (2nd ‘𝑦))} | |
2 | niex 10568 | . . 3 ⊢ N ∈ V | |
3 | 2, 2 | xpex 7581 | . 2 ⊢ (N × N) ∈ V |
4 | 1, 3 | rabex2 5253 | 1 ⊢ Q ∈ V |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∈ wcel 2108 ∀wral 3063 Vcvv 3422 class class class wbr 5070 × cxp 5578 ‘cfv 6418 2nd c2nd 7803 Ncnpi 10531 <N clti 10534 ~Q ceq 10538 Qcnq 10539 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-inf2 9329 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-ne 2943 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-br 5071 df-opab 5133 df-tr 5188 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-we 5537 df-xp 5586 df-rel 5587 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-om 7688 df-ni 10559 df-nq 10599 |
This theorem is referenced by: npex 10673 elnp 10674 genpv 10686 genpdm 10689 |
Copyright terms: Public domain | W3C validator |