| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nqex | Structured version Visualization version GIF version | ||
| Description: The class of positive fractions exists. (Contributed by NM, 16-Aug-1995.) (Revised by Mario Carneiro, 27-Apr-2013.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| nqex | ⊢ Q ∈ V |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-nq 10872 | . 2 ⊢ Q = {𝑦 ∈ (N × N) ∣ ∀𝑥 ∈ (N × N)(𝑦 ~Q 𝑥 → ¬ (2nd ‘𝑥) <N (2nd ‘𝑦))} | |
| 2 | niex 10841 | . . 3 ⊢ N ∈ V | |
| 3 | 2, 2 | xpex 7732 | . 2 ⊢ (N × N) ∈ V |
| 4 | 1, 3 | rabex2 5299 | 1 ⊢ Q ∈ V |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∈ wcel 2109 ∀wral 3045 Vcvv 3450 class class class wbr 5110 × cxp 5639 ‘cfv 6514 2nd c2nd 7970 Ncnpi 10804 <N clti 10807 ~Q ceq 10811 Qcnq 10812 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 ax-inf2 9601 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-ne 2927 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-pss 3937 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-br 5111 df-opab 5173 df-tr 5218 df-eprel 5541 df-po 5549 df-so 5550 df-fr 5594 df-we 5596 df-xp 5647 df-rel 5648 df-ord 6338 df-on 6339 df-lim 6340 df-suc 6341 df-om 7846 df-ni 10832 df-nq 10872 |
| This theorem is referenced by: npex 10946 elnp 10947 genpv 10959 genpdm 10962 |
| Copyright terms: Public domain | W3C validator |