| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nqex | Structured version Visualization version GIF version | ||
| Description: The class of positive fractions exists. (Contributed by NM, 16-Aug-1995.) (Revised by Mario Carneiro, 27-Apr-2013.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| nqex | ⊢ Q ∈ V |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-nq 10800 | . 2 ⊢ Q = {𝑦 ∈ (N × N) ∣ ∀𝑥 ∈ (N × N)(𝑦 ~Q 𝑥 → ¬ (2nd ‘𝑥) <N (2nd ‘𝑦))} | |
| 2 | niex 10769 | . . 3 ⊢ N ∈ V | |
| 3 | 2, 2 | xpex 7686 | . 2 ⊢ (N × N) ∈ V |
| 4 | 1, 3 | rabex2 5279 | 1 ⊢ Q ∈ V |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∈ wcel 2111 ∀wral 3047 Vcvv 3436 class class class wbr 5091 × cxp 5614 ‘cfv 6481 2nd c2nd 7920 Ncnpi 10732 <N clti 10735 ~Q ceq 10739 Qcnq 10740 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 ax-sep 5234 ax-nul 5244 ax-pow 5303 ax-pr 5370 ax-un 7668 ax-inf2 9531 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-ne 2929 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-pss 3922 df-nul 4284 df-if 4476 df-pw 4552 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-br 5092 df-opab 5154 df-tr 5199 df-eprel 5516 df-po 5524 df-so 5525 df-fr 5569 df-we 5571 df-xp 5622 df-rel 5623 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-om 7797 df-ni 10760 df-nq 10800 |
| This theorem is referenced by: npex 10874 elnp 10875 genpv 10887 genpdm 10890 |
| Copyright terms: Public domain | W3C validator |