MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nqex Structured version   Visualization version   GIF version

Theorem nqex 10836
Description: The class of positive fractions exists. (Contributed by NM, 16-Aug-1995.) (Revised by Mario Carneiro, 27-Apr-2013.) (New usage is discouraged.)
Assertion
Ref Expression
nqex Q ∈ V

Proof of Theorem nqex
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-nq 10825 . 2 Q = {𝑦 ∈ (N × N) ∣ ∀𝑥 ∈ (N × N)(𝑦 ~Q 𝑥 → ¬ (2nd𝑥) <N (2nd𝑦))}
2 niex 10794 . . 3 N ∈ V
32, 2xpex 7693 . 2 (N × N) ∈ V
41, 3rabex2 5283 1 Q ∈ V
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wcel 2109  wral 3044  Vcvv 3438   class class class wbr 5095   × cxp 5621  cfv 6486  2nd c2nd 7930  Ncnpi 10757   <N clti 10760   ~Q ceq 10764  Qcnq 10765
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675  ax-inf2 9556
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3397  df-v 3440  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-pss 3925  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-br 5096  df-opab 5158  df-tr 5203  df-eprel 5523  df-po 5531  df-so 5532  df-fr 5576  df-we 5578  df-xp 5629  df-rel 5630  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-om 7807  df-ni 10785  df-nq 10825
This theorem is referenced by:  npex  10899  elnp  10900  genpv  10912  genpdm  10915
  Copyright terms: Public domain W3C validator