MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  enqex Structured version   Visualization version   GIF version

Theorem enqex 10609
Description: The equivalence relation for positive fractions exists. (Contributed by NM, 3-Sep-1995.) (New usage is discouraged.)
Assertion
Ref Expression
enqex ~Q ∈ V

Proof of Theorem enqex
Dummy variables 𝑥 𝑦 𝑧 𝑤 𝑣 𝑢 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 niex 10568 . . . 4 N ∈ V
21, 1xpex 7581 . . 3 (N × N) ∈ V
32, 2xpex 7581 . 2 ((N × N) × (N × N)) ∈ V
4 df-enq 10598 . . 3 ~Q = {⟨𝑥, 𝑦⟩ ∣ ((𝑥 ∈ (N × N) ∧ 𝑦 ∈ (N × N)) ∧ ∃𝑧𝑤𝑣𝑢((𝑥 = ⟨𝑧, 𝑤⟩ ∧ 𝑦 = ⟨𝑣, 𝑢⟩) ∧ (𝑧 ·N 𝑢) = (𝑤 ·N 𝑣)))}
5 opabssxp 5669 . . 3 {⟨𝑥, 𝑦⟩ ∣ ((𝑥 ∈ (N × N) ∧ 𝑦 ∈ (N × N)) ∧ ∃𝑧𝑤𝑣𝑢((𝑥 = ⟨𝑧, 𝑤⟩ ∧ 𝑦 = ⟨𝑣, 𝑢⟩) ∧ (𝑧 ·N 𝑢) = (𝑤 ·N 𝑣)))} ⊆ ((N × N) × (N × N))
64, 5eqsstri 3951 . 2 ~Q ⊆ ((N × N) × (N × N))
73, 6ssexi 5241 1 ~Q ∈ V
Colors of variables: wff setvar class
Syntax hints:  wa 395   = wceq 1539  wex 1783  wcel 2108  Vcvv 3422  cop 4564  {copab 5132   × cxp 5578  (class class class)co 7255  Ncnpi 10531   ·N cmi 10533   ~Q ceq 10538
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-inf2 9329
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-sb 2069  df-clab 2716  df-cleq 2730  df-clel 2817  df-ne 2943  df-ral 3068  df-rex 3069  df-rab 3072  df-v 3424  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-br 5071  df-opab 5133  df-tr 5188  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-om 7688  df-ni 10559  df-enq 10598
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator