![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > enqex | Structured version Visualization version GIF version |
Description: The equivalence relation for positive fractions exists. (Contributed by NM, 3-Sep-1995.) (New usage is discouraged.) |
Ref | Expression |
---|---|
enqex | ⊢ ~Q ∈ V |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | niex 10919 | . . . 4 ⊢ N ∈ V | |
2 | 1, 1 | xpex 7772 | . . 3 ⊢ (N × N) ∈ V |
3 | 2, 2 | xpex 7772 | . 2 ⊢ ((N × N) × (N × N)) ∈ V |
4 | df-enq 10949 | . . 3 ⊢ ~Q = {〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ (N × N) ∧ 𝑦 ∈ (N × N)) ∧ ∃𝑧∃𝑤∃𝑣∃𝑢((𝑥 = 〈𝑧, 𝑤〉 ∧ 𝑦 = 〈𝑣, 𝑢〉) ∧ (𝑧 ·N 𝑢) = (𝑤 ·N 𝑣)))} | |
5 | opabssxp 5781 | . . 3 ⊢ {〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ (N × N) ∧ 𝑦 ∈ (N × N)) ∧ ∃𝑧∃𝑤∃𝑣∃𝑢((𝑥 = 〈𝑧, 𝑤〉 ∧ 𝑦 = 〈𝑣, 𝑢〉) ∧ (𝑧 ·N 𝑢) = (𝑤 ·N 𝑣)))} ⊆ ((N × N) × (N × N)) | |
6 | 4, 5 | eqsstri 4030 | . 2 ⊢ ~Q ⊆ ((N × N) × (N × N)) |
7 | 3, 6 | ssexi 5328 | 1 ⊢ ~Q ∈ V |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 395 = wceq 1537 ∃wex 1776 ∈ wcel 2106 Vcvv 3478 〈cop 4637 {copab 5210 × cxp 5687 (class class class)co 7431 Ncnpi 10882 ·N cmi 10884 ~Q ceq 10889 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-ext 2706 ax-sep 5302 ax-nul 5312 ax-pow 5371 ax-pr 5438 ax-un 7754 ax-inf2 9679 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-sb 2063 df-clab 2713 df-cleq 2727 df-clel 2814 df-ne 2939 df-ral 3060 df-rex 3069 df-rab 3434 df-v 3480 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-pss 3983 df-nul 4340 df-if 4532 df-pw 4607 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-br 5149 df-opab 5211 df-tr 5266 df-eprel 5589 df-po 5597 df-so 5598 df-fr 5641 df-we 5643 df-xp 5695 df-rel 5696 df-ord 6389 df-on 6390 df-lim 6391 df-suc 6392 df-om 7888 df-ni 10910 df-enq 10949 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |