| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > enqex | Structured version Visualization version GIF version | ||
| Description: The equivalence relation for positive fractions exists. (Contributed by NM, 3-Sep-1995.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| enqex | ⊢ ~Q ∈ V |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | niex 10767 | . . . 4 ⊢ N ∈ V | |
| 2 | 1, 1 | xpex 7681 | . . 3 ⊢ (N × N) ∈ V |
| 3 | 2, 2 | xpex 7681 | . 2 ⊢ ((N × N) × (N × N)) ∈ V |
| 4 | df-enq 10797 | . . 3 ⊢ ~Q = {〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ (N × N) ∧ 𝑦 ∈ (N × N)) ∧ ∃𝑧∃𝑤∃𝑣∃𝑢((𝑥 = 〈𝑧, 𝑤〉 ∧ 𝑦 = 〈𝑣, 𝑢〉) ∧ (𝑧 ·N 𝑢) = (𝑤 ·N 𝑣)))} | |
| 5 | opabssxp 5703 | . . 3 ⊢ {〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ (N × N) ∧ 𝑦 ∈ (N × N)) ∧ ∃𝑧∃𝑤∃𝑣∃𝑢((𝑥 = 〈𝑧, 𝑤〉 ∧ 𝑦 = 〈𝑣, 𝑢〉) ∧ (𝑧 ·N 𝑢) = (𝑤 ·N 𝑣)))} ⊆ ((N × N) × (N × N)) | |
| 6 | 4, 5 | eqsstri 3976 | . 2 ⊢ ~Q ⊆ ((N × N) × (N × N)) |
| 7 | 3, 6 | ssexi 5255 | 1 ⊢ ~Q ∈ V |
| Colors of variables: wff setvar class |
| Syntax hints: ∧ wa 395 = wceq 1541 ∃wex 1780 ∈ wcel 2111 Vcvv 3436 〈cop 4577 {copab 5148 × cxp 5609 (class class class)co 7341 Ncnpi 10730 ·N cmi 10732 ~Q ceq 10737 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 ax-sep 5229 ax-nul 5239 ax-pow 5298 ax-pr 5365 ax-un 7663 ax-inf2 9526 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-ne 2929 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4279 df-if 4471 df-pw 4547 df-sn 4572 df-pr 4574 df-op 4578 df-uni 4855 df-br 5087 df-opab 5149 df-tr 5194 df-eprel 5511 df-po 5519 df-so 5520 df-fr 5564 df-we 5566 df-xp 5617 df-rel 5618 df-ord 6304 df-on 6305 df-lim 6306 df-suc 6307 df-om 7792 df-ni 10758 df-enq 10797 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |