| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > enqex | Structured version Visualization version GIF version | ||
| Description: The equivalence relation for positive fractions exists. (Contributed by NM, 3-Sep-1995.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| enqex | ⊢ ~Q ∈ V |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | niex 10900 | . . . 4 ⊢ N ∈ V | |
| 2 | 1, 1 | xpex 7752 | . . 3 ⊢ (N × N) ∈ V |
| 3 | 2, 2 | xpex 7752 | . 2 ⊢ ((N × N) × (N × N)) ∈ V |
| 4 | df-enq 10930 | . . 3 ⊢ ~Q = {〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ (N × N) ∧ 𝑦 ∈ (N × N)) ∧ ∃𝑧∃𝑤∃𝑣∃𝑢((𝑥 = 〈𝑧, 𝑤〉 ∧ 𝑦 = 〈𝑣, 𝑢〉) ∧ (𝑧 ·N 𝑢) = (𝑤 ·N 𝑣)))} | |
| 5 | opabssxp 5752 | . . 3 ⊢ {〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ (N × N) ∧ 𝑦 ∈ (N × N)) ∧ ∃𝑧∃𝑤∃𝑣∃𝑢((𝑥 = 〈𝑧, 𝑤〉 ∧ 𝑦 = 〈𝑣, 𝑢〉) ∧ (𝑧 ·N 𝑢) = (𝑤 ·N 𝑣)))} ⊆ ((N × N) × (N × N)) | |
| 6 | 4, 5 | eqsstri 4010 | . 2 ⊢ ~Q ⊆ ((N × N) × (N × N)) |
| 7 | 3, 6 | ssexi 5297 | 1 ⊢ ~Q ∈ V |
| Colors of variables: wff setvar class |
| Syntax hints: ∧ wa 395 = wceq 1540 ∃wex 1779 ∈ wcel 2109 Vcvv 3464 〈cop 4612 {copab 5186 × cxp 5657 (class class class)co 7410 Ncnpi 10863 ·N cmi 10865 ~Q ceq 10870 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2708 ax-sep 5271 ax-nul 5281 ax-pow 5340 ax-pr 5407 ax-un 7734 ax-inf2 9660 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2715 df-cleq 2728 df-clel 2810 df-ne 2934 df-ral 3053 df-rex 3062 df-rab 3421 df-v 3466 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-pss 3951 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-br 5125 df-opab 5187 df-tr 5235 df-eprel 5558 df-po 5566 df-so 5567 df-fr 5611 df-we 5613 df-xp 5665 df-rel 5666 df-ord 6360 df-on 6361 df-lim 6362 df-suc 6363 df-om 7867 df-ni 10891 df-enq 10930 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |