MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  enqex Structured version   Visualization version   GIF version

Theorem enqex 10875
Description: The equivalence relation for positive fractions exists. (Contributed by NM, 3-Sep-1995.) (New usage is discouraged.)
Assertion
Ref Expression
enqex ~Q ∈ V

Proof of Theorem enqex
Dummy variables 𝑥 𝑦 𝑧 𝑤 𝑣 𝑢 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 niex 10834 . . . 4 N ∈ V
21, 1xpex 7729 . . 3 (N × N) ∈ V
32, 2xpex 7729 . 2 ((N × N) × (N × N)) ∈ V
4 df-enq 10864 . . 3 ~Q = {⟨𝑥, 𝑦⟩ ∣ ((𝑥 ∈ (N × N) ∧ 𝑦 ∈ (N × N)) ∧ ∃𝑧𝑤𝑣𝑢((𝑥 = ⟨𝑧, 𝑤⟩ ∧ 𝑦 = ⟨𝑣, 𝑢⟩) ∧ (𝑧 ·N 𝑢) = (𝑤 ·N 𝑣)))}
5 opabssxp 5731 . . 3 {⟨𝑥, 𝑦⟩ ∣ ((𝑥 ∈ (N × N) ∧ 𝑦 ∈ (N × N)) ∧ ∃𝑧𝑤𝑣𝑢((𝑥 = ⟨𝑧, 𝑤⟩ ∧ 𝑦 = ⟨𝑣, 𝑢⟩) ∧ (𝑧 ·N 𝑢) = (𝑤 ·N 𝑣)))} ⊆ ((N × N) × (N × N))
64, 5eqsstri 3993 . 2 ~Q ⊆ ((N × N) × (N × N))
73, 6ssexi 5277 1 ~Q ∈ V
Colors of variables: wff setvar class
Syntax hints:  wa 395   = wceq 1540  wex 1779  wcel 2109  Vcvv 3447  cop 4595  {copab 5169   × cxp 5636  (class class class)co 7387  Ncnpi 10797   ·N cmi 10799   ~Q ceq 10804
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-inf2 9594
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3406  df-v 3449  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-br 5108  df-opab 5170  df-tr 5215  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-we 5593  df-xp 5644  df-rel 5645  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-om 7843  df-ni 10825  df-enq 10864
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator