Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > enqex | Structured version Visualization version GIF version |
Description: The equivalence relation for positive fractions exists. (Contributed by NM, 3-Sep-1995.) (New usage is discouraged.) |
Ref | Expression |
---|---|
enqex | ⊢ ~Q ∈ V |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | niex 10665 | . . . 4 ⊢ N ∈ V | |
2 | 1, 1 | xpex 7623 | . . 3 ⊢ (N × N) ∈ V |
3 | 2, 2 | xpex 7623 | . 2 ⊢ ((N × N) × (N × N)) ∈ V |
4 | df-enq 10695 | . . 3 ⊢ ~Q = {〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ (N × N) ∧ 𝑦 ∈ (N × N)) ∧ ∃𝑧∃𝑤∃𝑣∃𝑢((𝑥 = 〈𝑧, 𝑤〉 ∧ 𝑦 = 〈𝑣, 𝑢〉) ∧ (𝑧 ·N 𝑢) = (𝑤 ·N 𝑣)))} | |
5 | opabssxp 5681 | . . 3 ⊢ {〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ (N × N) ∧ 𝑦 ∈ (N × N)) ∧ ∃𝑧∃𝑤∃𝑣∃𝑢((𝑥 = 〈𝑧, 𝑤〉 ∧ 𝑦 = 〈𝑣, 𝑢〉) ∧ (𝑧 ·N 𝑢) = (𝑤 ·N 𝑣)))} ⊆ ((N × N) × (N × N)) | |
6 | 4, 5 | eqsstri 3957 | . 2 ⊢ ~Q ⊆ ((N × N) × (N × N)) |
7 | 3, 6 | ssexi 5249 | 1 ⊢ ~Q ∈ V |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 395 = wceq 1537 ∃wex 1777 ∈ wcel 2101 Vcvv 3434 〈cop 4570 {copab 5139 × cxp 5589 (class class class)co 7295 Ncnpi 10628 ·N cmi 10630 ~Q ceq 10635 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2103 ax-9 2111 ax-11 2149 ax-ext 2704 ax-sep 5226 ax-nul 5233 ax-pow 5291 ax-pr 5355 ax-un 7608 ax-inf2 9427 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1540 df-fal 1550 df-ex 1778 df-sb 2063 df-clab 2711 df-cleq 2725 df-clel 2811 df-ne 2939 df-ral 3060 df-rex 3069 df-rab 3224 df-v 3436 df-dif 3892 df-un 3894 df-in 3896 df-ss 3906 df-pss 3908 df-nul 4260 df-if 4463 df-pw 4538 df-sn 4565 df-pr 4567 df-op 4571 df-uni 4842 df-br 5078 df-opab 5140 df-tr 5195 df-eprel 5497 df-po 5505 df-so 5506 df-fr 5546 df-we 5548 df-xp 5597 df-rel 5598 df-ord 6273 df-on 6274 df-lim 6275 df-suc 6276 df-om 7733 df-ni 10656 df-enq 10695 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |