MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nvi Structured version   Visualization version   GIF version

Theorem nvi 28552
Description: The properties of a normed complex vector space, which is a vector space accompanied by a norm. (Contributed by NM, 11-Nov-2006.) (Revised by Mario Carneiro, 21-Dec-2013.) (New usage is discouraged.)
Hypotheses
Ref Expression
nvi.1 𝑋 = (BaseSet‘𝑈)
nvi.2 𝐺 = ( +𝑣𝑈)
nvi.4 𝑆 = ( ·𝑠OLD𝑈)
nvi.5 𝑍 = (0vec𝑈)
nvi.6 𝑁 = (normCV𝑈)
Assertion
Ref Expression
nvi (𝑈 ∈ NrmCVec → (⟨𝐺, 𝑆⟩ ∈ CVecOLD𝑁:𝑋⟶ℝ ∧ ∀𝑥𝑋 (((𝑁𝑥) = 0 → 𝑥 = 𝑍) ∧ ∀𝑦 ∈ ℂ (𝑁‘(𝑦𝑆𝑥)) = ((abs‘𝑦) · (𝑁𝑥)) ∧ ∀𝑦𝑋 (𝑁‘(𝑥𝐺𝑦)) ≤ ((𝑁𝑥) + (𝑁𝑦)))))
Distinct variable groups:   𝑥,𝑦,𝐺   𝑥,𝑁,𝑦   𝑥,𝑈   𝑥,𝑆,𝑦   𝑥,𝑋,𝑦
Allowed substitution hints:   𝑈(𝑦)   𝑍(𝑥,𝑦)

Proof of Theorem nvi
StepHypRef Expression
1 eqid 2739 . . . . . 6 (1st𝑈) = (1st𝑈)
2 nvi.6 . . . . . 6 𝑁 = (normCV𝑈)
31, 2nvop2 28546 . . . . 5 (𝑈 ∈ NrmCVec → 𝑈 = ⟨(1st𝑈), 𝑁⟩)
4 nvi.2 . . . . . . 7 𝐺 = ( +𝑣𝑈)
5 nvi.4 . . . . . . 7 𝑆 = ( ·𝑠OLD𝑈)
61, 4, 5nvvop 28547 . . . . . 6 (𝑈 ∈ NrmCVec → (1st𝑈) = ⟨𝐺, 𝑆⟩)
76opeq1d 4768 . . . . 5 (𝑈 ∈ NrmCVec → ⟨(1st𝑈), 𝑁⟩ = ⟨⟨𝐺, 𝑆⟩, 𝑁⟩)
83, 7eqtrd 2774 . . . 4 (𝑈 ∈ NrmCVec → 𝑈 = ⟨⟨𝐺, 𝑆⟩, 𝑁⟩)
9 id 22 . . . 4 (𝑈 ∈ NrmCVec → 𝑈 ∈ NrmCVec)
108, 9eqeltrrd 2835 . . 3 (𝑈 ∈ NrmCVec → ⟨⟨𝐺, 𝑆⟩, 𝑁⟩ ∈ NrmCVec)
11 nvi.1 . . . . 5 𝑋 = (BaseSet‘𝑈)
1211, 4bafval 28542 . . . 4 𝑋 = ran 𝐺
13 eqid 2739 . . . 4 (GId‘𝐺) = (GId‘𝐺)
1412, 13isnv 28550 . . 3 (⟨⟨𝐺, 𝑆⟩, 𝑁⟩ ∈ NrmCVec ↔ (⟨𝐺, 𝑆⟩ ∈ CVecOLD𝑁:𝑋⟶ℝ ∧ ∀𝑥𝑋 (((𝑁𝑥) = 0 → 𝑥 = (GId‘𝐺)) ∧ ∀𝑦 ∈ ℂ (𝑁‘(𝑦𝑆𝑥)) = ((abs‘𝑦) · (𝑁𝑥)) ∧ ∀𝑦𝑋 (𝑁‘(𝑥𝐺𝑦)) ≤ ((𝑁𝑥) + (𝑁𝑦)))))
1510, 14sylib 221 . 2 (𝑈 ∈ NrmCVec → (⟨𝐺, 𝑆⟩ ∈ CVecOLD𝑁:𝑋⟶ℝ ∧ ∀𝑥𝑋 (((𝑁𝑥) = 0 → 𝑥 = (GId‘𝐺)) ∧ ∀𝑦 ∈ ℂ (𝑁‘(𝑦𝑆𝑥)) = ((abs‘𝑦) · (𝑁𝑥)) ∧ ∀𝑦𝑋 (𝑁‘(𝑥𝐺𝑦)) ≤ ((𝑁𝑥) + (𝑁𝑦)))))
16 nvi.5 . . . . . . . 8 𝑍 = (0vec𝑈)
174, 160vfval 28544 . . . . . . 7 (𝑈 ∈ NrmCVec → 𝑍 = (GId‘𝐺))
1817eqeq2d 2750 . . . . . 6 (𝑈 ∈ NrmCVec → (𝑥 = 𝑍𝑥 = (GId‘𝐺)))
1918imbi2d 344 . . . . 5 (𝑈 ∈ NrmCVec → (((𝑁𝑥) = 0 → 𝑥 = 𝑍) ↔ ((𝑁𝑥) = 0 → 𝑥 = (GId‘𝐺))))
20193anbi1d 1441 . . . 4 (𝑈 ∈ NrmCVec → ((((𝑁𝑥) = 0 → 𝑥 = 𝑍) ∧ ∀𝑦 ∈ ℂ (𝑁‘(𝑦𝑆𝑥)) = ((abs‘𝑦) · (𝑁𝑥)) ∧ ∀𝑦𝑋 (𝑁‘(𝑥𝐺𝑦)) ≤ ((𝑁𝑥) + (𝑁𝑦))) ↔ (((𝑁𝑥) = 0 → 𝑥 = (GId‘𝐺)) ∧ ∀𝑦 ∈ ℂ (𝑁‘(𝑦𝑆𝑥)) = ((abs‘𝑦) · (𝑁𝑥)) ∧ ∀𝑦𝑋 (𝑁‘(𝑥𝐺𝑦)) ≤ ((𝑁𝑥) + (𝑁𝑦)))))
2120ralbidv 3110 . . 3 (𝑈 ∈ NrmCVec → (∀𝑥𝑋 (((𝑁𝑥) = 0 → 𝑥 = 𝑍) ∧ ∀𝑦 ∈ ℂ (𝑁‘(𝑦𝑆𝑥)) = ((abs‘𝑦) · (𝑁𝑥)) ∧ ∀𝑦𝑋 (𝑁‘(𝑥𝐺𝑦)) ≤ ((𝑁𝑥) + (𝑁𝑦))) ↔ ∀𝑥𝑋 (((𝑁𝑥) = 0 → 𝑥 = (GId‘𝐺)) ∧ ∀𝑦 ∈ ℂ (𝑁‘(𝑦𝑆𝑥)) = ((abs‘𝑦) · (𝑁𝑥)) ∧ ∀𝑦𝑋 (𝑁‘(𝑥𝐺𝑦)) ≤ ((𝑁𝑥) + (𝑁𝑦)))))
22213anbi3d 1443 . 2 (𝑈 ∈ NrmCVec → ((⟨𝐺, 𝑆⟩ ∈ CVecOLD𝑁:𝑋⟶ℝ ∧ ∀𝑥𝑋 (((𝑁𝑥) = 0 → 𝑥 = 𝑍) ∧ ∀𝑦 ∈ ℂ (𝑁‘(𝑦𝑆𝑥)) = ((abs‘𝑦) · (𝑁𝑥)) ∧ ∀𝑦𝑋 (𝑁‘(𝑥𝐺𝑦)) ≤ ((𝑁𝑥) + (𝑁𝑦)))) ↔ (⟨𝐺, 𝑆⟩ ∈ CVecOLD𝑁:𝑋⟶ℝ ∧ ∀𝑥𝑋 (((𝑁𝑥) = 0 → 𝑥 = (GId‘𝐺)) ∧ ∀𝑦 ∈ ℂ (𝑁‘(𝑦𝑆𝑥)) = ((abs‘𝑦) · (𝑁𝑥)) ∧ ∀𝑦𝑋 (𝑁‘(𝑥𝐺𝑦)) ≤ ((𝑁𝑥) + (𝑁𝑦))))))
2315, 22mpbird 260 1 (𝑈 ∈ NrmCVec → (⟨𝐺, 𝑆⟩ ∈ CVecOLD𝑁:𝑋⟶ℝ ∧ ∀𝑥𝑋 (((𝑁𝑥) = 0 → 𝑥 = 𝑍) ∧ ∀𝑦 ∈ ℂ (𝑁‘(𝑦𝑆𝑥)) = ((abs‘𝑦) · (𝑁𝑥)) ∧ ∀𝑦𝑋 (𝑁‘(𝑥𝐺𝑦)) ≤ ((𝑁𝑥) + (𝑁𝑦)))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1088   = wceq 1542  wcel 2114  wral 3054  cop 4523   class class class wbr 5031  wf 6336  cfv 6340  (class class class)co 7173  1st c1st 7715  cc 10616  cr 10617  0cc0 10618   + caddc 10621   · cmul 10623  cle 10757  abscabs 14686  GIdcgi 28428  CVecOLDcvc 28496  NrmCVeccnv 28522   +𝑣 cpv 28523  BaseSetcba 28524   ·𝑠OLD cns 28525  0veccn0v 28526  normCVcnmcv 28528
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1917  ax-6 1975  ax-7 2020  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2162  ax-12 2179  ax-ext 2711  ax-rep 5155  ax-sep 5168  ax-nul 5175  ax-pr 5297  ax-un 7482
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 847  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1787  df-nf 1791  df-sb 2075  df-mo 2541  df-eu 2571  df-clab 2718  df-cleq 2731  df-clel 2812  df-nfc 2882  df-ne 2936  df-ral 3059  df-rex 3060  df-reu 3061  df-rab 3063  df-v 3401  df-sbc 3682  df-csb 3792  df-dif 3847  df-un 3849  df-in 3851  df-ss 3861  df-nul 4213  df-if 4416  df-sn 4518  df-pr 4520  df-op 4524  df-uni 4798  df-iun 4884  df-br 5032  df-opab 5094  df-mpt 5112  df-id 5430  df-xp 5532  df-rel 5533  df-cnv 5534  df-co 5535  df-dm 5536  df-rn 5537  df-res 5538  df-ima 5539  df-iota 6298  df-fun 6342  df-fn 6343  df-f 6344  df-f1 6345  df-fo 6346  df-f1o 6347  df-fv 6348  df-ov 7176  df-oprab 7177  df-1st 7717  df-2nd 7718  df-vc 28497  df-nv 28530  df-va 28533  df-ba 28534  df-sm 28535  df-0v 28536  df-nmcv 28538
This theorem is referenced by:  nvvc  28553  nvf  28598  nvs  28601  nvz  28607  nvtri  28608
  Copyright terms: Public domain W3C validator