MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nvi Structured version   Visualization version   GIF version

Theorem nvi 28397
Description: The properties of a normed complex vector space, which is a vector space accompanied by a norm. (Contributed by NM, 11-Nov-2006.) (Revised by Mario Carneiro, 21-Dec-2013.) (New usage is discouraged.)
Hypotheses
Ref Expression
nvi.1 𝑋 = (BaseSet‘𝑈)
nvi.2 𝐺 = ( +𝑣𝑈)
nvi.4 𝑆 = ( ·𝑠OLD𝑈)
nvi.5 𝑍 = (0vec𝑈)
nvi.6 𝑁 = (normCV𝑈)
Assertion
Ref Expression
nvi (𝑈 ∈ NrmCVec → (⟨𝐺, 𝑆⟩ ∈ CVecOLD𝑁:𝑋⟶ℝ ∧ ∀𝑥𝑋 (((𝑁𝑥) = 0 → 𝑥 = 𝑍) ∧ ∀𝑦 ∈ ℂ (𝑁‘(𝑦𝑆𝑥)) = ((abs‘𝑦) · (𝑁𝑥)) ∧ ∀𝑦𝑋 (𝑁‘(𝑥𝐺𝑦)) ≤ ((𝑁𝑥) + (𝑁𝑦)))))
Distinct variable groups:   𝑥,𝑦,𝐺   𝑥,𝑁,𝑦   𝑥,𝑈   𝑥,𝑆,𝑦   𝑥,𝑋,𝑦
Allowed substitution hints:   𝑈(𝑦)   𝑍(𝑥,𝑦)

Proof of Theorem nvi
StepHypRef Expression
1 eqid 2798 . . . . . 6 (1st𝑈) = (1st𝑈)
2 nvi.6 . . . . . 6 𝑁 = (normCV𝑈)
31, 2nvop2 28391 . . . . 5 (𝑈 ∈ NrmCVec → 𝑈 = ⟨(1st𝑈), 𝑁⟩)
4 nvi.2 . . . . . . 7 𝐺 = ( +𝑣𝑈)
5 nvi.4 . . . . . . 7 𝑆 = ( ·𝑠OLD𝑈)
61, 4, 5nvvop 28392 . . . . . 6 (𝑈 ∈ NrmCVec → (1st𝑈) = ⟨𝐺, 𝑆⟩)
76opeq1d 4771 . . . . 5 (𝑈 ∈ NrmCVec → ⟨(1st𝑈), 𝑁⟩ = ⟨⟨𝐺, 𝑆⟩, 𝑁⟩)
83, 7eqtrd 2833 . . . 4 (𝑈 ∈ NrmCVec → 𝑈 = ⟨⟨𝐺, 𝑆⟩, 𝑁⟩)
9 id 22 . . . 4 (𝑈 ∈ NrmCVec → 𝑈 ∈ NrmCVec)
108, 9eqeltrrd 2891 . . 3 (𝑈 ∈ NrmCVec → ⟨⟨𝐺, 𝑆⟩, 𝑁⟩ ∈ NrmCVec)
11 nvi.1 . . . . 5 𝑋 = (BaseSet‘𝑈)
1211, 4bafval 28387 . . . 4 𝑋 = ran 𝐺
13 eqid 2798 . . . 4 (GId‘𝐺) = (GId‘𝐺)
1412, 13isnv 28395 . . 3 (⟨⟨𝐺, 𝑆⟩, 𝑁⟩ ∈ NrmCVec ↔ (⟨𝐺, 𝑆⟩ ∈ CVecOLD𝑁:𝑋⟶ℝ ∧ ∀𝑥𝑋 (((𝑁𝑥) = 0 → 𝑥 = (GId‘𝐺)) ∧ ∀𝑦 ∈ ℂ (𝑁‘(𝑦𝑆𝑥)) = ((abs‘𝑦) · (𝑁𝑥)) ∧ ∀𝑦𝑋 (𝑁‘(𝑥𝐺𝑦)) ≤ ((𝑁𝑥) + (𝑁𝑦)))))
1510, 14sylib 221 . 2 (𝑈 ∈ NrmCVec → (⟨𝐺, 𝑆⟩ ∈ CVecOLD𝑁:𝑋⟶ℝ ∧ ∀𝑥𝑋 (((𝑁𝑥) = 0 → 𝑥 = (GId‘𝐺)) ∧ ∀𝑦 ∈ ℂ (𝑁‘(𝑦𝑆𝑥)) = ((abs‘𝑦) · (𝑁𝑥)) ∧ ∀𝑦𝑋 (𝑁‘(𝑥𝐺𝑦)) ≤ ((𝑁𝑥) + (𝑁𝑦)))))
16 nvi.5 . . . . . . . 8 𝑍 = (0vec𝑈)
174, 160vfval 28389 . . . . . . 7 (𝑈 ∈ NrmCVec → 𝑍 = (GId‘𝐺))
1817eqeq2d 2809 . . . . . 6 (𝑈 ∈ NrmCVec → (𝑥 = 𝑍𝑥 = (GId‘𝐺)))
1918imbi2d 344 . . . . 5 (𝑈 ∈ NrmCVec → (((𝑁𝑥) = 0 → 𝑥 = 𝑍) ↔ ((𝑁𝑥) = 0 → 𝑥 = (GId‘𝐺))))
20193anbi1d 1437 . . . 4 (𝑈 ∈ NrmCVec → ((((𝑁𝑥) = 0 → 𝑥 = 𝑍) ∧ ∀𝑦 ∈ ℂ (𝑁‘(𝑦𝑆𝑥)) = ((abs‘𝑦) · (𝑁𝑥)) ∧ ∀𝑦𝑋 (𝑁‘(𝑥𝐺𝑦)) ≤ ((𝑁𝑥) + (𝑁𝑦))) ↔ (((𝑁𝑥) = 0 → 𝑥 = (GId‘𝐺)) ∧ ∀𝑦 ∈ ℂ (𝑁‘(𝑦𝑆𝑥)) = ((abs‘𝑦) · (𝑁𝑥)) ∧ ∀𝑦𝑋 (𝑁‘(𝑥𝐺𝑦)) ≤ ((𝑁𝑥) + (𝑁𝑦)))))
2120ralbidv 3162 . . 3 (𝑈 ∈ NrmCVec → (∀𝑥𝑋 (((𝑁𝑥) = 0 → 𝑥 = 𝑍) ∧ ∀𝑦 ∈ ℂ (𝑁‘(𝑦𝑆𝑥)) = ((abs‘𝑦) · (𝑁𝑥)) ∧ ∀𝑦𝑋 (𝑁‘(𝑥𝐺𝑦)) ≤ ((𝑁𝑥) + (𝑁𝑦))) ↔ ∀𝑥𝑋 (((𝑁𝑥) = 0 → 𝑥 = (GId‘𝐺)) ∧ ∀𝑦 ∈ ℂ (𝑁‘(𝑦𝑆𝑥)) = ((abs‘𝑦) · (𝑁𝑥)) ∧ ∀𝑦𝑋 (𝑁‘(𝑥𝐺𝑦)) ≤ ((𝑁𝑥) + (𝑁𝑦)))))
22213anbi3d 1439 . 2 (𝑈 ∈ NrmCVec → ((⟨𝐺, 𝑆⟩ ∈ CVecOLD𝑁:𝑋⟶ℝ ∧ ∀𝑥𝑋 (((𝑁𝑥) = 0 → 𝑥 = 𝑍) ∧ ∀𝑦 ∈ ℂ (𝑁‘(𝑦𝑆𝑥)) = ((abs‘𝑦) · (𝑁𝑥)) ∧ ∀𝑦𝑋 (𝑁‘(𝑥𝐺𝑦)) ≤ ((𝑁𝑥) + (𝑁𝑦)))) ↔ (⟨𝐺, 𝑆⟩ ∈ CVecOLD𝑁:𝑋⟶ℝ ∧ ∀𝑥𝑋 (((𝑁𝑥) = 0 → 𝑥 = (GId‘𝐺)) ∧ ∀𝑦 ∈ ℂ (𝑁‘(𝑦𝑆𝑥)) = ((abs‘𝑦) · (𝑁𝑥)) ∧ ∀𝑦𝑋 (𝑁‘(𝑥𝐺𝑦)) ≤ ((𝑁𝑥) + (𝑁𝑦))))))
2315, 22mpbird 260 1 (𝑈 ∈ NrmCVec → (⟨𝐺, 𝑆⟩ ∈ CVecOLD𝑁:𝑋⟶ℝ ∧ ∀𝑥𝑋 (((𝑁𝑥) = 0 → 𝑥 = 𝑍) ∧ ∀𝑦 ∈ ℂ (𝑁‘(𝑦𝑆𝑥)) = ((abs‘𝑦) · (𝑁𝑥)) ∧ ∀𝑦𝑋 (𝑁‘(𝑥𝐺𝑦)) ≤ ((𝑁𝑥) + (𝑁𝑦)))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1084   = wceq 1538  wcel 2111  wral 3106  cop 4531   class class class wbr 5030  wf 6320  cfv 6324  (class class class)co 7135  1st c1st 7669  cc 10524  cr 10525  0cc0 10526   + caddc 10529   · cmul 10531  cle 10665  abscabs 14585  GIdcgi 28273  CVecOLDcvc 28341  NrmCVeccnv 28367   +𝑣 cpv 28368  BaseSetcba 28369   ·𝑠OLD cns 28370  0veccn0v 28371  normCVcnmcv 28373
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-rep 5154  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-ral 3111  df-rex 3112  df-reu 3113  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-nul 4244  df-if 4426  df-sn 4526  df-pr 4528  df-op 4532  df-uni 4801  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-id 5425  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-ov 7138  df-oprab 7139  df-1st 7671  df-2nd 7672  df-vc 28342  df-nv 28375  df-va 28378  df-ba 28379  df-sm 28380  df-0v 28381  df-nmcv 28383
This theorem is referenced by:  nvvc  28398  nvf  28443  nvs  28446  nvz  28452  nvtri  28453
  Copyright terms: Public domain W3C validator