MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nvi Structured version   Visualization version   GIF version

Theorem nvi 29862
Description: The properties of a normed complex vector space, which is a vector space accompanied by a norm. (Contributed by NM, 11-Nov-2006.) (Revised by Mario Carneiro, 21-Dec-2013.) (New usage is discouraged.)
Hypotheses
Ref Expression
nvi.1 𝑋 = (BaseSetβ€˜π‘ˆ)
nvi.2 𝐺 = ( +𝑣 β€˜π‘ˆ)
nvi.4 𝑆 = ( ·𝑠OLD β€˜π‘ˆ)
nvi.5 𝑍 = (0vecβ€˜π‘ˆ)
nvi.6 𝑁 = (normCVβ€˜π‘ˆ)
Assertion
Ref Expression
nvi (π‘ˆ ∈ NrmCVec β†’ (⟨𝐺, π‘†βŸ© ∈ CVecOLD ∧ 𝑁:π‘‹βŸΆβ„ ∧ βˆ€π‘₯ ∈ 𝑋 (((π‘β€˜π‘₯) = 0 β†’ π‘₯ = 𝑍) ∧ βˆ€π‘¦ ∈ β„‚ (π‘β€˜(𝑦𝑆π‘₯)) = ((absβ€˜π‘¦) Β· (π‘β€˜π‘₯)) ∧ βˆ€π‘¦ ∈ 𝑋 (π‘β€˜(π‘₯𝐺𝑦)) ≀ ((π‘β€˜π‘₯) + (π‘β€˜π‘¦)))))
Distinct variable groups:   π‘₯,𝑦,𝐺   π‘₯,𝑁,𝑦   π‘₯,π‘ˆ   π‘₯,𝑆,𝑦   π‘₯,𝑋,𝑦
Allowed substitution hints:   π‘ˆ(𝑦)   𝑍(π‘₯,𝑦)

Proof of Theorem nvi
StepHypRef Expression
1 eqid 2732 . . . . . 6 (1st β€˜π‘ˆ) = (1st β€˜π‘ˆ)
2 nvi.6 . . . . . 6 𝑁 = (normCVβ€˜π‘ˆ)
31, 2nvop2 29856 . . . . 5 (π‘ˆ ∈ NrmCVec β†’ π‘ˆ = ⟨(1st β€˜π‘ˆ), π‘βŸ©)
4 nvi.2 . . . . . . 7 𝐺 = ( +𝑣 β€˜π‘ˆ)
5 nvi.4 . . . . . . 7 𝑆 = ( ·𝑠OLD β€˜π‘ˆ)
61, 4, 5nvvop 29857 . . . . . 6 (π‘ˆ ∈ NrmCVec β†’ (1st β€˜π‘ˆ) = ⟨𝐺, π‘†βŸ©)
76opeq1d 4879 . . . . 5 (π‘ˆ ∈ NrmCVec β†’ ⟨(1st β€˜π‘ˆ), π‘βŸ© = ⟨⟨𝐺, π‘†βŸ©, π‘βŸ©)
83, 7eqtrd 2772 . . . 4 (π‘ˆ ∈ NrmCVec β†’ π‘ˆ = ⟨⟨𝐺, π‘†βŸ©, π‘βŸ©)
9 id 22 . . . 4 (π‘ˆ ∈ NrmCVec β†’ π‘ˆ ∈ NrmCVec)
108, 9eqeltrrd 2834 . . 3 (π‘ˆ ∈ NrmCVec β†’ ⟨⟨𝐺, π‘†βŸ©, π‘βŸ© ∈ NrmCVec)
11 nvi.1 . . . . 5 𝑋 = (BaseSetβ€˜π‘ˆ)
1211, 4bafval 29852 . . . 4 𝑋 = ran 𝐺
13 eqid 2732 . . . 4 (GIdβ€˜πΊ) = (GIdβ€˜πΊ)
1412, 13isnv 29860 . . 3 (⟨⟨𝐺, π‘†βŸ©, π‘βŸ© ∈ NrmCVec ↔ (⟨𝐺, π‘†βŸ© ∈ CVecOLD ∧ 𝑁:π‘‹βŸΆβ„ ∧ βˆ€π‘₯ ∈ 𝑋 (((π‘β€˜π‘₯) = 0 β†’ π‘₯ = (GIdβ€˜πΊ)) ∧ βˆ€π‘¦ ∈ β„‚ (π‘β€˜(𝑦𝑆π‘₯)) = ((absβ€˜π‘¦) Β· (π‘β€˜π‘₯)) ∧ βˆ€π‘¦ ∈ 𝑋 (π‘β€˜(π‘₯𝐺𝑦)) ≀ ((π‘β€˜π‘₯) + (π‘β€˜π‘¦)))))
1510, 14sylib 217 . 2 (π‘ˆ ∈ NrmCVec β†’ (⟨𝐺, π‘†βŸ© ∈ CVecOLD ∧ 𝑁:π‘‹βŸΆβ„ ∧ βˆ€π‘₯ ∈ 𝑋 (((π‘β€˜π‘₯) = 0 β†’ π‘₯ = (GIdβ€˜πΊ)) ∧ βˆ€π‘¦ ∈ β„‚ (π‘β€˜(𝑦𝑆π‘₯)) = ((absβ€˜π‘¦) Β· (π‘β€˜π‘₯)) ∧ βˆ€π‘¦ ∈ 𝑋 (π‘β€˜(π‘₯𝐺𝑦)) ≀ ((π‘β€˜π‘₯) + (π‘β€˜π‘¦)))))
16 nvi.5 . . . . . . . 8 𝑍 = (0vecβ€˜π‘ˆ)
174, 160vfval 29854 . . . . . . 7 (π‘ˆ ∈ NrmCVec β†’ 𝑍 = (GIdβ€˜πΊ))
1817eqeq2d 2743 . . . . . 6 (π‘ˆ ∈ NrmCVec β†’ (π‘₯ = 𝑍 ↔ π‘₯ = (GIdβ€˜πΊ)))
1918imbi2d 340 . . . . 5 (π‘ˆ ∈ NrmCVec β†’ (((π‘β€˜π‘₯) = 0 β†’ π‘₯ = 𝑍) ↔ ((π‘β€˜π‘₯) = 0 β†’ π‘₯ = (GIdβ€˜πΊ))))
20193anbi1d 1440 . . . 4 (π‘ˆ ∈ NrmCVec β†’ ((((π‘β€˜π‘₯) = 0 β†’ π‘₯ = 𝑍) ∧ βˆ€π‘¦ ∈ β„‚ (π‘β€˜(𝑦𝑆π‘₯)) = ((absβ€˜π‘¦) Β· (π‘β€˜π‘₯)) ∧ βˆ€π‘¦ ∈ 𝑋 (π‘β€˜(π‘₯𝐺𝑦)) ≀ ((π‘β€˜π‘₯) + (π‘β€˜π‘¦))) ↔ (((π‘β€˜π‘₯) = 0 β†’ π‘₯ = (GIdβ€˜πΊ)) ∧ βˆ€π‘¦ ∈ β„‚ (π‘β€˜(𝑦𝑆π‘₯)) = ((absβ€˜π‘¦) Β· (π‘β€˜π‘₯)) ∧ βˆ€π‘¦ ∈ 𝑋 (π‘β€˜(π‘₯𝐺𝑦)) ≀ ((π‘β€˜π‘₯) + (π‘β€˜π‘¦)))))
2120ralbidv 3177 . . 3 (π‘ˆ ∈ NrmCVec β†’ (βˆ€π‘₯ ∈ 𝑋 (((π‘β€˜π‘₯) = 0 β†’ π‘₯ = 𝑍) ∧ βˆ€π‘¦ ∈ β„‚ (π‘β€˜(𝑦𝑆π‘₯)) = ((absβ€˜π‘¦) Β· (π‘β€˜π‘₯)) ∧ βˆ€π‘¦ ∈ 𝑋 (π‘β€˜(π‘₯𝐺𝑦)) ≀ ((π‘β€˜π‘₯) + (π‘β€˜π‘¦))) ↔ βˆ€π‘₯ ∈ 𝑋 (((π‘β€˜π‘₯) = 0 β†’ π‘₯ = (GIdβ€˜πΊ)) ∧ βˆ€π‘¦ ∈ β„‚ (π‘β€˜(𝑦𝑆π‘₯)) = ((absβ€˜π‘¦) Β· (π‘β€˜π‘₯)) ∧ βˆ€π‘¦ ∈ 𝑋 (π‘β€˜(π‘₯𝐺𝑦)) ≀ ((π‘β€˜π‘₯) + (π‘β€˜π‘¦)))))
22213anbi3d 1442 . 2 (π‘ˆ ∈ NrmCVec β†’ ((⟨𝐺, π‘†βŸ© ∈ CVecOLD ∧ 𝑁:π‘‹βŸΆβ„ ∧ βˆ€π‘₯ ∈ 𝑋 (((π‘β€˜π‘₯) = 0 β†’ π‘₯ = 𝑍) ∧ βˆ€π‘¦ ∈ β„‚ (π‘β€˜(𝑦𝑆π‘₯)) = ((absβ€˜π‘¦) Β· (π‘β€˜π‘₯)) ∧ βˆ€π‘¦ ∈ 𝑋 (π‘β€˜(π‘₯𝐺𝑦)) ≀ ((π‘β€˜π‘₯) + (π‘β€˜π‘¦)))) ↔ (⟨𝐺, π‘†βŸ© ∈ CVecOLD ∧ 𝑁:π‘‹βŸΆβ„ ∧ βˆ€π‘₯ ∈ 𝑋 (((π‘β€˜π‘₯) = 0 β†’ π‘₯ = (GIdβ€˜πΊ)) ∧ βˆ€π‘¦ ∈ β„‚ (π‘β€˜(𝑦𝑆π‘₯)) = ((absβ€˜π‘¦) Β· (π‘β€˜π‘₯)) ∧ βˆ€π‘¦ ∈ 𝑋 (π‘β€˜(π‘₯𝐺𝑦)) ≀ ((π‘β€˜π‘₯) + (π‘β€˜π‘¦))))))
2315, 22mpbird 256 1 (π‘ˆ ∈ NrmCVec β†’ (⟨𝐺, π‘†βŸ© ∈ CVecOLD ∧ 𝑁:π‘‹βŸΆβ„ ∧ βˆ€π‘₯ ∈ 𝑋 (((π‘β€˜π‘₯) = 0 β†’ π‘₯ = 𝑍) ∧ βˆ€π‘¦ ∈ β„‚ (π‘β€˜(𝑦𝑆π‘₯)) = ((absβ€˜π‘¦) Β· (π‘β€˜π‘₯)) ∧ βˆ€π‘¦ ∈ 𝑋 (π‘β€˜(π‘₯𝐺𝑦)) ≀ ((π‘β€˜π‘₯) + (π‘β€˜π‘¦)))))
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ∧ w3a 1087   = wceq 1541   ∈ wcel 2106  βˆ€wral 3061  βŸ¨cop 4634   class class class wbr 5148  βŸΆwf 6539  β€˜cfv 6543  (class class class)co 7408  1st c1st 7972  β„‚cc 11107  β„cr 11108  0cc0 11109   + caddc 11112   Β· cmul 11114   ≀ cle 11248  abscabs 15180  GIdcgi 29738  CVecOLDcvc 29806  NrmCVeccnv 29832   +𝑣 cpv 29833  BaseSetcba 29834   ·𝑠OLD cns 29835  0veccn0v 29836  normCVcnmcv 29838
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-rep 5285  ax-sep 5299  ax-nul 5306  ax-pr 5427  ax-un 7724
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-ral 3062  df-rex 3071  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-iun 4999  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5574  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-ov 7411  df-oprab 7412  df-1st 7974  df-2nd 7975  df-vc 29807  df-nv 29840  df-va 29843  df-ba 29844  df-sm 29845  df-0v 29846  df-nmcv 29848
This theorem is referenced by:  nvvc  29863  nvf  29908  nvs  29911  nvz  29917  nvtri  29918
  Copyright terms: Public domain W3C validator