Proof of Theorem nvi
| Step | Hyp | Ref
| Expression |
| 1 | | eqid 2730 |
. . . . . 6
⊢
(1st ‘𝑈) = (1st ‘𝑈) |
| 2 | | nvi.6 |
. . . . . 6
⊢ 𝑁 =
(normCV‘𝑈) |
| 3 | 1, 2 | nvop2 30544 |
. . . . 5
⊢ (𝑈 ∈ NrmCVec → 𝑈 = 〈(1st
‘𝑈), 𝑁〉) |
| 4 | | nvi.2 |
. . . . . . 7
⊢ 𝐺 = ( +𝑣
‘𝑈) |
| 5 | | nvi.4 |
. . . . . . 7
⊢ 𝑆 = (
·𝑠OLD ‘𝑈) |
| 6 | 1, 4, 5 | nvvop 30545 |
. . . . . 6
⊢ (𝑈 ∈ NrmCVec →
(1st ‘𝑈) =
〈𝐺, 𝑆〉) |
| 7 | 6 | opeq1d 4846 |
. . . . 5
⊢ (𝑈 ∈ NrmCVec →
〈(1st ‘𝑈), 𝑁〉 = 〈〈𝐺, 𝑆〉, 𝑁〉) |
| 8 | 3, 7 | eqtrd 2765 |
. . . 4
⊢ (𝑈 ∈ NrmCVec → 𝑈 = 〈〈𝐺, 𝑆〉, 𝑁〉) |
| 9 | | id 22 |
. . . 4
⊢ (𝑈 ∈ NrmCVec → 𝑈 ∈
NrmCVec) |
| 10 | 8, 9 | eqeltrrd 2830 |
. . 3
⊢ (𝑈 ∈ NrmCVec →
〈〈𝐺, 𝑆〉, 𝑁〉 ∈ NrmCVec) |
| 11 | | nvi.1 |
. . . . 5
⊢ 𝑋 = (BaseSet‘𝑈) |
| 12 | 11, 4 | bafval 30540 |
. . . 4
⊢ 𝑋 = ran 𝐺 |
| 13 | | eqid 2730 |
. . . 4
⊢
(GId‘𝐺) =
(GId‘𝐺) |
| 14 | 12, 13 | isnv 30548 |
. . 3
⊢
(〈〈𝐺,
𝑆〉, 𝑁〉 ∈ NrmCVec ↔ (〈𝐺, 𝑆〉 ∈ CVecOLD ∧ 𝑁:𝑋⟶ℝ ∧ ∀𝑥 ∈ 𝑋 (((𝑁‘𝑥) = 0 → 𝑥 = (GId‘𝐺)) ∧ ∀𝑦 ∈ ℂ (𝑁‘(𝑦𝑆𝑥)) = ((abs‘𝑦) · (𝑁‘𝑥)) ∧ ∀𝑦 ∈ 𝑋 (𝑁‘(𝑥𝐺𝑦)) ≤ ((𝑁‘𝑥) + (𝑁‘𝑦))))) |
| 15 | 10, 14 | sylib 218 |
. 2
⊢ (𝑈 ∈ NrmCVec →
(〈𝐺, 𝑆〉 ∈ CVecOLD ∧ 𝑁:𝑋⟶ℝ ∧ ∀𝑥 ∈ 𝑋 (((𝑁‘𝑥) = 0 → 𝑥 = (GId‘𝐺)) ∧ ∀𝑦 ∈ ℂ (𝑁‘(𝑦𝑆𝑥)) = ((abs‘𝑦) · (𝑁‘𝑥)) ∧ ∀𝑦 ∈ 𝑋 (𝑁‘(𝑥𝐺𝑦)) ≤ ((𝑁‘𝑥) + (𝑁‘𝑦))))) |
| 16 | | nvi.5 |
. . . . . . . 8
⊢ 𝑍 = (0vec‘𝑈) |
| 17 | 4, 16 | 0vfval 30542 |
. . . . . . 7
⊢ (𝑈 ∈ NrmCVec → 𝑍 = (GId‘𝐺)) |
| 18 | 17 | eqeq2d 2741 |
. . . . . 6
⊢ (𝑈 ∈ NrmCVec → (𝑥 = 𝑍 ↔ 𝑥 = (GId‘𝐺))) |
| 19 | 18 | imbi2d 340 |
. . . . 5
⊢ (𝑈 ∈ NrmCVec → (((𝑁‘𝑥) = 0 → 𝑥 = 𝑍) ↔ ((𝑁‘𝑥) = 0 → 𝑥 = (GId‘𝐺)))) |
| 20 | 19 | 3anbi1d 1442 |
. . . 4
⊢ (𝑈 ∈ NrmCVec → ((((𝑁‘𝑥) = 0 → 𝑥 = 𝑍) ∧ ∀𝑦 ∈ ℂ (𝑁‘(𝑦𝑆𝑥)) = ((abs‘𝑦) · (𝑁‘𝑥)) ∧ ∀𝑦 ∈ 𝑋 (𝑁‘(𝑥𝐺𝑦)) ≤ ((𝑁‘𝑥) + (𝑁‘𝑦))) ↔ (((𝑁‘𝑥) = 0 → 𝑥 = (GId‘𝐺)) ∧ ∀𝑦 ∈ ℂ (𝑁‘(𝑦𝑆𝑥)) = ((abs‘𝑦) · (𝑁‘𝑥)) ∧ ∀𝑦 ∈ 𝑋 (𝑁‘(𝑥𝐺𝑦)) ≤ ((𝑁‘𝑥) + (𝑁‘𝑦))))) |
| 21 | 20 | ralbidv 3157 |
. . 3
⊢ (𝑈 ∈ NrmCVec →
(∀𝑥 ∈ 𝑋 (((𝑁‘𝑥) = 0 → 𝑥 = 𝑍) ∧ ∀𝑦 ∈ ℂ (𝑁‘(𝑦𝑆𝑥)) = ((abs‘𝑦) · (𝑁‘𝑥)) ∧ ∀𝑦 ∈ 𝑋 (𝑁‘(𝑥𝐺𝑦)) ≤ ((𝑁‘𝑥) + (𝑁‘𝑦))) ↔ ∀𝑥 ∈ 𝑋 (((𝑁‘𝑥) = 0 → 𝑥 = (GId‘𝐺)) ∧ ∀𝑦 ∈ ℂ (𝑁‘(𝑦𝑆𝑥)) = ((abs‘𝑦) · (𝑁‘𝑥)) ∧ ∀𝑦 ∈ 𝑋 (𝑁‘(𝑥𝐺𝑦)) ≤ ((𝑁‘𝑥) + (𝑁‘𝑦))))) |
| 22 | 21 | 3anbi3d 1444 |
. 2
⊢ (𝑈 ∈ NrmCVec →
((〈𝐺, 𝑆〉 ∈ CVecOLD
∧ 𝑁:𝑋⟶ℝ ∧ ∀𝑥 ∈ 𝑋 (((𝑁‘𝑥) = 0 → 𝑥 = 𝑍) ∧ ∀𝑦 ∈ ℂ (𝑁‘(𝑦𝑆𝑥)) = ((abs‘𝑦) · (𝑁‘𝑥)) ∧ ∀𝑦 ∈ 𝑋 (𝑁‘(𝑥𝐺𝑦)) ≤ ((𝑁‘𝑥) + (𝑁‘𝑦)))) ↔ (〈𝐺, 𝑆〉 ∈ CVecOLD ∧ 𝑁:𝑋⟶ℝ ∧ ∀𝑥 ∈ 𝑋 (((𝑁‘𝑥) = 0 → 𝑥 = (GId‘𝐺)) ∧ ∀𝑦 ∈ ℂ (𝑁‘(𝑦𝑆𝑥)) = ((abs‘𝑦) · (𝑁‘𝑥)) ∧ ∀𝑦 ∈ 𝑋 (𝑁‘(𝑥𝐺𝑦)) ≤ ((𝑁‘𝑥) + (𝑁‘𝑦)))))) |
| 23 | 15, 22 | mpbird 257 |
1
⊢ (𝑈 ∈ NrmCVec →
(〈𝐺, 𝑆〉 ∈ CVecOLD ∧ 𝑁:𝑋⟶ℝ ∧ ∀𝑥 ∈ 𝑋 (((𝑁‘𝑥) = 0 → 𝑥 = 𝑍) ∧ ∀𝑦 ∈ ℂ (𝑁‘(𝑦𝑆𝑥)) = ((abs‘𝑦) · (𝑁‘𝑥)) ∧ ∀𝑦 ∈ 𝑋 (𝑁‘(𝑥𝐺𝑦)) ≤ ((𝑁‘𝑥) + (𝑁‘𝑦))))) |