MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nvi Structured version   Visualization version   GIF version

Theorem nvi 28389
Description: The properties of a normed complex vector space, which is a vector space accompanied by a norm. (Contributed by NM, 11-Nov-2006.) (Revised by Mario Carneiro, 21-Dec-2013.) (New usage is discouraged.)
Hypotheses
Ref Expression
nvi.1 𝑋 = (BaseSet‘𝑈)
nvi.2 𝐺 = ( +𝑣𝑈)
nvi.4 𝑆 = ( ·𝑠OLD𝑈)
nvi.5 𝑍 = (0vec𝑈)
nvi.6 𝑁 = (normCV𝑈)
Assertion
Ref Expression
nvi (𝑈 ∈ NrmCVec → (⟨𝐺, 𝑆⟩ ∈ CVecOLD𝑁:𝑋⟶ℝ ∧ ∀𝑥𝑋 (((𝑁𝑥) = 0 → 𝑥 = 𝑍) ∧ ∀𝑦 ∈ ℂ (𝑁‘(𝑦𝑆𝑥)) = ((abs‘𝑦) · (𝑁𝑥)) ∧ ∀𝑦𝑋 (𝑁‘(𝑥𝐺𝑦)) ≤ ((𝑁𝑥) + (𝑁𝑦)))))
Distinct variable groups:   𝑥,𝑦,𝐺   𝑥,𝑁,𝑦   𝑥,𝑈   𝑥,𝑆,𝑦   𝑥,𝑋,𝑦
Allowed substitution hints:   𝑈(𝑦)   𝑍(𝑥,𝑦)

Proof of Theorem nvi
StepHypRef Expression
1 eqid 2820 . . . . . 6 (1st𝑈) = (1st𝑈)
2 nvi.6 . . . . . 6 𝑁 = (normCV𝑈)
31, 2nvop2 28383 . . . . 5 (𝑈 ∈ NrmCVec → 𝑈 = ⟨(1st𝑈), 𝑁⟩)
4 nvi.2 . . . . . . 7 𝐺 = ( +𝑣𝑈)
5 nvi.4 . . . . . . 7 𝑆 = ( ·𝑠OLD𝑈)
61, 4, 5nvvop 28384 . . . . . 6 (𝑈 ∈ NrmCVec → (1st𝑈) = ⟨𝐺, 𝑆⟩)
76opeq1d 4802 . . . . 5 (𝑈 ∈ NrmCVec → ⟨(1st𝑈), 𝑁⟩ = ⟨⟨𝐺, 𝑆⟩, 𝑁⟩)
83, 7eqtrd 2855 . . . 4 (𝑈 ∈ NrmCVec → 𝑈 = ⟨⟨𝐺, 𝑆⟩, 𝑁⟩)
9 id 22 . . . 4 (𝑈 ∈ NrmCVec → 𝑈 ∈ NrmCVec)
108, 9eqeltrrd 2913 . . 3 (𝑈 ∈ NrmCVec → ⟨⟨𝐺, 𝑆⟩, 𝑁⟩ ∈ NrmCVec)
11 nvi.1 . . . . 5 𝑋 = (BaseSet‘𝑈)
1211, 4bafval 28379 . . . 4 𝑋 = ran 𝐺
13 eqid 2820 . . . 4 (GId‘𝐺) = (GId‘𝐺)
1412, 13isnv 28387 . . 3 (⟨⟨𝐺, 𝑆⟩, 𝑁⟩ ∈ NrmCVec ↔ (⟨𝐺, 𝑆⟩ ∈ CVecOLD𝑁:𝑋⟶ℝ ∧ ∀𝑥𝑋 (((𝑁𝑥) = 0 → 𝑥 = (GId‘𝐺)) ∧ ∀𝑦 ∈ ℂ (𝑁‘(𝑦𝑆𝑥)) = ((abs‘𝑦) · (𝑁𝑥)) ∧ ∀𝑦𝑋 (𝑁‘(𝑥𝐺𝑦)) ≤ ((𝑁𝑥) + (𝑁𝑦)))))
1510, 14sylib 220 . 2 (𝑈 ∈ NrmCVec → (⟨𝐺, 𝑆⟩ ∈ CVecOLD𝑁:𝑋⟶ℝ ∧ ∀𝑥𝑋 (((𝑁𝑥) = 0 → 𝑥 = (GId‘𝐺)) ∧ ∀𝑦 ∈ ℂ (𝑁‘(𝑦𝑆𝑥)) = ((abs‘𝑦) · (𝑁𝑥)) ∧ ∀𝑦𝑋 (𝑁‘(𝑥𝐺𝑦)) ≤ ((𝑁𝑥) + (𝑁𝑦)))))
16 nvi.5 . . . . . . . 8 𝑍 = (0vec𝑈)
174, 160vfval 28381 . . . . . . 7 (𝑈 ∈ NrmCVec → 𝑍 = (GId‘𝐺))
1817eqeq2d 2831 . . . . . 6 (𝑈 ∈ NrmCVec → (𝑥 = 𝑍𝑥 = (GId‘𝐺)))
1918imbi2d 343 . . . . 5 (𝑈 ∈ NrmCVec → (((𝑁𝑥) = 0 → 𝑥 = 𝑍) ↔ ((𝑁𝑥) = 0 → 𝑥 = (GId‘𝐺))))
20193anbi1d 1435 . . . 4 (𝑈 ∈ NrmCVec → ((((𝑁𝑥) = 0 → 𝑥 = 𝑍) ∧ ∀𝑦 ∈ ℂ (𝑁‘(𝑦𝑆𝑥)) = ((abs‘𝑦) · (𝑁𝑥)) ∧ ∀𝑦𝑋 (𝑁‘(𝑥𝐺𝑦)) ≤ ((𝑁𝑥) + (𝑁𝑦))) ↔ (((𝑁𝑥) = 0 → 𝑥 = (GId‘𝐺)) ∧ ∀𝑦 ∈ ℂ (𝑁‘(𝑦𝑆𝑥)) = ((abs‘𝑦) · (𝑁𝑥)) ∧ ∀𝑦𝑋 (𝑁‘(𝑥𝐺𝑦)) ≤ ((𝑁𝑥) + (𝑁𝑦)))))
2120ralbidv 3196 . . 3 (𝑈 ∈ NrmCVec → (∀𝑥𝑋 (((𝑁𝑥) = 0 → 𝑥 = 𝑍) ∧ ∀𝑦 ∈ ℂ (𝑁‘(𝑦𝑆𝑥)) = ((abs‘𝑦) · (𝑁𝑥)) ∧ ∀𝑦𝑋 (𝑁‘(𝑥𝐺𝑦)) ≤ ((𝑁𝑥) + (𝑁𝑦))) ↔ ∀𝑥𝑋 (((𝑁𝑥) = 0 → 𝑥 = (GId‘𝐺)) ∧ ∀𝑦 ∈ ℂ (𝑁‘(𝑦𝑆𝑥)) = ((abs‘𝑦) · (𝑁𝑥)) ∧ ∀𝑦𝑋 (𝑁‘(𝑥𝐺𝑦)) ≤ ((𝑁𝑥) + (𝑁𝑦)))))
22213anbi3d 1437 . 2 (𝑈 ∈ NrmCVec → ((⟨𝐺, 𝑆⟩ ∈ CVecOLD𝑁:𝑋⟶ℝ ∧ ∀𝑥𝑋 (((𝑁𝑥) = 0 → 𝑥 = 𝑍) ∧ ∀𝑦 ∈ ℂ (𝑁‘(𝑦𝑆𝑥)) = ((abs‘𝑦) · (𝑁𝑥)) ∧ ∀𝑦𝑋 (𝑁‘(𝑥𝐺𝑦)) ≤ ((𝑁𝑥) + (𝑁𝑦)))) ↔ (⟨𝐺, 𝑆⟩ ∈ CVecOLD𝑁:𝑋⟶ℝ ∧ ∀𝑥𝑋 (((𝑁𝑥) = 0 → 𝑥 = (GId‘𝐺)) ∧ ∀𝑦 ∈ ℂ (𝑁‘(𝑦𝑆𝑥)) = ((abs‘𝑦) · (𝑁𝑥)) ∧ ∀𝑦𝑋 (𝑁‘(𝑥𝐺𝑦)) ≤ ((𝑁𝑥) + (𝑁𝑦))))))
2315, 22mpbird 259 1 (𝑈 ∈ NrmCVec → (⟨𝐺, 𝑆⟩ ∈ CVecOLD𝑁:𝑋⟶ℝ ∧ ∀𝑥𝑋 (((𝑁𝑥) = 0 → 𝑥 = 𝑍) ∧ ∀𝑦 ∈ ℂ (𝑁‘(𝑦𝑆𝑥)) = ((abs‘𝑦) · (𝑁𝑥)) ∧ ∀𝑦𝑋 (𝑁‘(𝑥𝐺𝑦)) ≤ ((𝑁𝑥) + (𝑁𝑦)))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1082   = wceq 1536  wcel 2113  wral 3137  cop 4566   class class class wbr 5059  wf 6344  cfv 6348  (class class class)co 7149  1st c1st 7680  cc 10528  cr 10529  0cc0 10530   + caddc 10533   · cmul 10535  cle 10669  abscabs 14588  GIdcgi 28265  CVecOLDcvc 28333  NrmCVeccnv 28359   +𝑣 cpv 28360  BaseSetcba 28361   ·𝑠OLD cns 28362  0veccn0v 28363  normCVcnmcv 28365
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1969  ax-7 2014  ax-8 2115  ax-9 2123  ax-10 2144  ax-11 2160  ax-12 2176  ax-ext 2792  ax-rep 5183  ax-sep 5196  ax-nul 5203  ax-pow 5259  ax-pr 5323  ax-un 7454
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1084  df-tru 1539  df-ex 1780  df-nf 1784  df-sb 2069  df-mo 2621  df-eu 2653  df-clab 2799  df-cleq 2813  df-clel 2892  df-nfc 2962  df-ne 3016  df-ral 3142  df-rex 3143  df-reu 3144  df-rab 3146  df-v 3493  df-sbc 3769  df-csb 3877  df-dif 3932  df-un 3934  df-in 3936  df-ss 3945  df-nul 4285  df-if 4461  df-sn 4561  df-pr 4563  df-op 4567  df-uni 4832  df-iun 4914  df-br 5060  df-opab 5122  df-mpt 5140  df-id 5453  df-xp 5554  df-rel 5555  df-cnv 5556  df-co 5557  df-dm 5558  df-rn 5559  df-res 5560  df-ima 5561  df-iota 6307  df-fun 6350  df-fn 6351  df-f 6352  df-f1 6353  df-fo 6354  df-f1o 6355  df-fv 6356  df-ov 7152  df-oprab 7153  df-1st 7682  df-2nd 7683  df-vc 28334  df-nv 28367  df-va 28370  df-ba 28371  df-sm 28372  df-0v 28373  df-nmcv 28375
This theorem is referenced by:  nvvc  28390  nvf  28435  nvs  28438  nvz  28444  nvtri  28445
  Copyright terms: Public domain W3C validator